Quasi-Hyperbolicity and Delay Semigroups

9 downloads 0 Views 2MB Size Report
Sep 28, 2016 - 2Department of Mathematics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India. Correspondence should beΒ ...
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2016, Article ID 1984874, 6 pages http://dx.doi.org/10.1155/2016/1984874

Research Article Quasi-Hyperbolicity and Delay Semigroups Shard Rastogi1 and Sachi Srivastava2 1

Department of Mathematics, University of Delhi, Delhi 110 007, India Department of Mathematics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India

2

Correspondence should be addressed to Shard Rastogi; [email protected] Received 1 June 2016; Accepted 28 September 2016 Academic Editor: Jozef Banas Copyright Β© 2016 S. Rastogi and S. Srivastava. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study quasi-hyperbolicity of the delay semigroup associated with the equation 𝑒󸀠 (𝑑) = 𝐡𝑒(𝑑) + Φ𝑒𝑑 , where 𝑒𝑑 is the history function and (𝐡, 𝐷(𝐡)) is the generator of a quasi-hyperbolic semigroup. We give conditions under which the associated solution semigroup of this equation generates a quasi-hyperbolic semigroup.

1. Introduction We consider the abstract delay differential equation: 𝑒󸀠 (𝑑) = 𝐡𝑒 (𝑑) + Φ𝑒𝑑 , 𝑑 β©Ύ 0, { { { { (DE) {𝑒 (0) = π‘₯0 , { { { {𝑒0 = 𝑓0 ,

(1)

where 𝑋 is a Banach space, 𝑒𝑑 (πœƒ) = 𝑒(𝑑 + πœƒ), βˆ’1 ≀ πœƒ ≀ 0, π‘₯0 ∈ 𝑋, 𝑓 lies in an appropriate space, and we assume that (𝐡, 𝐷(𝐡)) generates a 𝐢0 -semigroup on 𝑋 and that Ξ¦ : π‘Š1,𝑝 ([βˆ’1, 0], 𝑋) β†’ 𝑋, the delay operator, is bounded and linear. One approach to the study of the abstract theory of such equations is via semigroups of operators, pioneered by Hale [1], Webb [2], and Kraskovi, among others. This involves associating a 𝐢0 -semigroup (defined on an appropriate state space) with the above delay equation, and whose orbits correspond to the mild solutions of (DE). Analysis of qualitative and asymptotic behaviour of this semigroup then yields detailed information about the solutions of the delay equation (see [3–6] for more details). In this paper we study the property of quasi-hyperbolicity of the semigroup associated with the delay equation (DE). Recently, Batty and Tomilov [5] have introduced and studied quasi-hyperbolicity of 𝐢0 -semigroups, motivated by questions arising in the context of quasi-Anosov diffeomorphisms. Precisely, a 𝐢0 -semigroup (𝑇(𝑑))𝑑⩾0 is quasi-hyperbolic if

there exists 𝑑 > 0 (independent of π‘₯) such that max(‖𝑇(2𝑑)π‘₯β€–, β€–π‘₯β€–) β‰₯ 2‖𝑇(𝑑)π‘₯β€– for all π‘₯ ∈ 𝑋. They show in particular that quasi-hyperbolicity of a 𝐢0 -semigroup is closely connected to the generator satisfying certain lower bounds. Quasi-hyperbolicity of a 𝐢0 -semigroup generalises the property of hyperbolicity of 𝐢0 -semigroup. Hyperbolicity of the delay semigroup has been explained in detail in [3, 4], and we follow their approach here. In particular we prove that if (𝐡, 𝐷(𝐡)) generates a quasi-hyperbolic semigroup, and the delay operator is small in some sense, then the associated delay semigroup remains quasi-hyperbolic. This is the main result, proved in Sections 3 and 4, for Hilbert spaces and Banach spaces, respectively. Section 2 is of a preliminary nature containing known fact about delay equation and delay semigroups. Throughout this paper, we follow the notations of [3].

2. Preliminaries We collect here some basic results about delay differential equations that will be required in the sequel and refer to [3], for details. Throughout this paper, we shall consider the equation (DE), where 𝑝 ∈ [1, ∞) is fixed and (1) π‘₯0 ∈ 𝑋 is a Banach space, (2) 𝐡 : 𝐷(𝐡) βŠ† 𝑋 β†’ 𝑋 is the generator of a 𝐢0 -semigroup, (3) 𝑓0 ∈ 𝐿𝑝 ([βˆ’1, 0], 𝑋),

2

Abstract and Applied Analysis (4) Ξ¦ : π‘Š1,𝑝 ([βˆ’1, 0], 𝑋) β†’ 𝑋 is a linear, bounded operator, (5) 𝑒 : [βˆ’1, ∞) β†’ 𝑋 and 𝑑 β©Ύ 0, and 𝑒𝑑 : [βˆ’1, 0] β†’ 𝑋 is defined by 𝑒𝑑 (𝜎) fl 𝑒(𝑑 + 𝜎), 𝜎 ∈ [βˆ’1, 0].

Let X = 𝑋 Γ— 𝐿𝑝 ([βˆ’1, 0], 𝑋) and define the operator A on X as follows: A fl (

𝐡 Φ 0 𝐴0

),

(2)

of a strongly continuous semigroup on X = 𝑋×𝐿𝑝 ([βˆ’1, 0], 𝑋) for each generator (𝐡, 𝐷(𝐡)) on 𝑋 and the function πœ† 󳨃→ Φ𝑅(πœ†, 𝐴 0 ) is a bounded analytic function on the half plane {πœ† ∈ C : Re πœ† > πœ”} for all πœ”βˆˆπ‘…. A 𝐢0 -semigroup (𝑇(𝑑))𝑑⩾0 is said to be quasi-hyperbolic [5, Definition 3.1] if there exists 𝑑 > 0 (independent of π‘₯) such that max (‖𝑇 (2𝑑) π‘₯β€– , β€–π‘₯β€–) β‰₯ 2 ‖𝑇 (𝑑) π‘₯β€–

βˆ€π‘₯ ∈ 𝑋.

(6)

where 𝐷 (A) (3) π‘₯ fl {( ) ∈ 𝐷 (𝐡) Γ— π‘Š1,𝑝 ([βˆ’1.0] , 𝑋) : 𝑓 (0) = π‘₯} , 𝑓 𝐴 0 is the generator of the left shift semigroup (𝑇0 (𝑑))𝑑⩾0 on 𝐿𝑝 ([βˆ’1, 0], 𝑋). Thus, 𝐷(𝐴 0 ) = {𝑓 ∈ π‘Š1,𝑝 ([βˆ’1, 0], 𝑋) : 𝑓(0) = 0}, 𝐴 0 𝑓 = 𝑓󸀠 and {𝑓 (𝑑 + 𝑠) (𝑇0 (𝑑) 𝑓) (𝑠) fl { 0 {

if 𝑠 ∈ [βˆ’1, 0] , 𝑑 + 𝑠 ≀ 0, if 𝑠 ∈ [βˆ’1, 0] , 𝑑 + 𝑠 > 0.

𝑑 β©Ύ 0,

Theorem 1 (see [5, Corollary 3.10]). Let 𝐡 be the generator of a 𝐢0 -semigroup (𝑇(𝑑))𝑑⩾0 on a Hilbert space H. Then (𝑇(𝑑))𝑑⩾0 is quasi-hyperbolic if and only if β€–(𝐡 βˆ’ 𝑖𝑠) π‘₯β€– β‰₯ 𝑐 β€–π‘₯β€– ,

βˆ€π‘₯ ∈ 𝐷 (𝐡)

(7)

(4) for some 𝑐 > 0.

The following relations between the solutions of the abstract Cauchy problem σΈ€  {V (𝑑) = AV (𝑑) (ACP) { V = V0 , { (0)

For 𝐢0 -semigroups defined on Hilbert spaces, the following complete characterisation of such a semigroup is available in terms of the generator.

(5)

associated with the operator matrix (A, 𝐷(A)) on the Banach π‘₯ space X with initial value V0 = ( 𝑓00 ) and (DE) are well known [3, Lemma 2.2]: (i) If 𝑒 is a solution of (DE), then 𝑑 󳨃→ ( 𝑒(𝑑) 𝑒𝑑 ) is a solution of the equation (ACP). (ii) If 𝑑 󳨃→ ( 𝑒(𝑑) V(𝑑) ) is a solution of (ACP), then V(𝑑) = 𝑒𝑑 for all 𝑑 β©Ύ 0 and 𝑒 is a solution of (DE). Further (DE) is well posed if and only if (ACP) is well posed if and only if (A, 𝐷(A)) generates a strongly continuous semigroup (T(𝑑))𝑑⩾0 on X = 𝑋 Γ— 𝐿𝑝 ([βˆ’1, 0], 𝑋). In the case that (DE) is well posed, the semigroup (T(𝑑))𝑑⩾0 is called the delay semigroup corresponding to (DE). Then the solutions (both mild and classical) of (DE) are determined by the semigroup (T(𝑑))𝑑⩾0 . We shall be exploring the properties of the delay semigroup (T(𝑑))𝑑⩾0 , associated with (DE). We note here that since in this paper we shall be working with 𝑝 ∈ [1, ∞), fixed, we write (DE) instead of (DE)𝑝 , (ACP) instead of (ACP)𝑝 and so on, the dependence on 𝑝 being implicit.

3. Quasi Hyperbolic Semigroups and Delay Equations The delay operator Ξ¦ ∈ L(π‘Š1,𝑝 ([βˆ’1, 0], 𝑋), 𝑋) is said to be admissible (see [3]) if the operator (A, 𝐷(A)) is the generator

The following result gives conditions under which the delay semigroup is quasi-hyperbolic. Theorem 2. Let 𝐻 be a Hilbert space and consider the delay equation (DE) with 𝑝 = 2. Assume that Ξ¦ is admissible, and the semigroup (𝐡, 𝐷(𝐡)) generates a quasi-hyperbolic 𝐢0 semigroup. If the strict inequality σ΅„© σ΅„© sup 󡄩󡄩󡄩Φ𝑅 (𝑖𝑠, 𝐴 0 )σ΅„©σ΅„©σ΅„© < 1 π‘ βˆˆR

(8)

holds, then (A, 𝐷(A)) generates a quasi-hyperbolic 𝐢0 -semigroup. Proof. Let (𝐡, 𝐷(𝐡)) generate a quasi-hyperbolic semigroup. Therefore, there exists 𝑐 > 0 such that β€–(𝐡 βˆ’ 𝑖𝑠) π‘₯β€– β‰₯ 𝑐 β€–π‘₯β€– , π‘₯ ∈ 𝐷 (𝐡) .

(9)

As Ξ¦ is admissible, (A, 𝐷(A)) generates a 𝐢0 -semigroup on 𝐻 Γ— 𝐿2 ([βˆ’1, 0], 𝐻). From (8), for every 𝑓 ∈ 𝐷(𝐴 0 ), we have σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© 󡄩󡄩Φ𝑓󡄩󡄩𝐻 ≀ π‘š σ΅„©σ΅„©σ΅„©(𝐴 0 βˆ’ 𝑖𝑠) 𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) ,

(10)

where π‘š is a constant strictly less than 1. Moreover, the semigroup generated by (𝐴 0 , 𝐷(𝐴 0 )) on the Hilbert space 𝐿2 ([βˆ’1, 0], H) is hyperbolic, hence quasi hyperbolic. Therefore, it follows that β€–(𝐴 0 βˆ’ 𝑖𝑠)𝑓‖ β‰₯ π‘š2 ‖𝑓‖ for all 𝑓 ∈ 𝐷(𝐴 0 ).

Abstract and Applied Analysis

3

π‘₯

Now for ( 𝑓 ) ∈ 𝐷(A), 𝑠 ∈ R, and above π‘š, we have, on using (9) and (10), σ΅„©σ΅„© π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©(A βˆ’ 𝑖𝑠) ( )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 󡄩󡄩󡄩󡄩𝐻×𝐿2 ([βˆ’1,0],𝐻) σ΅„©σ΅„© σ΅„©σ΅„© Ξ¦ π‘₯ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© (𝐡 βˆ’ 𝑖𝑠) σ΅„© ) ( )σ΅„©σ΅„©σ΅„© = σ΅„©σ΅„©( σ΅„©σ΅„© 𝑓 󡄩󡄩󡄩𝐻×𝐿2 ([βˆ’1,0],𝐻) 0 (𝐴 0 βˆ’ 𝑖𝑠) σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© = σ΅„©σ΅„©σ΅„©(𝐡 βˆ’ 𝑖𝑠) π‘₯ + Φ𝑓󡄩󡄩󡄩𝐻 + σ΅„©σ΅„©σ΅„©(𝐴 0 βˆ’ 𝑖𝑠) 𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) σ΅„© σ΅„© σ΅„© σ΅„© β‰₯ β€–(𝐡 βˆ’ 𝑖𝑠) π‘₯‖𝐻 βˆ’ 󡄩󡄩󡄩Φ𝑓󡄩󡄩󡄩𝐻 + σ΅„©σ΅„©σ΅„©(𝐴 0 βˆ’ 𝑖𝑠) 𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) (11) σ΅„© σ΅„© σ΅„© σ΅„© β‰₯ 𝑐 β€–π‘₯‖𝐻 βˆ’ 󡄩󡄩󡄩Φ𝑓󡄩󡄩󡄩𝐻 + σ΅„©σ΅„©σ΅„©(𝐴 0 βˆ’ 𝑖𝑠) 𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) σ΅„© σ΅„© β‰₯ 𝑐 β€–π‘₯‖𝐻 βˆ’ π‘š σ΅„©σ΅„©σ΅„©(𝐴 0 βˆ’ 𝑖𝑠) 𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) σ΅„© σ΅„© + σ΅„©σ΅„©σ΅„©(𝐴 0 βˆ’ 𝑖𝑠) 𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) σ΅„© σ΅„© β‰₯ 𝑐󸀠 (β€–π‘₯‖𝐻 + 󡄩󡄩󡄩𝑓󡄩󡄩󡄩𝐿2 ([βˆ’1,0],𝐻) ) .

So if we choose |πœ‚|([βˆ’1, 0]) ≀ π‘˜, then such a Ξ¦ would satisfy σ΅„© σ΅„© sup 󡄩󡄩󡄩Φ𝑅 (𝑖𝑠, 𝐴 0 )σ΅„©σ΅„©σ΅„© < 1. π‘ βˆˆR

Hence, by Theorem 2, (A, 𝐷(A)) generates quasi-hyperbolic 𝐢0 -semigroup. The following example adapted from [5, Example 3.14] illustrates Theorem 2. Example 4. Define 𝑀 : R β†’ R, as βˆ’π‘  {𝑒 , 𝑠 ≀ 0, 𝑀 (𝑠) = { 𝑒𝑠 , otherwise. {

(i)

π‘₯

(ii)

σ΅„©σ΅„© σ΅„©σ΅„© π‘₯ σ΅„©σ΅„© π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σΈ€ σ΅„© σ΅„©σ΅„©(A βˆ’ 𝑖𝑠) ( )σ΅„©σ΅„©σ΅„© β‰₯ 𝑐 . (12) σ΅„©σ΅„©( )σ΅„©σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© 𝑓 󡄩󡄩𝐻×𝐿2 ([βˆ’1,0],𝐻) σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 󡄩󡄩󡄩𝐻×𝐿2 ([βˆ’1,0],𝐻)

Example 3. Let πœ‚ be a function of bounded variation on [βˆ’1, 0] such that |πœ‚|([βˆ’1, 0]) ≀ π‘˜, for π‘˜ < 1, and Ξ¦ : 𝐢([βˆ’1, 0], 𝑋) β†’ 𝑋 be given by the Riemann-Stieltjes integral 0

Ξ¦ (𝑓) = ∫ 𝑓 π‘‘πœ‚

(13)

βˆ’1

for all 𝑓 ∈ 𝐢([βˆ’1, 0], 𝑋). For 𝑝 = 2, Ξ¦ satisfies the conditions of Theorem 2. It has been shown in [3] that Ξ¦ extends to a bounded admissible delay operator from π‘Š1,𝑝 ([βˆ’1, 0], 𝑋) to 𝑋. Since 𝐴 0 generates a nilpotent semigroup, 𝜎(𝐴 0 ) ∩ 𝑖R is empty. Moreover, for 𝑓 ∈ 𝐿2 ([βˆ’1, 0], 𝑋) σ΅„© 0 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© 󡄩󡄩Φ𝑅 (𝑖𝑠, 𝐴 0 ) 𝑓󡄩󡄩󡄩 = σ΅„©σ΅„©σ΅„©σ΅„©βˆ« π‘‘πœ‚ (𝜎) (𝑅 (𝑖𝑠, 𝐴 0 ) 𝑓) (𝜎)σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© βˆ’1 σ΅„©σ΅„© σ΅„©σ΅„© 0 σ΅„©σ΅„© ∞ σ΅„© σ΅„© = σ΅„©σ΅„©σ΅„©σ΅„©βˆ« π‘‘πœ‚ (𝜎) ∫ π‘’βˆ’π‘–π‘ π‘‘ (𝑇0 (𝑑) 𝑓) (𝜎) 𝑑𝑑󡄩󡄩󡄩󡄩 σ΅„©σ΅„© βˆ’1 σ΅„©σ΅„© 0 σ΅„©σ΅„© 0 σ΅„©σ΅„© 0 σ΅„© σ΅„© = σ΅„©σ΅„©σ΅„©σ΅„©βˆ« π‘‘πœ‚ (𝜎) ∫ 𝑒𝑖𝑠(πœŽβˆ’π‘Ÿ) 𝑓 (π‘Ÿ) π‘‘π‘Ÿσ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© βˆ’1 σ΅„©σ΅„© 𝜎 0

0

0

0

󡄨 󡄨 σ΅„© σ΅„© ≀ ∫ ∫ 󡄩󡄩󡄩𝑓 (π‘Ÿ)σ΅„©σ΅„©σ΅„© π‘‘π‘Ÿ 𝑑 σ΅„¨σ΅„¨σ΅„¨πœ‚σ΅„¨σ΅„¨σ΅„¨ (𝜎) βˆ’1 𝜎 0

σ΅„© σ΅„© 󡄨 󡄨 σ΅„© σ΅„© 󡄨 󡄨 ≀ ∫ ∫ 󡄩󡄩󡄩𝑓 (π‘Ÿ)σ΅„©σ΅„©σ΅„© π‘‘π‘Ÿ 𝑑 σ΅„¨σ΅„¨σ΅„¨πœ‚σ΅„¨σ΅„¨σ΅„¨ (𝜎) ≀ 󡄩󡄩󡄩𝑓󡄩󡄩󡄩2 ∫ 𝑑 σ΅„¨σ΅„¨σ΅„¨πœ‚σ΅„¨σ΅„¨σ΅„¨ (𝜎) βˆ’1 βˆ’1 βˆ’1 σ΅„© σ΅„© 󡄨 󡄨 = σ΅„¨σ΅„¨σ΅„¨πœ‚σ΅„¨σ΅„¨σ΅„¨ ([βˆ’1, 0]) 󡄩󡄩󡄩𝑓󡄩󡄩󡄩2 .

(16)

Then 𝑀 is a strictly positive, continuous function, satisfying

Thus, for all 𝑠 ∈ R, and ( 𝑓 ) ∈ 𝐷(A),

It follows from Theorem 1 that (A, 𝐷(A)) generates a quasihyperbolic 𝐢0 -semigroup.

(15)

(iii)

𝑀 (𝑠) ≀ π‘π‘’πœ”π‘‘ , 𝑀 (𝑠 βˆ’ 𝑑) lim

𝑀 (𝑛) = 𝑒, βˆ’ 1)

lim

1 𝑀 (𝑛) = βˆ’ 1) 𝑒

𝑛→+∞ 𝑀 (𝑛

(17)

π‘›β†’βˆ’βˆž 𝑀 (𝑛

for some 𝑐, πœ” ∈ R. Then lim

𝑀 (𝑛) = 𝑀± , βˆ’ 1)

π‘›β†’Β±βˆž 𝑀 (𝑛

π‘€βˆ’ < 1 < 𝑀+ .

(18)

Let weighted right shift 𝐢0 -semigroup (𝑇(𝑑))𝑑⩾0 on 𝐿 2 (R) be given by (𝑇 (𝑑) 𝑓) (𝑠) =

𝑀 (𝑠) 𝑓 (𝑠 βˆ’ 𝑑) . 𝑀 (𝑠 βˆ’ 𝑑)

(19)

Then (𝑇(𝑑))𝑑⩾0 is a 𝐢0 -semigroup on 𝐿 2 (R) with generator say, 𝐡. By [5, Example 3.14], (𝐡, 𝐷(𝐡)) generates a quasi-hyperbolic 𝐢0 -semigroup, which is not hyperbolic. Let Ξ¦ be as in Example 3. Now, by our Theorem 2 it follows that the delay semigroup (T(𝑑))𝑑⩾0 , associated with (DE) 𝑒󸀠 (𝑑) = 𝐡𝑒 (𝑑) + Φ𝑒𝑑 , 𝑒 (0) = π‘₯0 ,

𝑑 β©Ύ 0, (20)

𝑒0 = 𝑓0 is quasi-hyperbolic. (14)

Remark 5. It follows from proof of Theorem 2 that lower bounds for 𝐡 imply lower bounds for the delay semigroup generator A, even on general Banach spaces, provided condition (8) holds. Precisely if β€–(π΅βˆ’π‘–π‘ )π‘₯β€– β‰₯ 𝑐‖π‘₯β€–, 𝑐 > 0 βˆ€π‘₯ ∈ 𝐷(𝐡) and (8) holds, then σ΅„©σ΅„© π‘₯ σ΅„©σ΅„© σ΅„©σ΅„© π‘₯ σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©(A βˆ’ 𝑖𝑠) ( )σ΅„©σ΅„©σ΅„© β‰₯ 𝑐 σ΅„©σ΅„©σ΅„©( )σ΅„©σ΅„©σ΅„© , σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© 𝑓 σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©

π‘₯ 𝑐 > 0, ( ) ∈ 𝐷 (A) . (21) 𝑓

4

Abstract and Applied Analysis

4. Banach Space Case In this section we obtain conditions for quasi-hyperbolicity of the delay semigroup associated with (DE) when the underlying space is a general Banach space. Consider (DE) with 𝑝 ∈ [1, ∞) fixed. Let 𝐡 be a densely defined, closed linear operator on a Banach space 𝑋, and 𝑆(R, 𝑋) denote the space of 𝑋-valued Schwartz function. For πœ‘ ∈ S(R) and π‘₯ ∈ 𝐷(𝐡), we write (πœ‘ βŠ— π‘₯)(𝑑) = πœ‘(𝑑)π‘₯, (𝑑 ∈ R). Let 𝑆𝐡 (R, 𝑋) = lin{πœ‘ βŠ— π‘₯ : π‘₯ ∈ 𝐷(𝐡), πœ‘ ∈ S(R)} and F be the Fourier transform on 𝑆(R, 𝑋). Note that 𝑆𝐡 (R, 𝑋) is dense in 𝐿 𝑝 (R, 𝑋) for every 𝑝 ∈ [1, +∞). Further, since 𝐴 0 generates a hyperbolic semigroup [7, Theorem 2.7], it follows from [4] that 𝑅(𝑖⋅, 𝐴 0 ) is an 𝐿1 Fourier multiplier from 𝐿1 (R, 𝐿1 ([βˆ’1, 0], 𝑋)) into itself; that is, for π‘Œ = 𝐿𝑝 ([βˆ’1, 0], 𝑋) the operator M0 : 𝑆(R, π‘Œ) β†’ 𝑆(R, π‘Œ), given by M0 (𝑓) = Fβˆ’1 (𝑅 (𝑖⋅, 𝐴 0 ) F𝑓) ,

(22)

extends to a bounded linear operator on 𝐿𝑝 (R, π‘Œ). We recall from [5] the definition of a lower 𝐿 𝑝 Fourier multiplier. Definition 6. The linear operator π‘€π΅βˆ’π‘–β‹… : 𝑆𝐡 (R, 𝑋) 󳨃󳨀→ 𝑆 (R, 𝑋) , (π‘€π΅βˆ’π‘–β‹… 𝑓) (𝑠) = (𝐡 βˆ’ 𝑖𝑠) 𝑓 (𝑠) ,

(23)

is said to be a lower 𝐿 𝑝 (R, 𝑋)-Fourier multiplier if there exists 𝑐 > 0 such that σ΅„© σ΅„©σ΅„© βˆ’1 σ΅„©σ΅„©F π‘€π΅βˆ’π‘–β‹… F𝑓󡄩󡄩󡄩 β‰₯ 𝑐 󡄩󡄩󡄩󡄩𝑓󡄩󡄩󡄩󡄩𝐿 , 󡄩𝐿 𝑝 σ΅„© 𝑝

(24)

for every 𝑓 ∈ 𝑆𝐡 (R, 𝑋).

Μƒ 𝑝 𝑓 fl Fβˆ’1 (Φ𝑅 (𝑖⋅, 𝐴 0 ) F𝑓) , 𝑀

(25)

Batty and Tomilov [5] have given the following characterisation for quasi-hyperbolic in terms of lower Fourier multipliers. Theorem 7 (see [5, Theorem 3.9]). Let (𝑇(𝑑))𝑑⩾0 be a 𝐢0 semigroup on a Banach space X with generator 𝐡. Then (𝑇(𝑑))𝑑⩾0 is quasi-hyperbolic if and only if π‘€π΅βˆ’π‘–β‹… is a lower 𝐿 𝑝 (R, 𝑋)-Fourier multiplier for all/some p ∈ [1, +∞). We are now able to deduce quasi-hyperbolicity of the delay semigroup on 𝑋 Γ— 𝐿𝑝 ([βˆ’1, 0], 𝑋) under the assumption of quasi-hyperbolicity of the semigroup generated by 𝐡, under certain conditions. Theorem 8. Let X be a Banach space and consider the delay equation (DE), with 𝑝 ∈ [1, ∞) fixed. Assume that the delay Ξ¦ and the operator 𝐡 satisfy the following conditions: (1) (A, 𝐷(A)) is a generator of a 𝐢0 -semigroup on 𝑍 = 𝑋 Γ— 𝐿𝑝 ([βˆ’1, 0], 𝑋) whenever (𝐡, 𝐷(𝐡) generates a 𝐢0 semigroup on 𝑋.

(26)

extends to a bounded linear operator from 𝐿𝑝 (R, π‘Œ) to 𝐿𝑝 (R, 𝑋), Μƒ 1 β€–L(𝐿1 (R,π‘Œ),𝐿1 (R,𝑋)) < 1. (3) ‖𝑀 (4) the semigroup generated by (𝐡, 𝐷(𝐡)) is quasihyperbolic. Then (A, 𝐷(A)) generates a quasi-hyperbolic 𝐢0 -semigroup. Proof. Let (𝐡, 𝐷(𝐡)) generate a quasi-hyperbolic semigroup. Then, by Theorem 7, for 𝑝 = 1, there exists 𝑐 > 0 such that, for Ξ¦ ∈ L(π‘Š1,𝑝 ([βˆ’1, 0], 𝑋), 𝑋), σ΅„©σ΅„© βˆ’1 σ΅„© σ΅„©σ΅„©F π‘€π΅βˆ’π‘–β‹… F (πœ‘ βŠ— π‘₯)σ΅„©σ΅„©σ΅„© 1 σ΅„© 󡄩𝐿 (R,𝑋) σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© = 󡄩󡄩󡄩𝐡 (πœ‘ βŠ— π‘₯) βˆ’ πœ‘σΈ€  βŠ— π‘₯󡄩󡄩󡄩󡄩𝐿1 (R,𝑋) β‰₯ 𝑐 σ΅„©σ΅„©σ΅„©πœ‘ βŠ— π‘₯󡄩󡄩󡄩𝐿1 (R,𝑋) .

(27)

We show that 𝑀Aβˆ’π‘–β‹… is a lower 𝐿 1 (R, 𝑍)-Fourier multiplier. Observe that since π‘€π΅βˆ’π‘–β‹… maps 𝑆𝐡 (R, 𝑋) 󳨃→ 𝑆(R, 𝑋), 𝑀Aβˆ’π‘–β‹… maps 𝑆A (R, 𝑍) 󳨃→ 𝑆(R, 𝑍). Recall that (𝐴 0 , 𝐷(𝐴 0 )) is the generator of the nilpotent left shift semigroup (𝑇0 (𝑑))𝑑⩾0 in 𝐿𝑝 (R, 𝐿𝑝 ([βˆ’1, 0], 𝑋)). Since Φ𝑅(𝑖⋅, 𝐴 0 ) is an 𝐿1 (R, π‘Œ) Fourier multiplier, therefore, there exists 0 < π‘š1 < 1 such that, for all 𝑔 ∈ 𝐿1 (R, π‘Œ), σ΅„©σ΅„© Μƒ σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑀1 (𝑔)σ΅„©σ΅„©σ΅„© 1 σ΅„© 󡄩𝐿 (R,𝑋) ≀ π‘š1 󡄩󡄩𝑔󡄩󡄩𝐿1 (R,π‘Œ) .

Note that (Fβˆ’1 π‘€π΅βˆ’π‘–β‹… F𝑓) (𝑠) = 𝐡𝑓 (𝑠) βˆ’ 𝑓󸀠 (𝑠) .

(2) Φ𝑅(𝑖⋅, 𝐴 0 ) is a 𝐿𝑝 Fourier multiplier for some/all 𝑝 ∈ [1, ∞) from 𝐿𝑝 (R, π‘Œ) to 𝐿𝑝 (R, 𝑋); that is, the map Μƒ 𝑝 : 𝑆(R, π‘Œ) β†’ 𝑆(R, 𝑋), given by 𝑀

(28)

In particular, for 𝑓 ∈ 𝐷(𝐴 0 ) and πœ‘ ∈ 𝑆(R), letting 𝑔 = (Fβˆ’1 𝑀𝐴 0 βˆ’π‘–β‹… F)(πœ‘ βŠ— 𝑓) = πœ‘ βŠ— (𝐴 0 𝑓) βˆ’ πœ‘σΈ€  βŠ— 𝑓 ∈ 𝐿1 (R, π‘Œ), it follows from (28) that for all πœ‘ ∈ 𝑆(R), 𝑓 ∈ 𝐷(𝐴 0 ) σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©Ξ¦ (πœ‘ βŠ— 𝑓)󡄩󡄩󡄩𝐿1 (R,𝑋) σ΅„© σ΅„© ≀ π‘š1 σ΅„©σ΅„©σ΅„©σ΅„©(Fβˆ’1 𝑀𝐴 0 βˆ’π‘–β‹… F) (πœ‘ βŠ— 𝑓)󡄩󡄩󡄩󡄩𝐿1 (R,π‘Œ) σ΅„© σ΅„© ≀ π‘š1 󡄩󡄩󡄩󡄩𝐴 0 (πœ‘ βŠ— 𝑓) βˆ’ (πœ‘σΈ€  βŠ— 𝑓)󡄩󡄩󡄩󡄩𝐿1 (R,π‘Œ) .

(29)

Now, for 𝑍 = 𝑋 Γ— 𝐿1 ([βˆ’1, 0], 𝑋), we have, on using (27) and (29), that σ΅„©σ΅„© σ΅„©σ΅„© π‘₯ σ΅„©σ΅„© βˆ’1 σ΅„© σ΅„©σ΅„©F 𝑀Aβˆ’π‘–β‹… F (πœ‘ βŠ— ( ))σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 σ΅„©σ΅„© 󡄩󡄩𝐿1 (R,𝑍) σ΅„©σ΅„© 𝐡 Ξ¦ πœ‘βŠ—π‘₯ πœ‘σΈ€  βŠ— π‘₯ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© = σ΅„©σ΅„©σ΅„©( )( )βˆ’( σΈ€  )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 0 𝐴 0 πœ‘βŠ—π‘“ πœ‘ βŠ— 𝑓 󡄩󡄩󡄩𝐿1 (R,𝑍) σ΅„© σ΅„©σ΅„© 𝐡 (πœ‘ βŠ— π‘₯) + Ξ¦ (πœ‘ βŠ— 𝑓) βˆ’ πœ‘σΈ€  βŠ— π‘₯ σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© = σ΅„©σ΅„©σ΅„©( )σ΅„©σ΅„©σ΅„© σΈ€  σ΅„©σ΅„© σ΅„©σ΅„© 1 𝐴 0 (πœ‘ βŠ— 𝑓) βˆ’ πœ‘ βŠ— 𝑓 σ΅„© 󡄩𝐿 (R,𝑋)×𝐿1 (R,𝐿1 ([βˆ’1,0],𝑋))

Abstract and Applied Analysis

5

σ΅„© σ΅„© = 󡄩󡄩󡄩󡄩𝐡 (πœ‘ βŠ— π‘₯) + Ξ¦ (πœ‘ βŠ— 𝑓) βˆ’ πœ‘σΈ€  βŠ— π‘₯󡄩󡄩󡄩󡄩𝐿1 (R,𝑋)

for every 𝑛 ∈ N, π‘₯π‘˜ ∈ 𝐷(𝐡). Recall from [5] that 𝑅(𝑖⋅, 𝐴 0 ) is an 𝐿𝑝 (T, 𝐿𝑝 ([βˆ’1, 0], 𝑋)) Fourier multiplier for 𝑝 ∈ [1, ∞). The following theorem relates the approximate spectrum of an operator from the delay semigroup to that of the semigroup generated by (𝐡, 𝐷(𝐡)).

σ΅„© σ΅„© + 󡄩󡄩󡄩󡄩𝐴 0 (πœ‘ βŠ— 𝑓) βˆ’ πœ‘σΈ€  βŠ— 𝑓󡄩󡄩󡄩󡄩𝐿1 (R,𝐿1 ([βˆ’1,0],𝑋)) σ΅„© σ΅„© σ΅„© σ΅„© β‰₯ 󡄩󡄩󡄩󡄩𝐡 (πœ‘ βŠ— π‘₯) βˆ’ πœ‘σΈ€  βŠ— π‘₯󡄩󡄩󡄩󡄩𝐿1 (R,𝑋) βˆ’ σ΅„©σ΅„©σ΅„©Ξ¦ (πœ‘ βŠ— 𝑓)󡄩󡄩󡄩𝐿1 (R,𝑋) σ΅„© σ΅„© + 󡄩󡄩󡄩󡄩𝐴 0 (πœ‘ βŠ— 𝑓) βˆ’ πœ‘σΈ€  βŠ— 𝑓󡄩󡄩󡄩󡄩𝐿1 (R,𝐿1 ([βˆ’1,0],𝑋)) σ΅„© σ΅„© β‰₯ 𝑐 σ΅„©σ΅„©σ΅„©πœ‘ βŠ— π‘₯󡄩󡄩󡄩𝐿1 (R,𝑋) σ΅„© σ΅„© + (1 βˆ’ π‘š1 ) 󡄩󡄩󡄩󡄩𝐴 0 (πœ‘ βŠ— 𝑓) βˆ’ πœ‘σΈ€  βŠ— 𝑓󡄩󡄩󡄩󡄩𝐿1 (R,𝐿1 ([βˆ’1,0],𝑋)) σ΅„© σ΅„© σ΅„© σ΅„© = 𝑐 σ΅„©σ΅„©σ΅„©πœ‘ βŠ— π‘₯󡄩󡄩󡄩𝐿1 (R,𝑋) + 𝑐󸀠 σ΅„©σ΅„©σ΅„©πœ‘ βŠ— 𝑓󡄩󡄩󡄩𝐿1 (R,𝐿1 ([βˆ’1,0],𝑋)) ,

Theorem 9. Let 𝑋 be a Banach space and consider the delay equation (DE). Assume that Ξ¦ satisfies the following conditions:

(30) where we have used the fact that 𝐴 0 is the generator of a hyperbolic semigroup and therefore also generator of quasi hyperbolic semigroup so that 𝐴 0 βˆ’ 𝑖⋅ is a lower 𝐿1 Fourier multiplier. Thus, σ΅„©σ΅„© π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© βˆ’1 σ΅„©σ΅„©F 𝑀Aβˆ’π‘–β‹… F (πœ‘ βŠ— ( ))σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 󡄩󡄩󡄩󡄩𝐿1 (R,𝑍) σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© β‰₯ 𝑐1 (σ΅„©σ΅„©σ΅„©πœ‘ βŠ— π‘₯󡄩󡄩󡄩𝐿1 (R,𝑋) + σ΅„©σ΅„©σ΅„©πœ‘ βŠ— 𝑓󡄩󡄩󡄩𝐿1 (R,𝐿1 ([βˆ’1,0],𝑋)) ) , σ΅„©σ΅„© π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© βˆ’1 σ΅„©σ΅„©F 𝑀Aβˆ’π‘–β‹… F (πœ‘ βŠ— ( ))σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 󡄩󡄩󡄩󡄩𝐿1 (R,𝑍) σ΅„©σ΅„© σ΅„©σ΅„© π‘₯ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© β‰₯ 𝑐1 σ΅„©σ΅„©σ΅„©πœ‘ βŠ— ( )σ΅„©σ΅„©σ΅„© . σ΅„©σ΅„© 𝑓 󡄩󡄩󡄩𝐿1 (R,𝑍) σ΅„©

π‘₯

(31)

(32)

π‘₯

for every 𝑔 ∈ 𝑆A (R, 𝑍) = lin{πœ‘ βŠ— ( 𝑓 ) : ( 𝑓 ) ∈ 𝐷(A), πœ‘ ∈ S(R)}. It now follows from Theorem 7 that (A, 𝐷(A)) generates a quasi-hyperbolic 𝐢0 -semigroup. 𝑝

We next turn to 𝐿 (T, 𝑋) multipliers. Following Batty and Tomilov [5], we set 𝑛

𝑃 (T, 𝑋) fl { βˆ‘ πœ‰π‘˜ π‘₯π‘˜ : πœ‰ ∈ T, π‘₯π‘˜ ∈ 𝑋, 𝑛 ∈ N} , π‘˜=βˆ’π‘›

(33)

𝑛

𝑃𝐡 (T, 𝑋) fl { βˆ‘ πœ‰π‘˜ π‘₯π‘˜ : πœ‰ ∈ T, π‘₯π‘˜ ∈ 𝐷 (𝐡) , 𝑛 ∈ N} , π‘˜=βˆ’π‘›

and say that the linear operator π‘€π΅βˆ’π‘–β‹… : 𝑃𝐡 (T, 𝑋) 󳨃→ 𝑃(T, 𝑋), defined by 𝑛

π‘˜

𝑛

π‘˜

π‘€π΅βˆ’π‘–β‹… ( βˆ‘ πœ‰ π‘₯π‘˜ ) fl βˆ‘ πœ‰ (𝐡 βˆ’ π‘–π‘˜) π‘₯π‘˜ , π‘˜=βˆ’π‘›

(2) Φ𝑅(𝑖⋅, 𝐴 0 ) is a 𝐿𝑝 Fourier multiplier for some/all 𝑝 ∈ [1, ∞) from 𝐿𝑝 (T, π‘Œ) to 𝐿𝑝 (T, 𝑋), that is, the map 𝑀𝑝 : 𝑃(T, π‘Œ) β†’ 𝑃(T, 𝑋) given by 𝑛

𝑛

π‘˜=βˆ’π‘›

π‘˜=βˆ’π‘›

𝑀𝑝 ( βˆ‘ πœ‰π‘˜ π‘₯π‘˜ ) fl βˆ‘ πœ‰π‘˜ Φ𝑅 (π‘–π‘˜, 𝐴 0 ) π‘₯π‘˜

(36)

extends to a bounded linear operator from 𝐿𝑝 (T, π‘Œ) to 𝐿𝑝 (T, 𝑋),

It follows similarly that σ΅„©σ΅„© βˆ’1 σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©F 𝑀Aβˆ’π‘–β‹… F𝑔󡄩󡄩󡄩 1 σ΅„© 󡄩𝐿 (R,𝑍) β‰₯ 𝑐1 󡄩󡄩𝑔󡄩󡄩𝐿1 (R,𝑍)

(1) (A, 𝐷(A)) is a generator of a 𝐢0 -semigroup on 𝑍 = 𝑋 Γ— 𝐿𝑝 ([βˆ’1, 0], 𝑋) whenever (𝐡, 𝐷(𝐡)) generates a 𝐢0 semigroup on 𝑋.

(34)

π‘˜=βˆ’π‘›

is a lower 𝐿 𝑝 (T, 𝑋)-Fourier multiplier if there exists 𝑐 > 0 such that σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© 𝑛 σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ π‘₯π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (𝐡 βˆ’ π‘–π‘˜) π‘₯π‘˜ σ΅„©σ΅„©σ΅„© β‰₯ 𝑐 (35) σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝐿𝑝 (T,𝑋) 󡄩󡄩𝐿𝑝 (T,𝑋) σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„©π‘˜=βˆ’π‘›

(3) ‖𝑀1 β€–L(𝐿1 (T,π‘Œ),𝐿1 (T,𝑋)) < 1. Let (𝑇(𝑑))𝑑⩾0 be 𝐢0 -semigroup generated by the operator 𝐡 and (T(𝑑))𝑑⩾0 be the delay semigroup generated by (A, 𝐷(A)) on 𝑋 Γ— 𝐿𝑝 ([βˆ’1, 0], 𝑋), 𝑝 ∈ [1, ∞) fixed. Then 1 βˆ‰ πœŽπ‘Žπ‘ (𝑇(2πœ‹)) implies 1 βˆ‰ πœŽπ‘Žπ‘ (T(2πœ‹)). Proof. Suppose 1 βˆ‰ πœŽπ‘Žπ‘ (𝑇(2πœ‹)). Then by [5, Theorem 3.12], π‘€π΅βˆ’π‘–β‹… is a lower 𝐿 𝑝 (T, 𝑋) Fourier multiplier for 𝑝 = 1, and there exists 𝑐 > 0 such that σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© 𝑛 σ΅„©σ΅„©σ΅„© 𝑛 σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© π‘˜ β‰₯ 𝑐 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ π‘₯π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© βˆ‘ πœ‰ (𝐡 βˆ’ π‘–π‘˜) π‘₯π‘˜ σ΅„©σ΅„©σ΅„© (37) σ΅„©σ΅„© 1 σ΅„©σ΅„© 1 σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„©π‘˜=βˆ’π‘› 󡄩𝐿 (T,𝑋) 󡄩𝐿 (T,𝑋) σ΅„© σ΅„© for every 𝑛 ∈ N, π‘₯π‘˜ ∈ 𝐷(𝐡). We show that 𝑀Aβˆ’π‘–β‹… is lower 𝐿 𝑝 (T, 𝑍)-Fourier multiplier. Note that 𝑀Aβˆ’π‘–β‹… : 𝑃A (T, 𝑍) 󳨃→ 𝑃(T, 𝑍). Since Φ𝑅(𝑖⋅, 𝐴 0 ) is an 𝐿1 (T, 𝐿1 ([βˆ’1, 0], 𝑋)) Fourier multiplier, therefore, there exists 0 < π‘š1 < 1 and for all 𝑛 ∈ N, π‘”π‘˜ ∈ 𝐿1 (T, 𝐿1 ([βˆ’1, 0], 𝑋)) σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑀1 ( βˆ‘ πœ‰π‘˜ π‘”π‘˜ )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝐿1 (T,𝑋) π‘˜=βˆ’π‘› σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„© ≀ π‘š1 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ π‘”π‘˜ σ΅„©σ΅„©σ΅„© . σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 1 1 σ΅„© 󡄩𝐿 (T,𝐿 ([βˆ’1,0],𝑋))

(38)

Choosing π‘”π‘˜ = (π‘–π‘˜βˆ’π΄ 0 )π‘“π‘˜ , π‘“π‘˜ ∈ 𝐷(𝐴 0 ), in the above inequality, we get σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©Ξ¦ ( βˆ‘ πœ‰π‘˜ π‘“π‘˜ )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝐿1 (T,𝑋) σ΅„©σ΅„© π‘˜=βˆ’π‘› σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© ≀ π‘š1 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (𝐴 0 βˆ’ π‘–π‘˜) π‘“π‘˜ σ΅„©σ΅„©σ΅„© . σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 1 1 σ΅„© 󡄩𝐿 (T,𝐿 ([βˆ’1,0],𝑋))

(39)

6

Abstract and Applied Analysis

Now, for 𝑍 = 𝑋 Γ— 𝐿1 ([βˆ’1, 0], 𝑋), we have, for π‘₯π‘˜ ∈ 𝐷(𝐡), π‘“π‘˜ ∈ 𝐷(𝐴 0 ), on using (37) and (39), that σ΅„©σ΅„© 𝑛 π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (A βˆ’ π‘–π‘˜) ( π‘˜ )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© π‘“π‘˜ 󡄩󡄩󡄩󡄩𝐿1 (T,𝑍) σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 𝑛 πœ‰π‘˜ (𝐡 βˆ’ π‘–π‘˜) π‘₯π‘˜ + πœ‰π‘˜ Ξ¦π‘“π‘˜ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© = σ΅„©σ΅„© βˆ‘ ( )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 1 πœ‰π‘˜ (𝐴 0 βˆ’ π‘–π‘˜) π‘“π‘˜ σ΅„© 󡄩𝐿 (T,𝑍) σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© = σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (𝐡 βˆ’ π‘–π‘˜) π‘₯π‘˜ + βˆ‘ πœ‰π‘˜ Ξ¦π‘“π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 1 σ΅„©σ΅„©π‘˜=βˆ’π‘› π‘˜=βˆ’π‘› 󡄩𝐿 (T,𝑋) σ΅„© σ΅„©σ΅„©σ΅„© 𝑛 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© + σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (𝐴 0 βˆ’ π‘–π‘˜) π‘“π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 1 1 σ΅„© 󡄩𝐿 (T,𝐿 ([βˆ’1,0],𝑋)) σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© π‘˜ π‘˜ σ΅„© σ΅„© σ΅„© β‰₯ σ΅„©σ΅„© βˆ‘ πœ‰ (𝐡 βˆ’ π‘–π‘˜) π‘₯π‘˜ σ΅„©σ΅„© βˆ’ σ΅„©σ΅„© βˆ‘ πœ‰ Ξ¦π‘“π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 1 σ΅„©σ΅„© 1 σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„©π‘˜=βˆ’π‘› 󡄩𝐿 (T,𝑋) σ΅„© 󡄩𝐿 (T,𝑋) σ΅„© (40) σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© π‘˜ + σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰ (𝐴 0 βˆ’ π‘–π‘˜) π‘“π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 1 1 σ΅„©σ΅„©π‘˜=βˆ’π‘› 󡄩𝐿 (T,𝐿 ([βˆ’1,0],𝑋)) σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© β‰₯ 𝑐 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ π‘₯π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 1 σ΅„©σ΅„©π‘˜=βˆ’π‘› 󡄩𝐿 (T,𝑋) σ΅„© σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© 𝑛 σ΅„© σ΅„© + (1 βˆ’ π‘š1 ) σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (𝐴 0 βˆ’ π‘–π‘˜) π‘“π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 1 1 σ΅„©σ΅„©π‘˜=βˆ’π‘› 󡄩𝐿 (T,𝐿 ([βˆ’1,0],𝑋)) σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© = 𝑐 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ π‘₯π‘˜ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 1 σ΅„© 󡄩𝐿 (T,𝑋) σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© + 𝑐󸀠 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ π‘“π‘˜ σ΅„©σ΅„©σ΅„© , σ΅„©σ΅„©π‘˜=βˆ’π‘› σ΅„©σ΅„© 1 1 σ΅„© 󡄩𝐿 (T,𝐿 ([βˆ’1,0],𝑋)) where we have used the fact that 𝐴 0 βˆ’ 𝑖⋅ is a lower 𝐿1 Fourier multiplier. Thus, σ΅„©σ΅„© 𝑛 π‘₯ σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© βˆ‘ πœ‰π‘˜ (A βˆ’ π‘–π‘˜) ( π‘˜ )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© π‘“π‘˜ 󡄩󡄩󡄩󡄩𝐿1 (T,𝑍) σ΅„©σ΅„©π‘˜=βˆ’π‘› (41) σ΅„©σ΅„© 𝑛 π‘₯π‘˜ σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© π‘˜ β‰₯ 𝑐 σ΅„©σ΅„©σ΅„© βˆ‘ πœ‰ ( )σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©π‘˜=βˆ’π‘› π‘“π‘˜ 󡄩󡄩󡄩𝐿1 (T,𝑍) σ΅„© π‘₯

for some 𝑐 > 0 and ( π‘“π‘˜π‘˜ ) ∈ 𝐷(A). It follows from [5, Theorem 3.12] that 1 βˆ‰ πœŽπ‘Žπ‘ (T(2πœ‹)).

Competing Interests The authors declare that they have no competing interests.

Acknowledgments The first author would like to thank CSIR for JRF Fellowship while the second author acknowledges with gratitude the support from the R & D grant of University of Delhi.

References [1] J. K. Hale, Functional Differential Equation, vol. 3 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1971. [2] G. F. Webb, β€œFunctional differential equations and nonlinear semigroups in L𝑃 -spaces,” Journal of Differential Equations, vol. 20, no. 1, pp. 71–89, 1976. [3] A. BΒ΄atkai, β€œHyperbolicity of linear partial differential equations with delay,” Integral Equations and Operator Theory, vol. 44, no. 4, pp. 383–396, 2002. [4] A. Batkai, E. Fasanga,, and R. Shvidkoy, β€œHyperbolicity of delay equations via Fourier multipliers,” Acta Scientiarum Mathematicarum, vol. 69, no. 1-2, pp. 131–145, 2003. [5] C. J. K. Batty and Y. Tomilov, β€œQuasi-hyperbolic semigroups,” Journal of Functional Analysis, vol. 258, no. 11, pp. 3855–3878, 2010. [6] C. J. Batty, β€œDifferentiability and growth bounds of solutions of delay equations,” Journal of Mathematical Analysis and Applications, vol. 299, no. 1, pp. 133–146, 2004. [7] Y. Latushkin and R. Shvidkoy, β€œHyperbolicity of semigroups and fourier multipliers,” in Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), vol. 129 of Operator Theory: Advances and Applications, pp. 341–363, BirkhΒ¨auser, Basel, Switzerland, 2000.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014