Quantum Information Processing with 1010 Electrons - IQST

9 downloads 0 Views 2MB Size Report
Quantum Information Processing with 1010 Electrons ? René Stock. • Barry Sanders. • Peter Marzlin. • Jeremie Choquette. People: IQIS Seminar, October 2005 ...
Quantum Information Processing with 1010 Electrons ? René Stock

IQIS Seminar, October 2005 People:

• Barry Sanders • Peter Marzlin • Jeremie Choquette

Motivation Quantum information processing realizations

Ions Solid State systems

Photons NMR

Need for hybridization and interfacing of different technologies

Neutral Atoms Superconductors Surface Plasmons ? coherent charge density oscillations involving 1010 electrons

Outline

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

• Surface plasmons in quantum information implementations

Outline

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

• Surface plasmons in quantum information implementations

What are surface plasmons ? •

Electric field propagating at surface

r E

z metal

x

− − − + + + − − − + + + − − −

dielectric

ε1 ε2 €

Hy • •

Maxwell Equations and continuity D = ε0E + P = ε E (linear medium)



divD = 0 €



 E x1    E1 =  0  exp[i( kx1 x − k z1z − ωt )]    E z1   0    H1 =  E y1  exp[i( kx1 x − k z1z − ωt )]    0 

1 ∂D =0 → c ∂t divB =€ 0 rot H −



E x1 = E x 2 → ε1 E z1 = ε2 E z 2

H y1 kz1 H y1 ε1

 Ex2   E 2 =  0  exp[i( kx 2 x + k z2 z − ωt )]    Ez2   0    H 2 =  E y 2  exp[i( kx 2 x + k z2 z − ωt )]    0 

SP Dispersion relation kx =

Hy 2 k = − z 2 Hy 2 ε2 =



ω ε1ε2 c ε1 + ε2

2 ω kx2 + kzi2 = εi 2 c

What are surface plasmons ? •

Evanescent electric field propagating at surface

z

r E

z metal

x

− − − + + + − − − + + + − − −

dielectric

Ez ∝ e−kz z

ε1 ε2

Hy •

Surface Plasmon: Longitudinal charge € density oscillations involving 1010 electrons€

Ez

ω ε1ε2 ksp = c ε1 + ε2

Surface Plasmon Polariton: Polaritons are quasiparticles resulting from € strong coupling of electromagnetic waves with an electric or magnetic dipolecarrying excitation, in this case plasmons.



What are surface plasmons ? •

Evanescent electric field propagating at surface

z

r E

z metal

x

− − − + + + − − − + + + − − −

dielectric

Ez ∝ e−kz z

ε1 ε2

Ez

Hy •



€ 

ε1 = ε1′ + i ε1′′ ε2 is real

ω ε1ε2 kx = c ε1 + ε2

ω ε1′ε2  kx′ =   c  ε1′ + ε2 

3 2

ω  ε1′ε2  ε1′′ kx′′ =   c  ε1′ + ε2  2(ε1′) 2

ε1′′ < ε1′ € e.g.

Ag ε = −22.4 − 0.91i Au ε = −23.0 € − 0.77i

1 2

[also ε(ω )] €

What are surface plasmons ? •

Evanescent electric field propagating at surface

z

r E

z metal

x

− − − + + + − − − + + + − − −

dielectric

ε1 ε2

Hy •

Ez ∝ e−kz z δm

Ez

δd





3 2

[Figures courtesy of Barnes et al., Nature 424, p824 (2003)]

ω  ε1′ε2  ε1′′ δsp ⇔ k x′′ =   c  ε1′ + ε2  2(ε1′) 2

Extremely short lifetimes for surface plasmons ( 10-15 s to 10-12 s)



Outline

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

• Surface plasmons in quantum information implementations

Excitation of Surface Plasmons •

Attenuated total reflection

ksp =

ω ε1ε2 ω < c ε1 + ε2 c [Figures courtesy of Barnes et al., Nature 424, p824 (2003)]

ω €kx = sin θ ε0 c

r klight θres

r kx r metal film ksp attenuated total reflection at surface plasmon resonance

€ €

[other figures courtesy of R. Stock, Thesis, UNM (2001)]

Excitation of Surface Plasmons •

0.4

Attenuated total reflection

prism

gold

air

0.3

ksp =

ω ε1ε2 ω < c ε1 + ε2 c

2

normal incidence

E (z ) 0.2 E0 0.1

ω €kx = sin θ ε0 c

0 -200

0

r klight

6 5 2

θres

E (z ) 4 E0

400

600

distance (Å)

8 7

200

prism

gold

air

surface plasmon resonance angle

3 r 2 kx 1 r metal film 0 -200 0 200 400 600 ksp strong field enhancement effect due to surface plasmons

€ €

[Figures courtesy of R. Stock, Thesis, UNM (2001)]

Excitation of Surface Plasmons •

Periodic structure

r r r r ksp = k x ± m Gx ± n Gy →





ε1ε2 m +n λ=D ε1 + ε2 2

2

Periodic sub wavelength hole array



versatile wavevector matching using periodic structures [Figures courtesy of Ghaemi et al., PRB 58, p6779 (1998) and Altewischer et al., Nature 418, p304 (2002)]

Excitation of Surface Plasmons •

Periodic sub wavelength hole array

700 nm

ksp 200 nm

200 nm

ksp

Enhanced optical transmission through array of sub wavelength holes (compared to diffraction theory) [Figures courtesy of Ghaemi et al., PRB 58, p6779 (1998) and Altewischer et al., Nature 418, p304 (2002)]

Outline

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

• Surface plasmons in quantum information implementations

Implementations using Surface Plasmons •

Field enhancement effect – Surface enhanced spectroscopy – Strong coupling to waveguides – Biophotonics: Biological and chemical detectors (sensitivity to ε2 at the surface)



Nanoscale technology – Nano-optics and nano-circuitry on surfaces: • Mirrors (reflectivity> 90%) • Nanowires (waveguides) for plasmons

– “Plasmonic” computer chips and other nanoscale technology – Data storage



Quantum nature of surface plasmons – SPASERS (surface plasmon amplification by spontaneous emission of radiation) – Single photon light sources – Quantum information processing

Seidel et al., PRL 94, 177401 (2005)

Surface Plasmons and Entanglement •

Polarization entangled photons

ψ = •

1 X1Y2 + e iφ Y1 X 2 ( 2

)

Experimental setup € Nature 418, p304 (2002)

Coincidence detection after transmission through hole array

Surface Plasmons and Entanglement •

Experiment

Reduced visibility due “which-path” information in solid?

Surface Plasmons and Entanglement •

Which-path information: include state of solid E. Moreno, F.J. Garcia-Vidal, D. Erni, J. I. Cirac, L. Martin-Moreno PRL 92, 236801(2004)



€ €

Interaction models? a) all Sab are orthogonal: solid and biphoton entangled → trace over solid: mixed state for biphoton, “which-polarization” information b) all Sab are equal: no entanglement between solid and photon states → trace over solid: biphoton entangled depending on tab • Choose b): no which-path labels introduced in solid • Observed visibilities can be explained by polarization dependent transmission of hole array

Surface Plasmons and Entanglement •

Energy-time entanglement S. Fasel, N. Gisin, H. Zbinden, D. Erni, E. Moreno, F. Robin PRL 94, 110501(2005)

ψ =



1 ( 1,0;1,0 2

AB

+ e iφ 0,1;0,1 AB )

→ energy-time entanglement especially robust against environmental disturbance → telecom wavelength particularly interesting for quantum communication

Surface Plasmons and Entanglement •

Energy-time entanglement S. Fasel, N. Gisin, H. Zbinden, D. Erni, E. Moreno, F. Robin PRL 94, 110501(2005)

→ macroscopic cat states (surface plasmons) living at different “epochs” that differ by more than the cats (surface plasmon) lifetime

Outline

• What are surface plasmons: Introduction

• Excitation of surface plasmons at surfaces

• Entanglement and surface plasmons

• Surface plasmons in quantum information implementations

Surface Plasmons in Quantum Information •

Proposal: Cavity QED with Surface Plasmons D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin quant-ph/0506117

• efficient coupling of emitter (quantum • plasmon cavity created by plasmon dot, atom) to plasmon mode of nanowire mirrors (2k|| grating on surface) with reflectivity > 0.9 • evanescent coupling of nanowire to dielectric waveguide → single photon source • field enhancement: stronger coupling and faster interaction times • one photon sources

Surface Plasmons in Quantum Information •

Proposal: Cavity QED with Surface Plasmons D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin quant-ph/0506117

→ calculation of plasmons modes

→ efficiency of single photon generation

P

• fractional power emitted into fundamental plasmon mode • one photon source efficiency: 0.7 (coupling to wire), 0.9 coupling to cavity

Summary Summary • Entanglement survives excitation and deexcitation of surface plasmons • Applications for hybridization of different QIP implementations • Problems: – Short Coherence time (usually < 10-12 s) – Limited spatial propagation (usually < 1 mm)

References • General review: • Surface Plasmons: • Entanglement experiments – Theoretical analysis – Time-energy entanglement



Hybrid proposal

J. Opt. A 5, S16-S50 (2003) H. Raether: Surface Plasmons, Springer 1988 Nature 418, 304 (2002) PRL 92, 236801(2004) PRL 94, 110501(2005) quant-ph/0506117

Suggest Documents