Description of risk through random variables and quantify- ing risk through ....
Quantifying market risk with a standard VaR model with the possibility to use an ...
as an insurance risk without the need for elaborate risk management tools. The disparate aims, origins ..... Terrorism Alternative Risk Transfer. Mortgage-backed ...
Feb 1, 2002 - were as surprised as civic authorities and security agents. Rough ..... of the U.S.S. Cole in 2000, and the WTC disaster of 2001, al-Qaeda have ...
ELSEVIER. Journal of Hazardous Materials 44 (1995) 141-183. A two-phase
release model for quantifying risk reduction for modified HF alkylation catalysts.
MODELS FOR SURVIVAL-CONTINGENT RISKS. CHAPTER 3. SURVIVAL
MODELS. ^. (CONTINUOUS PARAMETRIC CONTEXT) 51. 3.1. The Age-at-
Failure ...
In 2002, the state of Florida Division of Forestry and Sanborn Map Co. completed a statewide fuels-mapping and wildland fire risk-assessment project that ...
Nov 13, 2013 - ... of the National Cancer Institute, USA (contract N02CP31003-3), and the University of Rochester's Senator Paul D. Wellstone Muscular.
Mar 23, 2017 - Arthritis Research UK Centre for Epidemiology, Manchester. Academic Health Science. Centre, University of. Manchester, Stopford Building,.
Oct 28, 1999 ... of the model/tool or the mathematical rigor expected from the user during the ...
Similarly, the tools can provide quantification of the risks, but the ...
Nov 1, 2012 ... Systemic risk arises when shocks lead to states where a disruption in .... thus
providing a model that can be used to quantify systemic risk.
the actuary must first have a framework for quantifying the magnitude of the ...
This textbook, appropriately entitled Models for Quantifying Risk, addresses the ...
Learn more about the Academic Series and other products available at www.
ActexMadRiver.com. ACTEX ACADEMIC SERIES. Models for. Quantifying. Risk.
Zentrum Mathematik. Lehrstuhl für Mathematische Statistik der Technischen
Universität München. Quantifying Risk: Modelling and Estimation. Klaus Böcker.
Metric is defined for effective network security risk level estimation, which measures the probability of attack in user environments. Hazard Metric measures the ...
Abstract. Increasing urbanisation drives the need for new solutions for security issues on all levels of urban planning. This paper describes a toolset of computer ...
model risk is probably the most frequently discussed in the literature (see for instance ..... means of a Monte Carlo experiment, whereby we specify a general model (the ...... Cornish E. and R. Fisher, (1937), âMoments and Cumulants in the ...
Dec 31, 2013 - variants, such as AC OPA [10, 11] and OPA with slow process [12, 13], are proposed to study the complex global dynamics of blackouts.
The outline of the paper is as follows: first, we introduce the basics of causal models and ... We will focus on the case of joint normally distributed data with linear ... describes the relationships between variables at each time step as well as ..
2. Quantifying model related risks. Content. • Formalizing the building blocks. • An
example: Black-Scholes nested into Heston. • Statistics for model specification ...
Abstract. The purpose of the present work is to quantify parametric uncertainty in the Rothermel wildland fire spread model (implemented in software such as ...
Therefore, any model risk analysis of VaR will apply to both ... the implementation of market data based SRMs and other
develop and test several approaches to model calibration in credit risk models. ... models for pricing credit derivatives are usually calibrated to market prices of ...
Nov 17, 2009 ... My Nomination for Honorary Actuary. • “There are known knowns. These are
things we know that we know. There are known unknowns. That is ...
Quantifying Model Risk CAS Annual Meeting – Session C3 Glenn Meyers November 17, 2009
My Nomination for Honorary Actuary • “There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we now know we don’t know. But there are also unknown unknowns. These are things we do not know we don’t know.” – D. Rumsfeld, February 12, 2002 • This talk deals with “known unknowns” and how our knowledge is influenced by data. • Unknown Unknowns – Buy “sleep insurance.”
You have two models, Blue and Green. You are uncertain which one applies. How do you reflect this uncertainty?
Take a mixture of the two Red = 0.75 × Blue + 0.25 × Green
Take a mixture of the two Red = 0.50 × Blue + 0.50 × Green
Take a mixture of the two Red = 0.25 × Blue + 0.75 × Green
Identify Distributions • • • • • •
Blue = Lognormal? Green = Gamma? Does it matter? Blue ~ Lognormal with μ = 7.5 and σ = 0.5 Green ~ Lognormal with μ = 8.5 and σ = 0.5 I want to discourage any distinction between “model risk” and “parameter risk”
Mixing Many Distributions • σ = 0.5 and μ = 7.5 – 8.5 • Mixture is equally weighted
Issues in using Mixtures • Given that we have data – Choosing the mixing distributions – Choosing the mixing weights
• I will illustrate with a simple onedimensional example, and follow up with links to more complicated examples.
Choosing the Mixing Distributions • Start with conventional goodness of fit testing – PP Plots – Kolomogorov-Smirnov test – Chi-Square goodness of fit – etc
• Need not restrict to single model such as lognormal • Pass on examples for short presentation
Find a Range for Parameters • My nomination for the second most important theorem in statistics
The likelihood ratio test • Suppose you have a model and a maximum likelihood estimate k-vector pˆ • You want a range for the “true” parameter vector p
The Likelihood Ratio Test Test H0 :p = p against H1 :p ≠ p *
*
Theorem 2.10 in Klugman, Panjer & Willmot
If H0 is true then:
(
)
ln LR ≡ 2 ⎡⎣ln L ( pˆ; x ) − ln L p * ; x ⎤⎦ has a χ 2 distribution with k degrees of freedom. 2 critical value for k = 1 is 6.63 • 99% Use χ distribution to find critical values.
Set of μ’s for which H0 is accepted Simulation #1 – 25 Data Points
Set of μ’s for which H0 is accepted Simulation #2 – 25 Data Points
Set of μ’s for which H0 is accepted Simulation #3 – 25 Data Points
Set of μ’s for which H0 is accepted Simulation #4 – 100 Data Points
Choosing Weights for the Mixture • My nomination for the most important theorem in statistics Bayes Theorem • Likelihood = Pr{Data|Model} • Set Weight = Pr{Model|Data}
Using Bayes’ Theorem • Then using Bayes’ Theorem, calculate the posterior probability of each μ given the data. • Assume prior models are equally likely in this example.
Plot of Posterior Probability of μ 25 Observations
Posterior Weighted Mixture of Models 25 Observations
Mixing Many Distributions • σ = 0.5 and μ = 7.5 – 8.5 • Mixture is equally weighted
Quantities of Interest • No real interest in the posterior probability weighted mixture of distributions. • “Expected Reinsurer Deficit” is of more interest. Expected Reinsurer Deficit ∞
ERD =
∫ ( x − E [ X ]) ⋅ f ( x )dx
E[ X ]
Computing ERD for a Mixture • Calculate mean for each model and then mix to get the overall mean. • Calculate integral for each model with the overall mean and then mix. 20
M = ∑ Posteriori ⋅ e
μi +σ 2 / 2
i =0
20
∞
i =0
M
ERD = ∑ Posteriori ⋅ ∫ ( x − M ) ⋅ fi ( x ) ⋅ dx
Plot of ERD Calculations
Radius of each dot is proportional to its posterior probability
Contrast Mixture with Maximum Likelihood Estimate Mixture • ERD = 693 • Mean = 3,446 • ERD ÷ Mean = 20.1%
Maximum Likelihood • ERD = 677 • Mean = 3,428 • ERD ÷ Mean = 19.7%
More Elaborate Examples • 2005 COTOR Challenge http://www.casact.org/cotor/index.cfm?fa=round3
• Models had log-t distributions • 4d parameter space − μ, σ, trend and degrees of freedom
• Uniform prior distributions on parameters – Academic example
More Elaborate Examples • On Predictive Modeling for Claim Severity – CAS Forum, Summer 2005 http://www.casact.org/pubs/forum/05spforum/05spf215.pdf
• Models had mixed exponential distributions derived from fits on large insurers • Fixed parameters for each model • Equal prior probability for each model – Real example
More Elaborate Examples • “Proxies” http://www.actuaries.org/ASTIN/Colloquia/Helsinki/Papers/S4_21_Myers.pdf
• Uses Bayes’ Theorem and a loss reserve triangle to reweight 5,000 loss reserve models. • Priors determined from MCMC scenarios of 50 large insurers • See my Variance paper “Stochastic Loss Reserving with the Collective Risk Model” in Session P3 tomorrow.
Summary of Methods to Quantify Model Risk • Carefully, and with considerable thought – Choose models that might describe the distribution of possible outcomes. – Assign prior probabilities to each model
• With Bayes’ Theorem, calculate the posterior probability of each model given the data you have. • Calculate quantities of interest (e.g. ERD) in terms of a mixture of models, i.e. the derived model risk.
Some object to assigning prior probabilities. • Actuaries routinely render “Actuarial Statement of Opinions” (ASOP) • Considerable thought and analysis can go into these actuarial opinions. • Similar thought and analysis should go into prior distributions. • Prior probabilities are transparent.