q-Chebyshev polynomials

6 downloads 0 Views 191KB Size Report
s n t n such that the three-term recurrence. 1 ..... binomial theorem in the form .... T x s q = and 1( , , ) . T x s q x. = The first terms are. 2. 3. 1, ,[2]. ,[4]. [3] , x x qs ..... Ilse Fischer [12] has found a combinatorial reason for this product representation.
q-Chebyshev polynomials Johann Cigler Fakultät für Mathematik, Universität Wien [email protected] Abstract In this overview paper a direct approach to q  Chebyshev polynomials and their elementary properties is given. Special emphasis is placed on analogies with the classical case. There are also some connections with q  tangent and q  Genocchi numbers. 0. Introduction Waleed A. Al Salam and Mourad E.H. Ismail [1] found a class of polynomials which can be interpreted as q  analogues of the bivariate Chebyshev polynomials of the second kind. These are essentially the polynomials U n ( x , s, q ) which will be introduced in (2.12). In [11] I also considered corresponding q  Chebyshev polynomials Tn ( x , s, q ) of the first kind which will be defined in (2.6). Together these polynomials satisfy many q  analogues of well-known identities for the classical Chebyshev polynomials Tn ( x )  Tn ( x , 1,1) and U n ( x )  U n ( x , 1,1). For some of them it is essential that our polynomials depend on two independent parameters. This is especially true for (2.36) which generalizes the defining



property x  x 2  1



n

 Tn ( x )  U n 1 ( x ) x 2  1 of the classical Chebyshev polynomials.

Another approach to univariate q  analogues of Chebyshev polynomials has been proposed by Natig Atakishiyev et al. in [2], (5.3) and (5.4). In our terminology they considered the monic   1 versions of the polynomials Tn  x ,  , q  and U n x,  q , q . Since q   x  x  U n ( x, s 2 , q)  s nU n  ,1, q  and Tn ( x, s 2 , q)  s nTn  ,1, q  their definition also leads to the s  s  same bivariate polynomials Tn ( x , s, q ) and U n ( x , s, q ). Without recognizing them as q  analogues of Chebyshev polynomials some of these polynomials also appeared in the course of computing Hankel determinants as in [7] and [13].





The purpose of this paper is to give a direct approach to these polynomials and their simplest properties.

2010 Mathematics Subject Classification: Primary 05A30; Secondary 11B83, 33C47 Key words and phrases: Chebyshev polynomials, q  tangent numbers, q  Genocchi numbers, orthogonal polynomials, Hankel determinants.

1

1. Some well-known facts about the classical Chebyshev polynomials Let me first state some well-known facts about those aspects of the classical Chebyshev polynomials (cf. e.g. [15]) and their bivariate versions for which we will give q  analogues.

The (classical) Chebyshev polynomials of the first kind Tn ( x ) satisfy the recurrence Tn ( x )  2 xTn 1 ( x )  Tn  2 ( x )

(1.1)

with initial values T0 ( x )  1 and T1 ( x )  x. For x  1 this reduces to Tn (1)  1.

(1.2)

The (classical) Chebyshev polynomials of the second kind U n ( x ) satisfy the same recurrence U n ( x )  2 xU n 1 ( x )  U n  2 ( x )

but with initial values U 1 ( x )  0 and U 0 ( x )  1, which gives U1 ( x )  2 x. As special values we note that U n (1)  n  1.

(1.3)

(1.4)

These polynomials are related by the identity



x  x2  1



n

 Tn ( x )  U n 1 ( x ) x 2  1,

(1.5)

which in turn implies Tn ( x ) 2  ( x 2  1)U n 1 ( x ) 2  1.

(1.6)

Remark 1.1 For x  cos identity (1.5) becomes

cos n  i sin n   cos  i sin    Tn  cos   iU n 1 (cos )sin  or equivalently n

Tn (cos  )  cos n U n (cos  ) 

sin( n  1) . sin 

(1.7)

This is the usual approach to the Chebyshev polynomials. Identity (1.6) reduces to cos 2 n  sin 2 n  1.

2

(1.8)

Unfortunately it seems that this aspect of the Chebyshev polynomials has no simple q  analogue. The Chebyshev polynomials are orthogonal polynomials. As is well-known (cf. e.g. [4]) a sequence  pn ( x )  n 0 of polynomials with p0 ( x )  1 and deg pn  n is called orthogonal with

respect to a linear functional  on the vector space of polynomials if   pm pn   0 for

m  n. The linear functional is uniquely determined by   pn   [n  0]. Here [ P ] denotes the Iverson symbol defined by [ P ]  1 if property P is true and [ P ]  0 otherwise. The values  ( x n ) are called moments of . Let Pn ( x ) denote the monic polynomials corresponding to pn ( x ) and a ( n , k ) be the uniquely determined coefficients in n

 a ( n, k ) P ( x )  x . n

(1.9)

k

k 0

 ( x n Pk ( x )) . Then a ( n , 0)   ( x ) and more generally a (n, k )   ( Pk ( x )2 ) n

By Favard’s theorem there exist numbers s ( n ), t ( n ) such that the three-term recurrence Pn ( x )  ( x  s ( n  1)) Pn 1 ( x )  t ( n  2) Pn  2 ( x )

(1.10)

holds. Therefore the coefficients a ( n , k ) satisfy

a (0, j )  [ j  0] a ( n,0)  s (0)a (n  1,0)  t (0)a ( n  1,1)

(1.11)

a ( n, j )  a ( n  1, j  1)  s( j )a ( n  1, j )  t ( j )a ( n  1, j  1). This can be used to compute the moments a ( n, 0)   ( x n ). If the moments are known then the corresponding orthogonal polynomials Pn ( x ) are given by    x 0    x1      x1    x 2   1 det Pn ( x )     x2    x3  det(  ( x i  j ))in,j10     n n 1 x  x 



  x n 1 



  xn 



  x n 1 

   x 2 n 1 

1  x  2 . x      x n 

(1.12)

So the knowledge of the polynomials Pn ( x ) is equivalent with the knowledge of s ( n ) and t ( n ) and this is again equivalent with the knowledge of the moments.

3

1

1

Tn ( x )



1

dx   cos( n )d  [n  0] for the polynomials Tn ( x ) the corresponding  1 1  x 2  0 linear functional L is given by the integral

Since

L  p( x )  

1

1

p( x )

 

1  x2

1

dx

(1.13)

and L Tn

2

 1 if n  0  dx   1 1  x2  2 if n  0

1

Tn ( x ) 2

  1

1

(1.14)

The corresponding moments are L( x 2 n ) 

1



1



1

x 2n 1  x2



1  2n  2 2 n  n 

(1.15)

and L( x 2 n 1 )  0.

For the polynomials U n ( x ) we get from 2

1

2  U n ( x ) 1  x dx 

2



sin(( n  1) )sin  d  [n  0]  1  0 that the corresponding linear functional M satisfies M ( pn ) 

2

1

p( x )  

1  x 2 dx

(1.16)

1  x 2 dx  1.

(1.17)

1

and M U n

2

1

    U ( x) 2

n

2

1

The corresponding moments are M (x )  2n

2



1

2n 2  x 1  x dx 

1

1 1  2n  22 n n  1  n 

(1.18)

and M ( x 2 n 1 )  0. As already mentioned in the introduction for our q  analogues we need bivariate Chebyshev polynomials.

4

The bivariate Chebyshev polynomials Tn ( x , s ) of the first kind satisfy the recurrence Tn ( x , s )  2 xTn 1 ( x , s )  sTn  2 ( x , s )

(1.19)

with initial values T0 ( x , s )  1 and T1 ( x , s )  x. Of course Tn ( x )  Tn ( x , 1). They have the determinant representation

s 0  x  1 2 x s   0 1 2 x Tn ( x, s )  det      0 0 0  0 0 0

     

0 0 0  0 0 .    2x s   1 2 x  0

(1.20)

The bivariate Chebyshev polynomials of the second kind U n ( x , s ) satisfy the same recurrence U n ( x , s )  2 xU n 1 ( x , s )  sU n  2 ( x , s )

(1.21)

but with initial values U 0 ( x, s )  1 and U1 ( x , s )  2 x. Their determinant representation is

0  2x s  1 2 x s   0 1 2 x U n ( x, s )  det      0 0 0  0 0 0

0 0 0  0 0 .    2x s   1 2 x 

(1.22)

 Tn ( x, s )  U n 1 ( x, s ) x 2  s .

(1.23)

     

0

These polynomials are connected via

x 

x2  s



n

This also implies Tn ( x, s ) 2  ( x 2  s )U n 1 ( x, s ) 2  (  s ) n .

(1.24)

The Chebyshev polynomials are intimately related with Fibonacci and Lucas polynomials n  2 

 n  k  k n 2 k Fn 1  x, s     s x k 0  k 

5

(1.25)

and n  2 

n  n  k  k n 2 k  s x k 0 n  k  k 

Ln  x, s   Fn 1 ( x, s )  sFn 1 ( x, s )  

(1.26)

for n  0 (cf. e.g. [10]). Here as usual L0 ( x , s )  2. More precisely the monic polynomials T0 ( x , s )  1 and

Tn ( x, s ) for n  0 coincide with the 2n 1

modified Lucas polynomials

L*n (2 x, s )  s  L*n  x,  . n 2  4

(1.27)

They are defined by L*n ( x, s )  Ln ( x, s ) for n  0 and L*0 ( x , s )  1 and satisfy a three-term s s recurrence with s ( n )  0 , t (0)  and t ( n )  for n  0. 2 4

The moments can be obtained from the formula n  2 

n

  k  ( s) k 0

The monic polynomials

k

 

L*n 2 k ( x, s )  x n .

(1.28)

U n ( x, s ) are Fibonacci polynomials 2n

U n ( x, s ) Fn 1 (2 x, s )  s   Fn 1  x,  . n n 2 2  4

(1.29)

s In this case the corresponding numbers s ( n ) and t ( n ) are s ( n )  0 and t ( n )  . 4 Here the moments can be obtained from  n 1  2 

n  n 

   k    k  1  (  s ) k 0

  



k

Fn 12 k ( x, s )  x n .

(1.30)

We shall also give q  analogues of the following identities which express Chebyshev polynomials of odd order in terms of Chebyshev polynomials of even order: n  2n  1  T2 n 1 ( x )    ( 1)n k t2 n 2 k 1 x 2 n 12 k T2 k ( x )  k  0  2k 

6

(1.31)

and n  2n  2  1 2 n 2 k n k U 2 n 1 ( x )    U 2 k ( x ).  2k  1 ( 1) G2 n 2 k 2 (2 x ) 2 k k 0  

(1.32)

Here the tangent numbers  t2 n 1  n 0  1, 2,16, 272,7936, and the Genocchi numbers

 G2 n n0   0,1,1,3,17,155, 2073,

are given by their generating functions

e z  e z t   ( 1)n 2 n 1 z 2 n 1 z z e e (2n  1)! n 0

(1.33)

e z  e z G   ( 1)n 1 22 n 1 2 n z 2 n . z z e e (2n )! n 0

(1.34)

and

z Note that

t2 n 1 

22 n G2 n 2 . n 1

(1.35)

2. q-analogues

We assume that q  1 is a real number. All q  identities in this paper reduce to known identities when q tends to 1. We assume that the reader is familiar with the most elementary notions of q  analysis (cf. e.g. [5]). The q  binomial coefficients n  [1][2][n ] n 1  k   [1][k ]  [1][n  k ] with [n ]  1  q    q satisfy the recurrences  

n  1 n  1 n  1 n k n  1 n  k   k   q  k   k  1   k   q k  1 .           n  If we want to stress the dependence on q we write [n ]q and   respectively. k q

(2.1)

We also need the q  Pochhammer symbol ( x; q ) n  (1  x )(1  qx ) (1  q n 1 x ) and the q  binomial theorem in the form n

( x; q ) n   ( 1) q k

k 0

k     2

n  k k  x  

(2.2)

or equivalently pn ( x, y )  ( x  y )( qx  y ) ( q

7

n 1

n

x  y)   q k 0

k    2

n  k nk k  x y .  

(2.3)

zn We denote by e( z )  e( z, q)   the q  exponential function. It satisfies n 0 [n ]! n

  zn 1   q 2  . e(  z ) n  0 [n ]!

Since the Chebyshev polynomials are special cases of Fibonacci and Lucas polynomials it would be tempting to look for q  analogues related to the simplest q  analogues of Fibonacci and Lucas polynomials (cf. e.g. [10]) n  2 

2 n  k  k n 2 k Fn 1 ( x, s, q)   q k  , s x k k 0  

n  2 

Ln ( x, s, q)  Fn 1 ( x, s, q)  sFn 1 ( x, qs, q)   q k

2

k

k 0

n  2 

Fibn 1 ( x, s, q)   q k 0

 k 1    2 

[n ]  n  k  k n  2 k s x , [n  k ]  k 

 n  k  k n 2 k and  k s x   n  2 

Lucn ( x, s, q)  Fibn 1 ( x, s, q)  sFibn 1 ( x, s, q)   q k 0

k     2

[n ]  n  k  k n  2 k s x . [n  k ]  k 

But here we have no success. Though the polynomials Fn 1 ( x, s, q ) are orthogonal there are no closed forms for their moments. None of the other classes of polynomials satisfies a 3-term recurrence. So they cannot be orthogonal. But it is interesting that for Fibn 1 ( x , s, q ) and Lucn ( x , s, q ) the following analogues of (1.28) and (1.30) n  2 

n 

 k  (  s) k 0

k

 

Lucn*2 k ( x, s, q)  x n

(2.4)

and  n 1  2 

 n   n  

  k   k  1  ( s) k 0

  



k

Fibn 12 k ( x, s, q)  x n

(2.5)

hold (cf. [8], (3.1) and (3.2)). Notice that Luc0 ( x , s, q )  2 and Luc0* ( x, s, q )  1, whereas Lucn ( x, s, q )  Lucn* ( x, s, q ) for n  0. Fortunately there do exist q  analogues of the recurrences (1.19) and (1.21) which possess many of the looked for properties.

8

Definition 2.1

The q  Chebyshev polynomials of the first kind are defined by the recurrence Tn ( x , s, q )  (1  q n 1 ) xTn 1 ( x, s, q )  q n 1sTn 2 ( x, s, q )

(2.6)

with initial values T0 ( x , s, q )  1 and T1 ( x , s , q )  x. The first terms are 1, x ,[2] x 2  qs,[4] x 3  q[3]sx ,  . Some simple q  analogues of Tn (1)  1 are Tn (1, 1, q )  1,

(2.7)

n

   1  Tn  1,  , q   q  2  , q  

Tn (1,  q, q )  q

n    2

n 2

 (1  q ) q n

(2.8)

 k 1    2 

(2.9)

k 0

and Tn (1,  q 2 , q )  [n ]  q n 1[n  1].

(2.10)

 s  Tn  x, , q  q  1 Tn  x, s,     n   . q    q 2 

(2.11)

It is easily verified that

For q  1 we get T2 n ( x , s, 1)   sTn  2 ( x , s, 1) and T2 n 1 ( x , s, 1)  2 xT2 n ( x , s, 1)  sT2 n 1 ( x , s, 1).

This gives the trivial sequence  Tn ( x, s,  q)  n0  1, x,  s,  xs, s 2 , s 2 x,  s 3 ,  xs 3 , . This is the reason for excluding q  1.

9

Proposition 2.1

The q  Chebyshev polynomials of the first kind satisfy

qs 0  x  1 (1  q) x q2 s  0 (1  q 2 ) x 1 Tn ( x, s, q)  det      0 0 0  0 0 0

     

0 0   0 0   0 0 .    n2 n 1 (1  q ) x q s   (1  q n 1 ) x  1

This is easily seen by expanding this determinant with respect to the last column. Definition 2.2

The q  Chebyshev polynomials of the second kind are defined by the recurrence U n ( x, s, q )  (1  q n ) xU n 1 ( x , s, q )  q n 1sU n 2 ( x , s, q )

(2.12)

with initial values U 0 ( x, s, q)  1 and U 1 ( x , s , q )  0. The first terms are 1,[2] x ,[4] x 2  qs,[4](1  q 3 ) x 3  q[4]sx , . Some simple q  analogues of (1.4) are

n

   1  U n  1,  , q   q  2  [n  1], q  

U n (1, 1, q)  q

 n 1 n    2 

1

 k 0

n

U n (1,  q, q )   q

q

 k 1    2 

 k 1    2 

(2.13)

.

(2.14)

(2.15)

k 0

and U n (1,  q 2 , q )  [n  1].

(2.16)

 1  U ( x, qs, q) U n  s, x,   n  n 1 . q    q 2 

(2.17)

It is easily verified that

10

For q  1 we would have U 2 n ( x, s, 1)  (  s ) n and U 2 n 1 ( x , s, 1)  0.

Proposition 2.2

The q  Chebyshev polynomials of the second kind satisfy

qs 0  (1  q) x  1 2 (1  q ) x q2 s   0 (1  q 3 ) x 1 U n ( x, s, q)  det       0 0 0  0 0  0

     

  0 0   0 0 .    (1  q n 1 ) x q n 1s   1 (1  q n ) x  0

0

In [3] and [16] a tiling interpretation of the classical Chebyshev polynomials has been given. This can easily be extended to the q  case. As in the classical case it is easier to begin with polynomials of the second kind. We consider an n  1  rectangle (called n  board) where the n cells of the board are numbered 1 to n. As in [3] and [16] we consider tilings with two sorts of squares, say white and black squares, and dominoes (which cover two adjacent cells of the board). Definition 2.3

To each tiling of a board we assign a weight w in the following way: Each white square has weight x . A black square at position i has weight qi x and a domino which covers positions i  1, i has weight q i 1s. The weight of a tiling is the product of its elements. The weight of a set of tilings is the sum of their weights. Each tiling can be represented by a word in the letters {a , b, dd }. Here a denotes a white square, b a black square and dd a domino. For example the word abbddaddaab represents the tiling with white squares at positions 1,6,9,10, black squares at 2,3,11 and dominoes at 4,5 and 7,8. Its weight is x  q 2 x  q 3 x  q 4 s  x  q 7 s  x  x  q11 x  q 27 s 2 x 7 .

Theorem 2.1

The weight w(Vn ) of the set Vn of all tilings of an n  board is w(Vn )  U n ( x , s, q ). Proof This holds for n  1 and n  2. E ach n  tiling un has one of the following forms: un 1a , un 1b, un  2 dd . Therefore 11

w(Vn ) 

 w(u )  

un Vn

n

un 1Vn 1

w(un 1 )x 

 w(Vn 1 ) 1  q n  x  w(Vn 2 ) q n 1s



un 1Vn 1

w(un 1 )q n x 



un  2Vn  2

w(un 2 )q n 1s

which implies Theorem 2.1. Remark 2.1 If we more generally consider the weight wr which coincides with w except that a black

square at position i has weight q i rx we get in the same way that U n( r ) ( x, s, q )  wr (Vn ) satisfies U n( r ) ( x, s, q)  1  q n r  xU n( r )1 ( x, s, q)  q n 1sU n( r)2 ( x, s, q) with initial values U 0( r ) ( x , s, q )  1 and U1( r ) ( x, s, q )  (1  qr ) x. In this case we get more generally m m 1 U m( r)n ( x, s, q)  U m( r ) ( x, s, q)U n( q r ) ( x, q m s, q)  q m sU m( r)1 ( x, s, q)U n( q1 r ) ( x, q m 1s, q). The second term occurs when positions ( m , m  1) are covered by a domino and the first term in the other cases.

The same reasoning as above gives Proposition 2.3 Let u ( n , k , s, r ) be the wr  weight of all tilings on {1, , n} with exactly k dominoes. Then u ( n , k , s, r )  u ( n  1, k , s, r )(1  q n r ) x  u ( n  2, k  1, s, r ) q n 1s with initial values u ( n, 0, s, r )  (1  qr )(1  q 2 r )  (1  q n r ) x n ,

(2.18)

u (1, 0, s, r )  (1  qr ) x and u (1, k , s, r )  0 for k  0.

It is now easy to verify Theorem 2.2

The wr  weight u ( n , k , s, r ) of the set of all tilings on {1, , n} with exactly k dominoes is

n for 0  k    2

2 n  k  k 1 n k k n 2 k u ( n, k , s , r )  q k   (1  q r ) (1  q r ) s x k   n and u ( n , k , s, r )  0 for k    . 2

12

(2.19)

Proof

The initial values coincide and by induction 2  n  k  1 u( n  1, k , s, r )(1  q n r ) x  u( n  2, k  1, s, r ) q n 1s  q k  (1  q k 1r ) (1  q n k 1r )(1  q n r ) s k x n 2 k   k  2  n  k  1  q ( k 1)  (1  q k r ) (1  q n k 1r ) q n 1s k x n 2 k   k 1 

  n  k  1  2  n  k  1 n 2 k (1  q n r )    q k (1  q k 1r ) (1  q n k 1r ) s k x n 2 k   q (1  q k r )     k 1   k      n  k  1 n 2 k  n  k  1  n k  k  n  k  1  n  k  1   2  q k (1  q k 1r ) (1  q n k 1r ) s k x n 2 k    q  k  1    q r  q  k    k  1      k            n  k   2 (1  q n k r )  .  q k (1  q k 1r ) (1  q n k 1r ) s k x n 2 k     k  

Here we used the recurrence relations (2.1) for the q  binomial coefficients.

Remark 2.2 2 n  k  s k x n 2 k and Formula (2.19) is the product of qk    k 



 n  2k  ( k 1)   2  (1  q r ) (1  q r )    q r q .    0  Ilse Fischer [12] has found a combinatorial reason for this product representation. k 1

n k

n 2 k

Let v ( n , k , , x ) be the wr  weight of all tilings with k dominoes and  black squares. Then v ( n, k , , x )  q s r x k k 

n 2 k

  1  2 

 n  k   q  q  k  k2

 n  2k  k     q v ( n, k ,0,1)v ( n  2k ,0, , x ). (2.20)  

In order to give a combinatorial interpretation of this formula we observe that the weight can also be obtained from the following properties. The fact that the weight of a domino at i, i  1 is qi s is equivalent with a) b) c) d)

each white square that appears before this domino contributes a q, each black square that appears before this domino contributes a q, each domino that appears before this domino contributes q 2 and the domino itself contributes qs.

13

The fact that the weight of a black square at i is q i xr is equivalent with e) each white square that appears before this black square contributes a q, f) each black square that appears before this black square contributes a q, g) each domino that appears before this black square contributes a q 2 h) and the black square itself contributes qxr. This can also be reformulated in the following way: Each black square contributes qxr, each unordered pair of distinct black squares contributes a q, each white square before a black square contributes a q, each domino contributes qs, each unordered pair of distinct dominoes contributes q 2 , each white square before a domino contributes a q, each pair of a domino and a black square, where the order is irrelevant, contributes a q, 8) each domino before a black square contributes a q.

1) 2) 3) 4) 5) 6) 7)

For b) and g) is equivalent with 7) and 8). Now consider the right-hand side of (2.20). Observe that v ( n , 0, , x ) is determined by 1), 2) and 3); v ( n , k , 0, x ) is determined by 4), 5) and 6); and 7) gives q k  . We first distribute the dominoes on the n  board and let each unoccupied cell have weight 1. Then we distribute the white and black squares on the unoccupied cells. Their weight is v ( n  2 k , 0, , x ). The total weight of the configuration is v ( n , k , 0,1) v ( n  2 k , 0, , x ) if each black square before a domino contributes a q. For then 6) is satisfied for the computation of v ( n , k , 0,1) since all squares contribute a q (and thus behave as white squares in this context). Thus the right-hand side of (2.20) satisfies 1) to 7), but instead of 8) we have 8´): each black square before a domino contributes a q. Thus we must reverse the order of the dominoes and black squares to obtain (2.20). An equivalent form is Proposition 2.4

Let t be a tiling of an n  board with k dominoes and  black squares. Reverse the order of the dominoes and black squares in t and obtain a tiling T . Denote by A the tiling obtained by replacing in T each square with a colourless square c with weight 1 and let B be the tiling obtained by deleting all dominoes of T . Then (2.21) wr (t )  q k  wr ( A) wr ( B ).

14

Example Consider the tiling t  abbddaddaab with ( n, k ,  )  (11, 2, 3) weight q 27 s 2 r 3 x 7 . Then T  abddddabaab and A  ccddddccccc with wr ( A)  q 8 s 2 and B  ababaab with wr ( B )  ababaab  q13r 3 x 7 .

This gives wr (t )  q 23  q8 s 2  q13 x 7  . Theorem 2.2 implies for r  1 Theorem 2.3 n  2 

2 n  k  (1  q k 1 ) (1  q n k ) s k x n 2 k . U n ( x , s, q )   q k   k 0  k 

(2.22)

For the q  Chebyshev polynomials of the first kind the situation is somewhat more complicated. Here we get

Theorem 2.4 Tn ( x , s, q ) is the weight of the subset of all tilings of {1, , n} where the last block is either a white square or a domino. Therefore for n  0

Tn ( x, s, q )  xU n 1 ( x, s, q )  q n 1sU n 2 ( x, s, q ).

(2.23)

Proof It suffices to prove that the right-hand side satisfies the initial values and the recurrence (2.6).

1  q  x  xU n

n 1

( x, s, q)  q n 1sU n 2 ( x, s, q )   q n s  xU n 2 ( x, s, q)  q n 2 sU n 3 ( x, s, q ) 

 x 2U n 1 ( x, s, q )  q n x 2U n 1 ( x, s, q)  q n 1sxU n 2 ( x, s, q)  q 2 n 1sxU n 2 ( x, s, q )  q n sxU n 2 ( x, s, q )  q 2 n 2 s 2U n 3 ( x, s, q)



 x 1  q n  xU n 1 ( x, s, q)  q n 1sU n 2 ( x, s, q )





 q n s 1  q n 1  xU n 2 ( x, s, q)  q n 2 sU n 4 ( x, s, q)



 xU n ( x, s, q )  q n sU n 1 ( x, s, q).

15

Theorem 2.5

The q  Chebyshev polynomials of the first kind are given by n  2 

Tn ( x, s, q)   q k k 0



 n 1   2 

1  q (1  qn1 )

2

1  q (1  q

 q 1  q (1  q k 1

k2

n  k 1

)

k 0

k

)  (1  q

n k

[n ]  n  k  k n  2 k s x )(1  q ) [n  k ]  k  n 1

(2.24)

2 [n ]  n  k  k n  2 k s x  [n  0 mod 2]q n s n .   [n  k ]  k 

Proof

Consider the subset of all tilings of an n  board whose last block is not a black square. Let t ( n , k , s ) be the weight of all these tilings with exactly k dominoes. Then (2.25) t ( n, k , s )  u ( n  1, k , s ) x  u ( n  2, k  1) q n 1s. We show that t ( n, k , s )  q

k2

1  q  (1  q n 1 )

1  q  (1  q

k

)  (1  q

n k

) (1  q

n 1

[n ]  n  k  k n  2 k s x . ) [n  k ]  k 

This is true for n  1 and n  2. By induction we get for 2k  n  1

t (n, k , s )  u( n  1, k , s ) x  u(n  2, k  1) q n 1s 2  n  k  1  qk  1  q k 1  (1  q n k 1 ) s k x n 2 k    k  2 n  1  k  k n 1 k  q n 1q k 2 k 1  ) s k x n 2 k  1  q  (1  q  1 k  

  n  k  1 2  n  1  k   k n 2 k  q k 1  q k 1  (1  q n k 1 )    1  q k  q n 2 k   s x  k 1   k    n  k  n k  n  1  k   k n 2 k 2  q k 1  q k 1  (1  q n k 1 )     q  k 1  s x    k  2 [n ]  n  k  k n  2 k  q k 1  q k 1  (1  q n k 1 ) s x [n  k ]  k  and for 2k  2n

t (2n, n, s )  u(2n  1, n, s ) x  u(2n  2, n  1)q 2 n 1s  q 2 n 1q n

2

 2 n 1

 n  1 n n2 n  n  1 s  q s .   16

(2.26)

For q  1 the polynomial Tn ( x , s ) can also be interpreted as the weight of the set Tn of all tilings which begin with a domino or with a white square since in this case the weights of the words c1  cn and cn  c1 coincide.

In the general case this is not true. For example for n  2 the set T2  aa, ab, dd  has weight w(T2 )  x 2  q 2 x 2  qs  T2 ( x, s, q )  x 2  qx 2  qs.

But we have Theorem 2.6 Tn ( x, s, q )  xU n 1 ( x, q 2 s, q )  qsU n  2 ( x , q 2 s, q).

(2.27)

Proof

It suffices to show that the right-hand side satisfies recurrence (2.6).

1  q  x  xU n 1

n 2

( x, q 2 s, q )  qsU n 3 ( x, q 2 s, q)   q n 1s  xU n 3 ( x, q 2 s, q )  qsU n 4 ( x, q 2 s, q) 

 x 2U n 2 ( x, q 2 s, q)  q n 1 x 2U n 2 ( x, q 2 s, q)  qsxU n 3 ( x, q 2 s, q )  q n sxU n 3 ( x, q 2 s, q )  q n 1sxU n 3 ( x, q 2 s, q )  q n s 2U n 4 ( x, q 2 s, q)

  qs  1  q  xU

 ( x , q s, q ) 

 x 1  q n 1  xU n 2 ( x, q 2 s, q)  q n 2 q 2 sU n 3 ( x, q 2 s, q) n 2

n 3

( x, q 2 s, q)  q n 3q 2 sU n 4

2

 xU n 1 ( x, q 2 s, q)  qsU n 2 ( x, q 2 s, q).

Theorem 2.6 has the following tiling interpretation: Define another weight W such that each white square has weight x, each black square at position i has weight qi x and each domino at position (i  1, i ) has weight q i 1s if i  n. But a domino at position ( n  1, n ) has weight qs. If we join the ends of the board to a circle such that the position after n is 1 this can also be formulated as: If (i  1, i , j ) are consecutive points then a domino at position (i  1, i ) has weight q j s. Then Tn ( x , s, q ) is the weight of all such tilings which have no black square at position n. (Note that on the circle there are no dominoes at position ( n,1). ) In order to find a q  analogue of (1.23) let us first consider this identity in more detail.



x  x2  s



n

 Tn ( x, s )  U n 1 ( x, s ) x 2  s

is equivalent with



   s

Tn 1 ( x, s )  U n ( x, s ) x 2  s  x  x 2  s





 x  x 2  s Tn ( x, s )  U n 1 ( x, s ) x 2

n 1

 x  x2  s

 x 

 Tn ( x, s ) x   x 2  s U n 1 ( x, s )   Tn ( x, s )  U n 1 ( x, s ) x  x 2  s . 17

x2  s



n

Therefore (1.23) is equivalent with both identities

Tn 1 ( x, s )  Tn ( x, s ) x   x 2  s U n 1 ( x, s )

(2.28)

U n ( x , s )  Tn ( x , s )  U n 1 ( x , s ) x.

(2.29)

and

To prove identity (2.28) observe that for q  1 a tiling of an ( n  1)  board which does not end with a black square either ends with two white squares aa or with a domino and a white square dda. The weight w of these tilings is Tn ( x , s ) x. Or it ends with ba or dd . Their weight is ( x 2  s )U n 1 ( x, s ). Identity (2.29) simply means that an arbitrary tiling either ends with a black square which gives the weight U n 1 ( x , s ) x or does not end with a black square which gives Tn ( x , s ). For arbitrary q this classification of the tilings implies the identities Tn 1 ( x, s, q )  xTn ( x, s, q )  q n ( x 2  s )U n 1 ( x , s, q )

(2.30)

U n ( x, s, q )  Tn ( x, s, q )  q n xU n 1 ( x, s, q ).

(2.31)

and

But there is also another q  analogue of (2.28): Tn 1 ( x, s, q )  q n xTn ( x , s, q )  ( x 2  qs )U n 1 ( x, q 2 s, q ).

(2.32)

By (2.27) we have Tn 1 ( x, s, q )  xU n ( x, q 2 s, q )  qsU n 1 ( x, q 2 s, q). Therefore by (2.12) U n ( x, q 2 s, q)  xU n 1 ( x, q 2 s, q)  q n xU n 1 ( x, q 2 s, q )  q n 1sU n 2 ( x , q 2 s, q)  q n  xU n 1 ( x, q 2 s, q)  qsU n 2 ( x, q 2 s, q)   q nTn ( x, s, q ).

Thus U n ( x, q 2 s, q )  q nTn ( x, s, q )  xU n 1 ( x, q 2 s, q )

(2.33)

and (2.27) implies (2.32). As q  analogue of (2.28) and (2.29) we can now choose the identities (2.31) and (2.32) which we write in the form Tn 1 ( x, s, q )  q n xTn ( x , s, q)  ( x 2  qs ) 2U n 1 ( x , s, q ) U n ( x , s, q )  Tn ( x , s, q )  q n xU n 1 ( x, s, q ).

Here  denotes the linear operator on the polynomials in s defined by  p ( s )  p ( qs ). 18

(2.34)

To stress the analogy with (1.23) we introduce a formal square root A  ( x 2  s ) 2 which commutes with x and real or complex numbers and satisfies A2  ( x 2  qs ) 2 and write (2.34) in the form Tn 1 ( x, s, q )  AU n ( x, s, q )  ( q n x  A)(Tn ( x , s, q )  AU n 1 ( x , s, q )).

(2.35)

Since ( q i x  A)( q j x  A)  ( q j x  A)( q i x  A) using the q  binomial theorem (2.3) we get as analogue of (1.23) pn ( x, A)   x  A qx  A  q n 1 x  A  Tn ( x, s, q)  AU n 1 ( x, s, q). (2.36) This gives Theorem 2.7

For the q  Chebyshev polynomials the following formulae hold: n  2 

 n 2 k   2 

 n  n 2 k k 1 2 2 j 1  2k  x   x  q s  j 0  

(2.37)

 n 2 k   2 

 n  1  n 2 k k 1 2 2 j 1  2k  1 x   x  q s . j 0  

(2.38)

 p ( x, A)  pn ( x,  A) Tn ( x, s, q)  n 1   q 2 k 0

and n  2 

 p ( x, A)  pn 1 ( x,  A) U n ( x, s, q)  n 1 1   q 2A k 0

Proof k 1

This follows from (2.3) and the observation that A2 k   ( x 2  qs ) 2    ( x 2  q2 j 1s ) 2 k . k

j 0

k k 2 2 2 j 1   x q s    q j s j  j  2 x 2k 2 j  j 0 j 0  q we get by comparing coefficients in (2.37) and (2.38) k 1

If we expand

Theorem 2.8

For j  n the identities n  2 

q k 0

 n 2 k     2 

[n ]q  n  j   n  k  1  q  (1  q n 1 )  j n j n 1  2k   j      q   q2 1  q  (1  q )  (1  q ) (1  q ) [n  j ]q  j  q

and 19

(2.39)

n  2 

q k 0

 n 2 k     2 

n  n  1  k  j 1 n j   (1  q ) (1  q )   2k  1  j   j   q   q2 

j  q

(2.40)

hold.

Remark 2.3

It would be nice to find a combinatorial interpretation of these identities. For q  1 we get from (1.23) Tn ( x, s ) 2  ( x 2  s )U n 1 ( x, s ) 2  (  s ) n . Since A does not commute with polynomials in s we cannot deduce a q  analogue of this formula from (2.36). But we can instead consider the matrices  x qn ( x 2  s  An   . qn x  1

(2.41)

 Tn ( x, s, q) ( x 2  s )U n 1 ( x, qs, q)     s   U ( x , s, q )   An 1 An 2  A0 . T x q , , n   n 1   q   

(2.42)

We then get Theorem 2.9

Proof We must show that

 Tn 1 ( x, s, q) ( x 2  s )U n ( x, qs, q)   Tn ( x, s, q) ( x 2  s )U n 1 ( x, qs, q)  2 n    x q (x  s    s    s    U ( x , s, q )  n Tn 1  x, , q    1 Tn  x, , q  q x   U n 1 ( x, s, q )  n  q q         or equivalently

Tn 1 ( x, s, q )  xTn ( x, s, q )  q n ( x 2  s )U n 1 ( x , s, q ), U n ( x, s, q )  Tn ( x, s, q )  q n xU n 1 ( x, s, q ),

U n ( x, q 2 s, q)  q nTn  x, s, q   xU n 1 ( x, q 2 s, q), Tn 1  x, s, q   q n xTn  x, s, q   ( x 2  qs )U n 1 ( x, q 2 s, q). This follows from the recurrences (2.30), (2.31), (2.32) and (2.33). 20

If we take determinants in (2.42) we get the desired q  analogue of Tn ( x, s ) 2  ( x 2  s )U n 1 ( x, s ) 2  (  s ) n .

Theorem 2.10

Tn ( x, s, q)Tn ( x, qs, q)  ( x  qs )U n 1 ( x, qs, q)U n 1 ( x, q s, q)  q 2

2

 n 1    2 

(  s)n .

(2.43)

For example for ( x , s )  (1, 1) this reduces to n

k    2

n

Tn (1,  q, q )  (1  q )  q [n ]  Tn (1,  q, q )  (1  q )  q n

k 1

k    2

q

 n 1    2 

.

k 1

In [11] many other identities occur. These follow in an easy manner from the identities obtained above. Since the q  Chebyshev polynomials satisfy a three-term recurrence they are orthogonal with respect to some linear functionals, i.e. L(Tn ( x , s, q )Tm ( x , s, q ))  0 and M (U n ( x , s, q )U m ( x , s, q ))  0 for n  m. These linear functionals are uniquely determined by L  Tn ( x, s, q)   [n  0] and M U n ( x, s, q)   [n  0]. These linear functionals are closely related. From (2.30) we get Tn 1 ( x, s, q )  xTn ( x, s, q )  q n ( x 2  s )U n 1 ( x , s, q ). By (2.6) we have xTn ( x, s, q) 

Tn 1 ( x, s, q)  qn sTn 1 ( x, s, q) 1  qn

and therefore we obtain Tn 1 ( x, s, q)  sTn 1 ( x, s, q )  (1  q n )( x 2  s )U n 1 ( x, s, q ).

(2.44)

If we apply the linear functional L to this identity we deduce that   x2  (1  q) L   1   U n ( x, s, q )   [n  0]  M U n ( x, s, q)  . s   

(2.45)

By linearity we obtain   x2  (1  q) L   1   p ( x )   M  p ( x )  s   

for all polynomials p ( x ).

21

(2.46)

As q  analogue of (1.14) we get

if n  0 1    n 1 L Tn 2     2  q (  s )n  if n  0 n  1  q This follows by applying L to (2.6) which gives L  x nTn   

L  x nTn   (  s )n

(2.47)

qn s L  x n 1Tn 1  and therefore 1  qn

 n 1    2 

q . (1  q)(1  q 2 ) (1  qn )

Now observe that L  Tn 2   L  (1  q) (1  q n 1 ) x nTn  . Of special interest are the moments of these linear functionals, i.e. the values L( x n ) and M ( x n ). To find these values it suffices to find the uniquely determined representation of x n as a linear combination of the q  Chebyshev polynomials. These have been calculated in [11] for the corresponding monic polynomials. Therefore I only state the results in the present notation: For the q  Chebyshev polynomials of the first kind we have n  2 

n  Tn 2 k ( x, s, q) . x n     (1  q n 2 k [2k  n ])(  qs )k (1  q) (1  q k )(1  q) (1  q n k ) k 0  k 

(2.48)

This gives as q  analogue of (1.15)  2n  L  x 2n     n

(  qs ) n n

 (1  q )

(2.49)

j 2

j 1

and L( x

2 n 1

)  0.

For the monic polynomials we get the three-term recurrence with s ( n )  0 , t (0) 

t (n) 

q n 1s . (1  q n )(1  q n 1 )

22

qs and 1 q

For the q  Chebyshev polynomials of the second kind the corresponding formulae are M (U n )  (  s ) q 2

n

 n 1    2 

1 q 1  q n 1

(2.50)

as q  analogue of (1.17) and n  2 

 n   n   k xn         (  s )  k k 1 k 0     

1  q n 2 k 1 n  k 1

k

 (1  q )  (1  q ) j

j 1

U n  2 k ( x , s, q )

(2.51)

j

j 1

and therefore M ( x 2n ) 

1  2n  1  q [n  1]  n  1  q n 1

(  qs )n n

 (1  q )

(2.52)

j 2

j 1

2 n 1

and M ( x )  0. Of course (2.52) also follows directly from (2.49) and (2.46). The parameters for the three-term recurrence of the monic polynomials are s ( n )  0 and

t (n) 

q n 1s . (1  q n 1 )(1  q n 2 )

Remark 2.4

The q  Chebyshev polynomials have also appeared, partly implicitly and without recognizing them as q  analogues of the Chebyshev polynomials, in [6], [7] and [13] in the course of (aq; q)n , which are the moments of the little q  computing Hankel determinants of n  (abq 2 ; q)n

( q; q2 )n Jacobi polynomials pn ( x; a , b | q ) (cf. [14]). Note that L( x )  2 2 (  qs)n and ( q ; q )n 2n

M ( x 2n ) 

( q2 ; q2 )n (  qs )n . 4 2 ( q ; q )n

3. Some further properties

The q  Chebyshev polynomials T2 n (1, s, q ), T2 n 1 (1, s, q ), U 2 n (1, s, q ) and U 2 n 1 (1, s, q ) are polynomials in s of degree n. Therefore there exist unique representations n

T2 n 1 (1, s, q)   a (n, k , q)T2 k (1, s, q) k 0

and 23

(3.1)

n

U 2 n 1 (1, s, q)   b(n, k , q)U 2 k (1, s, q).

(3.2)

k 0

To obtain these representations we need q  analogues of the tangent and Genocchi numbers. The q  tangent numbers t2 n 1 ( q ) are well-known objects defined by the generating function

e( z )  e(  z ) ( 1)n t2 n 1 ( q) 2 n 1  z . e( z )  e(  z ) n0 [2n  1]!

(3.3)

n 2n  1 T2 n 1 ( x, s, q)    ( 1)n k t2 n 2 k 1 ( q) x 2 n 12 k T2 k ( x, s, q).  k 0  2k 

(3.4)

Theorem 3.1

Proof n  2 

 n 2 k   2 

n  In (2.37) we have seen that Tn (1, s, q)    q k 0  2k 

(1  qs )(1  q3s ) (1  q 2 k 1s ).

This implies that

Tn (1, s, q) n z [n ]! n 0

(3.5)

1 z 2n 3 2 n 1     (1 qs )(1 q s ) (1 q s ) .  e(  z ) n  0 [2n ]!

(3.6)

T ( z , s, q )   satisfies

T ( z , s, q ) 

Therefore e(  z )T ( z , s, q )  e( z )T (  z , s, q ) and  e( z )  e(  z ) T ( z, s, q)  T (  z, s, q)    e( z )  e(  z ) T ( z, s, q)  T (  z, s, q)  or T2 n 1 (1, s, q) 2 n 1 z  e ( z )  e(  z ) ( 1)n t2 n 1 ( q) 2 n 1 n 0 [2n  1]! z .   T2 n (1, s, q) 2 n e( z )  e(  z ) n0 [2n  1]! z  [2n ]! n 0

(3.7)

Note that the left-hand side does not depend on s. If we choose s  0 we get that

  q; q 2 n

 [2n  1]! z n 0

1  n 1

2 n 1

  q; q 2 n 1 [2n ]!

 z

2n

(3.7) implies 24

e( z )  e(  z ) . e( z )  e(  z )

(3.8)

T2 n 1 (1, s, q) 2 n 1 ( 1)n t2 n 1 ( q) 2 n 1 T2 n (1, s, q) 2 n z  z  z  [2n  1]! [2n ]! n 0 [2n  1]! n 0 n 0 which gives by comparing coefficients n 2n  1 T2 n 1 (1, s, q)    ( 1)n k t2 n 2 k 1 ( q)T2 k (1, s, q)  k 0  2 k 

(3.9)

and therefore also (3.4). For q  1 the Chebyshev polynomials satisfy n

n

  j (2 x) T j 0

j

2 nm j

 

( x, s)  s nTm ( x, s)

(3.10)

( x, s )  s nU m ( x, s).

(3.11)

and n

n

  j (2 x) U j 0

j

 

2 n  m 1 j

For these identities are equivalent with n

n

  j (2 x) j 0

j

 

x 

x2  s



2 n m j



 sn x  x2  s



which in turn reduces to the trivial identity



x  x2  s

  nm

x  x2  s  2 x

  n

 x  x2  s

2 nm j

 m

x2  s  x

 n

x2  s  x



n



 sn x  x2  s

In order to simplify the exposition we let x  1 and prove as q  analogue of (3.10)

Theorem 3.2 n

 ( 1) q j

j 0

 j    2

n  nm i n 2  mn n s Tm (1, s, q ).  j   (1  q )T2 n  m  j (1, s, q )  q   i  n  m 1 j

(3.12)

Proof

Let m  . We consider the following matrix  a (n, k , m)  n ,k 0 with a ( n, k , m )  s k Tn k  m (1, s, q ) for 0  k  n and a ( n, k , m )  0 for k  n. The first terms are

25

. m

 Tm (1, s, q)   T (1, s, q) sT (1, s, q)  m  m 1   Tm 2 (1, s, q) sTm 1 (1, s, q) s 2Tm (1, s, q) .   2 3  Tm 3 (1, s, q) sTm  2 (1, s, q) s Tm 1 (1, s, q) s Tm (1, s, q)          

The recurrence for Tn (1, s, q ) gives

a ( n, k , m ) 

a (n  1, k  1, m)  (1  q n m 1k )a (n, k  1, m) . q n m1k

This implies that k

1

a ( n, k , m ) 

 ( 1) q j

q k ( n  m ) j 0 This is true for k  0. If it holds for k  1 then

a ( n, k , m )  





n  m 1 k

 ( 1) q

 j    2

j 0

)

q k 1 q

k

 ( 1) q j

qk ( nm )

j 0

 k  1 n  m i  j   (1  q )Tn  m  k 1 j (1, s, q)   i n  m 1 j

k

j

 j 1    2 

 k  1 n m i  j  1  (1  q )Tn  m k  j (1, s, q)   i n m2 j

 j    2

  k  1  k  1  (1  qi )Tn  m  k  j (1, s, q)   (1  q n  m 1 )  q k  j (1  q n m 1k )    i n  m  2 j  j  1   j 

 j    2

k  nm i  j   (1  q )Tn  m  k  j (1, s, q).   i n m 1 j

j 0

1

j 0

 j    2

 k  1 n  m 1 i  j   (1  q )Tn  m  k  j (1, s, q)   i n m2 j

j 1

( 1) j q k ( nm ) 

 (1) q j

( 1) q k ( nm ) 

k

1

 k  1 n  m 1 i  j   (1  q )Tn  m  k  j (1, s, q)   i n  m  2 j

k 1

1

q n  m 1k q( k 1)( n m ) j

n  m 1 k

 j    2

j 0

1

k 1

qk ( nm )

q

)

 (1) q j

q n  m 1k q ( k 1)( n  m 1)

 (1  q 

k 1

1

1

k  nm i  j   (1  q )Tn  m  k  j (1, s, q ).   i  n  m 1 j

a ( n  1, k  1, m)  (1  q n  m 1k )a ( n, k  1, m ) q n  m 1k

1

(1  q

 j    2

nm



This gives (3.12). As special cases we get for m  0 and m  1 n

 ( 1) j 0

j

q

 j    2

n  n i n2 n  j   (1  q )T2 n  j (1, s, q )  q s   i n 1 j

and

26

n

 ( 1) q j

 j    2

j 0

 n  n 1 i n2 n n  j   (1  q )T2 n 1 j (1, s, q )  q s .   i n 2 j

This implies n 1

q

n

 ( 1)

j 1

q

 j 1    2 

j 1

n 1

  ( 1) q j

 j    2

j 1

 n  n i  j  1  (1  q )T2 n 1 j (1, s, q)   i n  2 j

 n  n 1 i  j   (1  q )T2 n 1 j (1, s, q )  T2 n 1 (1, s, q)   i n 2 j

or

n 1

 (1)

j 1

q

 j    2

j 1

  n  1 n 1  n   (1  qi )     q  j   T2 n 1 j (1, s, q)  T2 n 1 (1, s, q). i n  2 j    j  n



(3.13)

 n  1 n 1  n   n  1 [2n  2  2 j ]  q   by  . Of course we could also replace     j   j  2 j  [n  1] Define now a linear functional  on the polynomials in s by  T2 n (1, s, q)   [n  1]. Then by (3.9)  T2 n 1 (1, s, q)   ( 1) n t2 n 1 ( q). Thus we get the following identities for the q  tangent numbers

t2 n 1 ( q) 

 n 1   2 

 (1)

j 1

q

2 j    2

j 1

 n  1 [2n  2  2 j ] (1  qi )  t2 n 12 j ( q).  i n  22 j  2 j  [n  1] n



(3.14)

For q  1 this reduces to t2 n 1 

 n 1   2 

 ( 1) j 1

j 1

 n  1 n  1  j 22 j  .   2 j  n 1

(3.15)

The first identities are t3  2t1 , t5  8t3 , t7  18t5  8t3 , t9  32t7  48t5 , t11  50t9  160t7  32t5 .

What at first glance appears as a new identity turns out to be an old acquaintance if we use (1.35) and write (3.15) in terms of Genocchi numbers. For then we get n

 (1) j 0

j

n  2 j  G2 n 2 j  0.  

This is Seidel’s identity for the Genocchi numbers.

27

(3.16)

To obtain the expansion (3.2) we define q  Genocchi numbers G2 n ( q ) by the generating function ( 1)n 1 G2 n ( q)   q; q  2 n 1 2 n e( z )  e(  z ) z  z . (3.17) e( z )  e(  z ) n  0 [2n ]! This implies that

t2 n 1 ( q) 

G2 n 2 ( q)   q; q  2 n 1 [2n  2]

.

(3.18)

(Observe that this q  analogue of the Genocchi numbers does not coincide with the q  Genocchi numbers introduced by J. Zeng and J. Zhou which have been studied in [9]). The first terms of the sequence  G2 n ( q )  n 1 are

G2 ( q)  1, G4 ( q)  q

1 q , 1  q3

G6 ( q)  q 2 G8 ( q)  q

3

(1  q)(1  q 2 )(1  q  q 2 ) , (1  q 4 )(1  q5 ) (1  q) 2 (1  q 2 ) 1  q  3q 2  2q3  3q 4  2q5  3q6  q7  q8  (1  q5 )(1  q6 )(1  q7 )

.

Theorem 3.3 n  2n  2  1 U 2 n 1 ( x, s, q)     q; q 2n2k 1 (1)nk G2n2 k 2 ( q) x 2n12kU 2k ( x, s, q).  k 0  2k  [2k  1]

(3.19)

Proof n  2 

 n 2 k   2 

 n  1   In (2.38) we have seen that U n (1, s, q)    q k 0  2k  1

(1  qs )(1  q3s ) (1  q 2 k 1s ).

By comparing coefficients this is equivalent with

1 z 2 n 1 U (1, s, q) n (1  qs )(1  q3s) (1  q 2 n 1s )   n 1 z .  e(  z ) n0 [2n  1]! [n ]! n 1

(3.20)

Let now

U n 1 (1, s, q) n z . [n]! n 1

U ( z , s, q )   We then get

28

(3.21)

z 2 n 1 (1  qs )(1  q3s ) (1  q 2 n 1s )  e( z )U (  z, s, q). [2  1]! n n 0

e(  z )U ( z, s, q)  

This implies (e( z )  e(  z ))(U ( z, s, q)  U (  z, s, q))  e( z )U (  z, s, q)  e(  z )U ( z, s, q)  e( z )U ( z, s, q)

 e(  z )U (  z, s, q)  e( z )U ( z, s, q)  e(  z )U (  z, s, q)  (e( z )  e(  z ))(U ( z, s, q)  U (  z , s, q)). U (1, s, q) 2 n z and Since U ( z, s, q)  U (  z, s, q)  2 2 n 1 [2n ]! n 1 U (1, s, q) 2 n 1 U ( z , s, q )  U (  z , s, q )  2  2 n z n 0 [2n  1]! we see that U 2 n 1 (1, s, q) 2 n z e( z )  e (  z ) [2n ]! n 1 .  U 2 n (1, s, q) 2 n 1 e( z )  e(  z ) z  n 0 [2n  1]!



(3.22)

Again the left-hand side does not depend on s. So we can e.g. choose s  0 and get that (  q; q)2 n 1 2 n z  e( z )  e(  z ) [2n ]! n 1 .  (3.23) (  q; q) 2 n 2 n 1 e( z )  e(  z ) z  n 0 [2n  1]!

If we write (3.22) in the form

U 2 n 1 (1, s, q) 2 n e( z )  e(  z ) U 2 n (1, s, q) 2 n z z z  e( z )  e(  z ) n0 [2n  1]! [2n]! n 1



and compare coefficients we get n  2n  1 U 2 n 1 (1, s, q)      q; q 2n2k 1 ( 1)nk 1G2n2k (q)U 2k (1, s, q). k 0  2k  [2k  1]

This immediately implies Theorem 3.3.

Since the left-hand side of (3.17) and

(  q; q)2 n 1 1 are invariant under q  we see that [2n ]! q

1 G2 n    G2 n ( q). q Now we prove a q  analogue of (3.11): 29

(3.24)

Theorem 3.4

The q  Chebyshev polynomials U n (1, s, q ) satisfy the identity

n

 ( 1) q k

k    2

k 0

n  nm j n 2  n  mn n s U m 1 (1, s, q).  k   (1  q )U 2 n  m 1k (1, s, q)  q   j n m 1k

(3.25)

Proof Let n

W ( n, m, s, q )   ( 1) q k

k    2

k 0

n  nm j  k   (1  q )U 2 n  m 1k (1, s, q).   j n  m 1k

(3.26)

We want to show that

W (n, m, s, q)  q n

2

 n  mn n

s U m1 (1, s, q).

(3.27)

We prove this identity with induction. For n  0 it is the trivial identity U m 1 (1, s, q )  U m 1 (1, s, q ). For n  1 it reduces to U m 1 (1, s, q )  (1  q m 1 )U m (1, s, q )  q m sU m 1 (1, s, q ). By definition of the polynomials this is true for all non-negative m. In general we have W ( n, m, s, q )  W ( n  1, m  2, s, q )  q n 1 (1  q m 1 )W ( n  1, m  1, s, q ).

Observing that  n  1 n  m 1 n k m 1  n  1 (1  q )  q (1  q )  k      k  1

  n  1 n k  n  1  m  n 1k   n  1 k  n  1  m n 1k  n    q  q  q    1 q        k  1   k   k    k  1 k  we get



30



(3.28)

n 1

W ( n  1, m  2, s, q )  q (1  q n 1



 ( 1) q k



 ( 1) q k

n 1 nm    n  1  n  1 n  m 1 j n 1 m 1 k j 2 (1  q ) U (1, s , q )  q (1  q ) (  1) q (1  q )U 2 n  m  2  k (1, s , q )    2 n  m 1 k  k  j n m k 2   k 0    k  j  n  m 1 k

k   2

n nm   n  1  n  1 n  m 1 j n 1 m 1 k 1  2   j (1  q ) U (1, s , q )  q (1  q ) (  1) q (1  q )U 2 n  m 1 k (1, s , q )    n  m   k 2 1  k  j n m k 2   k 1    k  1 j n  m  2 k

k 0

k 

 k 1 

n 1

 U 2 n  m 1 (1, s , q )   ( 1) q k

k    2

k 1

n 1

 q (1  q

)W ( n  1, m  1, s, q )

k   2

k 0 n 1

m 1

m 1

)( 1) q n



(1  q )U 2 n  m 1 k (1, s, q )   j

j n mk 2

 n 1     2 

n  1    n  1 n  m 1 n 1 k 1 m 1  (1  q )q (1  q )     k   k  1 

nm

nm

 (1  q )U j

n  m 1

(1, s, q )

jm2 n



 ( 1) q k

k 0

k   2

n j   (1  q )   U 2 n  m 1 k (1, s , q )  W ( n, m, s, q ). j  n  m  k 1 k  nm



By induction (3.28) implies W (n, m, s, q)  W ( n  1, m  2, s, q)  q n 1 (1  q m 1 )W (n  1, m  1, s, q)  qn

2

 n  ( n 1) m n 1

 qn

2

 n  ( n 1) m n 1

s U m 1 (1, s, q)  q n s

U

m 1

2

 n  ( n 1) m n 1

s

(1  q m 1 )U m (1, s, q)

(1, s, q)  (1  q m 1 )U m (1, s, q)   q n

2

 n  nm n

s U m 1 (1, s, q).

For m  0 we get n

 (1) q k

k    2

k 0

n  n j  k   (1  q )U 2 n 1k (1, s, q )  0.   j  n k 1

(3.29)

An easy consequence is a q  analogue of the Seidel identity for the Genocchi numbers which gives an easy way to calculate the q  Genocchi numbers and shows that (  q n 1 ; q ) n 1 G2 n ( q )  [ q ] is a polynomial with integer coefficients.

Theorem 3.5 (q-Seidel formula) n  2 

q k 0

 2k     2

 q n 2 k 1; q   n k 2k  2k ( 1)  q 2 n 2 k ; q G2 n 2 k ( q)  [n  1].     2k

(3.30)

Proof

Since the set of polynomials U 2 n (1, s, q )n 0 is a basis for the vector space of polynomials in

s we can define a linear functional  by

 U 2 n (1, s, q)   [n  0]. By (3.19) this implies 31

(3.31)

 U 2 n 1 (1, s, q )   ( 1) n 1   q; q  2 n 1 G2 n ( q).

(3.32)

If we apply this to (3.29) we get for n  1 k  k  n n  n  n   n   n k  2   j k 2   0     ( 1) q    (1  q )U 2 n 1k (1, s, q )    ( 1) q    (1  q j ) (U 2 n 1k (1, s, q))  k 0  k 0  k  j n k 1  k  j n k 1   n  2 

q k 0

 2k     2

2 n 1 2 k n n j (1 ) (1  q j )( 1) n k 1 G2 n 2 k ( q).  q   2k   j 1   j n k 1

Dividing by   q; q  2 n 1 we get (3.30). It should be noted that just as for q  1 (3.30) is in fact the same formula as (3.14). We need only use (3.18) to translate one formulation into the other. Finally we want to show how to derive a Seidel triangle for the q  Genocchi numbers. We construct the following triangle consisting of numbers a ( n , k , q ) with n  0,1,2, and n 0  k  1  . 2 Let a (2n, k , q )  ( 1) n s n 1kU 2 k  2 (1, s, q ) and a (2n  1, k , q )  ( 1) n s n 1kU 2 k 1 (1, s, q ). The first terms are (if we delete the column k  0 )

U 0 (1, s, q) U1 (1, s, q )  sU 0 (1, s, q) U 2 (1, s, q)  sU1 (1, s, q) U 3 (1, s, q) 2 s U 0 (1, s, q) sU 2 (1, s, q) U 4 (1, s, q) 2 s U1 (1, s, q) sU 3 (1, s, q) U 5 (1, s, q) 3 2  s U 0 (1, s, q)  s U 2 (1, s, q)  sU 4 (1, s, q) U 6 (1, s, q)     Then a (2n  1, k , q )  q 2 k  2 a (2n  1, k  1, q )  (1  q 2 k 1 )a (2n, k , q ) for k  1,2,, n  1. On the other hand a (2n, k , q)  q12 k  a (2n, k  1, q)  (1  q2 k )a (2n  1, k , q)  for k  1,2,, n. For k  n  1 we get a (2n, n  1, q )  U 2 n (1, s, q ). 32

If we apply the linear functional  and let b( n , k , q )   ( a ( n , k , q )) then b(2 n , n  1, q )  0

and therefore we have b(2n, n  1, q)  q12 k  b(2n, n  2, q)  (1  q2 k )b(2n  1, n  1, q)   0.

Thus we get Theorem 3.6 (q-Genocchi triangle)

n Define a triangle  b( n, k , q )  for n   and 0  k  1    by 2

and

b(2n  1, k , q )  q 2 k  2b(2n  1, k  1, q )  (1  q 2 k 1 )b(2n, k , q )

(3.33)

b(2n, k , q)  q12 k  b(2n, k  1, q)  (1  q2 k )b(2n  1, k , q) 

(3.34)

for 1  k  n  1 with initial values b(0,1, q )  1 and b(1,1, q )  1  q. Then

b(2n  1, n)    ( 1)n 1U 2 n 1 (1, s, q)     q; q  2 n 1 G2 n ( q).

(3.35)

This is another simple method to compute the q  Genocchi numbers.

References [1] Waleed A. Al-Salam and Mourad E.H. Ismail, Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pacific J. Math. 104 (1983), 269-283 [2] Natig Atakishiyev, Pedro Franco, Decio Levi and Orlando Ragnisco, On Fourier integral transforms for q  Fibonacci and q  Lucas polynomials, J.Phys.A:Math.Theor.,Vol.45,No.19,Art.No.195206,11 pages, 2012. [3] Arthur T. Benjamin and Daniel Walton, Counting on Chebyshev polynomials, Math. Mag. 82 (2), (2009), 117-126, [4] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach 1978 [5] Johann Cigler, Elementare q-Identitäten, Sém. Lotharingien Comb. B05a (1981) [6] Johann Cigler, A simple approach to some Hankel determinants, arXiv: 0902.1650 [7] Johann Cigler, How to guess and prove explicit formulas for some Hankel determinants, 2010, http://homepage.univie.ac.at/johann.cigler/prepr.html [8] Johann Cigler, q  Lucas polynomials and associated Rogers-Ramanujan identities, arXiv:0907.0165 [9] Johann Cigler, q-Fibonacci polynomials and q-Genocchi numbers, arXiv:0908.1219 [10] Johann Cigler, Some beautiful q-analogues of Fibonacci and Lucas polynomials, arXiv:1104.2699 [11] Johann Cigler, A simple approach to q-Chebyshev polynomials, arXiv: 1201.4703 33

[12] Ilse Fischer, Personal communication, 26-06-2012

[13] Masao Ishikawa, Hiroyuki Tagawa and Jiang Zeng, A q-analogue of Catalan Hankel determinants, arXiv:1009.2004 [14] R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q- analogues, Springer Monographs in Mathematics 2010 [15] Theodore J. Rivlin, The Chebyshev polynomials, Wiley 1974 [16] Daniel Walton, A tiling approach to Chebyshev polynomials, Thesis 2007

34