Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2016, Article ID 1984874, 6 pages http://dx.doi.org/10.1155/2016/1984874
Research Article Quasi-Hyperbolicity and Delay Semigroups Shard Rastogi1 and Sachi Srivastava2 1
Department of Mathematics, University of Delhi, Delhi 110 007, India Department of Mathematics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
2
Correspondence should be addressed to Shard Rastogi;
[email protected] Received 1 June 2016; Accepted 28 September 2016 Academic Editor: Jozef Banas Copyright Β© 2016 S. Rastogi and S. Srivastava. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study quasi-hyperbolicity of the delay semigroup associated with the equation π’σΈ (π‘) = π΅π’(π‘) + Ξ¦π’π‘ , where π’π‘ is the history function and (π΅, π·(π΅)) is the generator of a quasi-hyperbolic semigroup. We give conditions under which the associated solution semigroup of this equation generates a quasi-hyperbolic semigroup.
1. Introduction We consider the abstract delay differential equation: π’σΈ (π‘) = π΅π’ (π‘) + Ξ¦π’π‘ , π‘ β©Ύ 0, { { { { (DE) {π’ (0) = π₯0 , { { { {π’0 = π0 ,
(1)
where π is a Banach space, π’π‘ (π) = π’(π‘ + π), β1 β€ π β€ 0, π₯0 β π, π lies in an appropriate space, and we assume that (π΅, π·(π΅)) generates a πΆ0 -semigroup on π and that Ξ¦ : π1,π ([β1, 0], π) β π, the delay operator, is bounded and linear. One approach to the study of the abstract theory of such equations is via semigroups of operators, pioneered by Hale [1], Webb [2], and Kraskovi, among others. This involves associating a πΆ0 -semigroup (defined on an appropriate state space) with the above delay equation, and whose orbits correspond to the mild solutions of (DE). Analysis of qualitative and asymptotic behaviour of this semigroup then yields detailed information about the solutions of the delay equation (see [3β6] for more details). In this paper we study the property of quasi-hyperbolicity of the semigroup associated with the delay equation (DE). Recently, Batty and Tomilov [5] have introduced and studied quasi-hyperbolicity of πΆ0 -semigroups, motivated by questions arising in the context of quasi-Anosov diffeomorphisms. Precisely, a πΆ0 -semigroup (π(π‘))π‘β©Ύ0 is quasi-hyperbolic if
there exists π‘ > 0 (independent of π₯) such that max(βπ(2π‘)π₯β, βπ₯β) β₯ 2βπ(π‘)π₯β for all π₯ β π. They show in particular that quasi-hyperbolicity of a πΆ0 -semigroup is closely connected to the generator satisfying certain lower bounds. Quasi-hyperbolicity of a πΆ0 -semigroup generalises the property of hyperbolicity of πΆ0 -semigroup. Hyperbolicity of the delay semigroup has been explained in detail in [3, 4], and we follow their approach here. In particular we prove that if (π΅, π·(π΅)) generates a quasi-hyperbolic semigroup, and the delay operator is small in some sense, then the associated delay semigroup remains quasi-hyperbolic. This is the main result, proved in Sections 3 and 4, for Hilbert spaces and Banach spaces, respectively. Section 2 is of a preliminary nature containing known fact about delay equation and delay semigroups. Throughout this paper, we follow the notations of [3].
2. Preliminaries We collect here some basic results about delay differential equations that will be required in the sequel and refer to [3], for details. Throughout this paper, we shall consider the equation (DE), where π β [1, β) is fixed and (1) π₯0 β π is a Banach space, (2) π΅ : π·(π΅) β π β π is the generator of a πΆ0 -semigroup, (3) π0 β πΏπ ([β1, 0], π),
2
Abstract and Applied Analysis (4) Ξ¦ : π1,π ([β1, 0], π) β π is a linear, bounded operator, (5) π’ : [β1, β) β π and π‘ β©Ύ 0, and π’π‘ : [β1, 0] β π is defined by π’π‘ (π) fl π’(π‘ + π), π β [β1, 0].
Let X = π Γ πΏπ ([β1, 0], π) and define the operator A on X as follows: A fl (
π΅ Ξ¦ 0 π΄0
),
(2)
of a strongly continuous semigroup on X = πΓπΏπ ([β1, 0], π) for each generator (π΅, π·(π΅)) on π and the function π σ³¨β Ξ¦π
(π, π΄ 0 ) is a bounded analytic function on the half plane {π β C : Re π > π} for all πβπ
. A πΆ0 -semigroup (π(π‘))π‘β©Ύ0 is said to be quasi-hyperbolic [5, Definition 3.1] if there exists π‘ > 0 (independent of π₯) such that max (βπ (2π‘) π₯β , βπ₯β) β₯ 2 βπ (π‘) π₯β
βπ₯ β π.
(6)
where π· (A) (3) π₯ fl {( ) β π· (π΅) Γ π1,π ([β1.0] , π) : π (0) = π₯} , π π΄ 0 is the generator of the left shift semigroup (π0 (π‘))π‘β©Ύ0 on πΏπ ([β1, 0], π). Thus, π·(π΄ 0 ) = {π β π1,π ([β1, 0], π) : π(0) = 0}, π΄ 0 π = πσΈ and {π (π‘ + π ) (π0 (π‘) π) (π ) fl { 0 {
if π β [β1, 0] , π‘ + π β€ 0, if π β [β1, 0] , π‘ + π > 0.
π‘ β©Ύ 0,
Theorem 1 (see [5, Corollary 3.10]). Let π΅ be the generator of a πΆ0 -semigroup (π(π‘))π‘β©Ύ0 on a Hilbert space H. Then (π(π‘))π‘β©Ύ0 is quasi-hyperbolic if and only if β(π΅ β ππ ) π₯β β₯ π βπ₯β ,
βπ₯ β π· (π΅)
(7)
(4) for some π > 0.
The following relations between the solutions of the abstract Cauchy problem σΈ {V (π‘) = AV (π‘) (ACP) { V = V0 , { (0)
For πΆ0 -semigroups defined on Hilbert spaces, the following complete characterisation of such a semigroup is available in terms of the generator.
(5)
associated with the operator matrix (A, π·(A)) on the Banach π₯ space X with initial value V0 = ( π00 ) and (DE) are well known [3, Lemma 2.2]: (i) If π’ is a solution of (DE), then π‘ σ³¨β ( π’(π‘) π’π‘ ) is a solution of the equation (ACP). (ii) If π‘ σ³¨β ( π’(π‘) V(π‘) ) is a solution of (ACP), then V(π‘) = π’π‘ for all π‘ β©Ύ 0 and π’ is a solution of (DE). Further (DE) is well posed if and only if (ACP) is well posed if and only if (A, π·(A)) generates a strongly continuous semigroup (T(π‘))π‘β©Ύ0 on X = π Γ πΏπ ([β1, 0], π). In the case that (DE) is well posed, the semigroup (T(π‘))π‘β©Ύ0 is called the delay semigroup corresponding to (DE). Then the solutions (both mild and classical) of (DE) are determined by the semigroup (T(π‘))π‘β©Ύ0 . We shall be exploring the properties of the delay semigroup (T(π‘))π‘β©Ύ0 , associated with (DE). We note here that since in this paper we shall be working with π β [1, β), fixed, we write (DE) instead of (DE)π , (ACP) instead of (ACP)π and so on, the dependence on π being implicit.
3. Quasi Hyperbolic Semigroups and Delay Equations The delay operator Ξ¦ β L(π1,π ([β1, 0], π), π) is said to be admissible (see [3]) if the operator (A, π·(A)) is the generator
The following result gives conditions under which the delay semigroup is quasi-hyperbolic. Theorem 2. Let π» be a Hilbert space and consider the delay equation (DE) with π = 2. Assume that Ξ¦ is admissible, and the semigroup (π΅, π·(π΅)) generates a quasi-hyperbolic πΆ0 semigroup. If the strict inequality σ΅© σ΅© sup σ΅©σ΅©σ΅©Ξ¦π
(ππ , π΄ 0 )σ΅©σ΅©σ΅© < 1 π βR
(8)
holds, then (A, π·(A)) generates a quasi-hyperbolic πΆ0 -semigroup. Proof. Let (π΅, π·(π΅)) generate a quasi-hyperbolic semigroup. Therefore, there exists π > 0 such that β(π΅ β ππ ) π₯β β₯ π βπ₯β , π₯ β π· (π΅) .
(9)
As Ξ¦ is admissible, (A, π·(A)) generates a πΆ0 -semigroup on π» Γ πΏ2 ([β1, 0], π»). From (8), for every π β π·(π΄ 0 ), we have σ΅©σ΅© σ΅©σ΅© σ΅© σ΅© σ΅©σ΅©Ξ¦πσ΅©σ΅©π» β€ π σ΅©σ΅©σ΅©(π΄ 0 β ππ ) πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») ,
(10)
where π is a constant strictly less than 1. Moreover, the semigroup generated by (π΄ 0 , π·(π΄ 0 )) on the Hilbert space πΏ2 ([β1, 0], H) is hyperbolic, hence quasi hyperbolic. Therefore, it follows that β(π΄ 0 β ππ )πβ β₯ π2 βπβ for all π β π·(π΄ 0 ).
Abstract and Applied Analysis
3
π₯
Now for ( π ) β π·(A), π β R, and above π, we have, on using (9) and (10), σ΅©σ΅© π₯ σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©(A β ππ ) ( )σ΅©σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅©σ΅©σ΅©π»ΓπΏ2 ([β1,0],π») σ΅©σ΅© σ΅©σ΅© Ξ¦ π₯ σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© (π΅ β ππ ) σ΅© ) ( )σ΅©σ΅©σ΅© = σ΅©σ΅©( σ΅©σ΅© π σ΅©σ΅©σ΅©π»ΓπΏ2 ([β1,0],π») 0 (π΄ 0 β ππ ) σ΅© σ΅© σ΅© σ΅© σ΅© = σ΅©σ΅©σ΅©(π΅ β ππ ) π₯ + Ξ¦πσ΅©σ΅©σ΅©π» + σ΅©σ΅©σ΅©(π΄ 0 β ππ ) πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») σ΅© σ΅© σ΅© σ΅© β₯ β(π΅ β ππ ) π₯βπ» β σ΅©σ΅©σ΅©Ξ¦πσ΅©σ΅©σ΅©π» + σ΅©σ΅©σ΅©(π΄ 0 β ππ ) πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») (11) σ΅© σ΅© σ΅© σ΅© β₯ π βπ₯βπ» β σ΅©σ΅©σ΅©Ξ¦πσ΅©σ΅©σ΅©π» + σ΅©σ΅©σ΅©(π΄ 0 β ππ ) πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») σ΅© σ΅© β₯ π βπ₯βπ» β π σ΅©σ΅©σ΅©(π΄ 0 β ππ ) πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») σ΅© σ΅© + σ΅©σ΅©σ΅©(π΄ 0 β ππ ) πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») σ΅© σ΅© β₯ πσΈ (βπ₯βπ» + σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©πΏ2 ([β1,0],π») ) .
So if we choose |π|([β1, 0]) β€ π, then such a Ξ¦ would satisfy σ΅© σ΅© sup σ΅©σ΅©σ΅©Ξ¦π
(ππ , π΄ 0 )σ΅©σ΅©σ΅© < 1. π βR
Hence, by Theorem 2, (A, π·(A)) generates quasi-hyperbolic πΆ0 -semigroup. The following example adapted from [5, Example 3.14] illustrates Theorem 2. Example 4. Define π€ : R β R, as βπ {π , π β€ 0, π€ (π ) = { ππ , otherwise. {
(i)
π₯
(ii)
σ΅©σ΅© σ΅©σ΅© π₯ σ΅©σ΅© π₯ σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σΈ σ΅© σ΅©σ΅©(A β ππ ) ( )σ΅©σ΅©σ΅© β₯ π . (12) σ΅©σ΅©( )σ΅©σ΅©σ΅© σ΅© σ΅©σ΅© σ΅© σ΅© π σ΅©σ΅©π»ΓπΏ2 ([β1,0],π») σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅©σ΅©π»ΓπΏ2 ([β1,0],π»)
Example 3. Let π be a function of bounded variation on [β1, 0] such that |π|([β1, 0]) β€ π, for π < 1, and Ξ¦ : πΆ([β1, 0], π) β π be given by the Riemann-Stieltjes integral 0
Ξ¦ (π) = β« π ππ
(13)
β1
for all π β πΆ([β1, 0], π). For π = 2, Ξ¦ satisfies the conditions of Theorem 2. It has been shown in [3] that Ξ¦ extends to a bounded admissible delay operator from π1,π ([β1, 0], π) to π. Since π΄ 0 generates a nilpotent semigroup, π(π΄ 0 ) β© πR is empty. Moreover, for π β πΏ2 ([β1, 0], π) σ΅© 0 σ΅©σ΅© σ΅© σ΅©σ΅© σ΅© σ΅©σ΅© σ΅©σ΅©Ξ¦π
(ππ , π΄ 0 ) πσ΅©σ΅©σ΅© = σ΅©σ΅©σ΅©σ΅©β« ππ (π) (π
(ππ , π΄ 0 ) π) (π)σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© β1 σ΅©σ΅© σ΅©σ΅© 0 σ΅©σ΅© β σ΅© σ΅© = σ΅©σ΅©σ΅©σ΅©β« ππ (π) β« πβππ π‘ (π0 (π‘) π) (π) ππ‘σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© β1 σ΅©σ΅© 0 σ΅©σ΅© 0 σ΅©σ΅© 0 σ΅© σ΅© = σ΅©σ΅©σ΅©σ΅©β« ππ (π) β« πππ (πβπ) π (π) ππσ΅©σ΅©σ΅©σ΅© σ΅©σ΅© β1 σ΅©σ΅© π 0
0
0
0
σ΅¨ σ΅¨ σ΅© σ΅© β€ β« β« σ΅©σ΅©σ΅©π (π)σ΅©σ΅©σ΅© ππ π σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ (π) β1 π 0
σ΅© σ΅© σ΅¨ σ΅¨ σ΅© σ΅© σ΅¨ σ΅¨ β€ β« β« σ΅©σ΅©σ΅©π (π)σ΅©σ΅©σ΅© ππ π σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ (π) β€ σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©2 β« π σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ (π) β1 β1 β1 σ΅© σ΅© σ΅¨ σ΅¨ = σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ ([β1, 0]) σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©2 .
(16)
Then π€ is a strictly positive, continuous function, satisfying
Thus, for all π β R, and ( π ) β π·(A),
It follows from Theorem 1 that (A, π·(A)) generates a quasihyperbolic πΆ0 -semigroup.
(15)
(iii)
π€ (π ) β€ ππππ‘ , π€ (π β π‘) lim
π€ (π) = π, β 1)
lim
1 π€ (π) = β 1) π
πβ+β π€ (π
(17)
πβββ π€ (π
for some π, π β R. Then lim
π€ (π) = π€Β± , β 1)
πβΒ±β π€ (π
π€β < 1 < π€+ .
(18)
Let weighted right shift πΆ0 -semigroup (π(π‘))π‘β©Ύ0 on πΏ 2 (R) be given by (π (π‘) π) (π ) =
π€ (π ) π (π β π‘) . π€ (π β π‘)
(19)
Then (π(π‘))π‘β©Ύ0 is a πΆ0 -semigroup on πΏ 2 (R) with generator say, π΅. By [5, Example 3.14], (π΅, π·(π΅)) generates a quasi-hyperbolic πΆ0 -semigroup, which is not hyperbolic. Let Ξ¦ be as in Example 3. Now, by our Theorem 2 it follows that the delay semigroup (T(π‘))π‘β©Ύ0 , associated with (DE) π’σΈ (π‘) = π΅π’ (π‘) + Ξ¦π’π‘ , π’ (0) = π₯0 ,
π‘ β©Ύ 0, (20)
π’0 = π0 is quasi-hyperbolic. (14)
Remark 5. It follows from proof of Theorem 2 that lower bounds for π΅ imply lower bounds for the delay semigroup generator A, even on general Banach spaces, provided condition (8) holds. Precisely if β(π΅βππ )π₯β β₯ πβπ₯β, π > 0 βπ₯ β π·(π΅) and (8) holds, then σ΅©σ΅© π₯ σ΅©σ΅© σ΅©σ΅© π₯ σ΅©σ΅©σ΅© σ΅© σ΅© σ΅©σ΅© σ΅©σ΅©(A β ππ ) ( )σ΅©σ΅©σ΅© β₯ π σ΅©σ΅©σ΅©( )σ΅©σ΅©σ΅© , σ΅© σ΅© σ΅© σ΅©σ΅© σ΅© σ΅© π σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅©σ΅© σ΅©σ΅©
π₯ π > 0, ( ) β π· (A) . (21) π
4
Abstract and Applied Analysis
4. Banach Space Case In this section we obtain conditions for quasi-hyperbolicity of the delay semigroup associated with (DE) when the underlying space is a general Banach space. Consider (DE) with π β [1, β) fixed. Let π΅ be a densely defined, closed linear operator on a Banach space π, and π(R, π) denote the space of π-valued Schwartz function. For π β S(R) and π₯ β π·(π΅), we write (π β π₯)(π‘) = π(π‘)π₯, (π‘ β R). Let ππ΅ (R, π) = lin{π β π₯ : π₯ β π·(π΅), π β S(R)} and F be the Fourier transform on π(R, π). Note that ππ΅ (R, π) is dense in πΏ π (R, π) for every π β [1, +β). Further, since π΄ 0 generates a hyperbolic semigroup [7, Theorem 2.7], it follows from [4] that π
(πβ
, π΄ 0 ) is an πΏ1 Fourier multiplier from πΏ1 (R, πΏ1 ([β1, 0], π)) into itself; that is, for π = πΏπ ([β1, 0], π) the operator M0 : π(R, π) β π(R, π), given by M0 (π) = Fβ1 (π
(πβ
, π΄ 0 ) Fπ) ,
(22)
extends to a bounded linear operator on πΏπ (R, π). We recall from [5] the definition of a lower πΏ π Fourier multiplier. Definition 6. The linear operator ππ΅βπβ
: ππ΅ (R, π) σ³¨σ³¨β π (R, π) , (ππ΅βπβ
π) (π ) = (π΅ β ππ ) π (π ) ,
(23)
is said to be a lower πΏ π (R, π)-Fourier multiplier if there exists π > 0 such that σ΅© σ΅©σ΅© β1 σ΅©σ΅©F ππ΅βπβ
Fπσ΅©σ΅©σ΅© β₯ π σ΅©σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©σ΅©πΏ , σ΅©πΏ π σ΅© π
(24)
for every π β ππ΅ (R, π).
Μ π π fl Fβ1 (Ξ¦π
(πβ
, π΄ 0 ) Fπ) , π
(25)
Batty and Tomilov [5] have given the following characterisation for quasi-hyperbolic in terms of lower Fourier multipliers. Theorem 7 (see [5, Theorem 3.9]). Let (π(π‘))π‘β©Ύ0 be a πΆ0 semigroup on a Banach space X with generator π΅. Then (π(π‘))π‘β©Ύ0 is quasi-hyperbolic if and only if ππ΅βπβ
is a lower πΏ π (R, π)-Fourier multiplier for all/some p β [1, +β). We are now able to deduce quasi-hyperbolicity of the delay semigroup on π Γ πΏπ ([β1, 0], π) under the assumption of quasi-hyperbolicity of the semigroup generated by π΅, under certain conditions. Theorem 8. Let X be a Banach space and consider the delay equation (DE), with π β [1, β) fixed. Assume that the delay Ξ¦ and the operator π΅ satisfy the following conditions: (1) (A, π·(A)) is a generator of a πΆ0 -semigroup on π = π Γ πΏπ ([β1, 0], π) whenever (π΅, π·(π΅) generates a πΆ0 semigroup on π.
(26)
extends to a bounded linear operator from πΏπ (R, π) to πΏπ (R, π), Μ 1 βL(πΏ1 (R,π),πΏ1 (R,π)) < 1. (3) βπ (4) the semigroup generated by (π΅, π·(π΅)) is quasihyperbolic. Then (A, π·(A)) generates a quasi-hyperbolic πΆ0 -semigroup. Proof. Let (π΅, π·(π΅)) generate a quasi-hyperbolic semigroup. Then, by Theorem 7, for π = 1, there exists π > 0 such that, for Ξ¦ β L(π1,π ([β1, 0], π), π), σ΅©σ΅© β1 σ΅© σ΅©σ΅©F ππ΅βπβ
F (π β π₯)σ΅©σ΅©σ΅© 1 σ΅© σ΅©πΏ (R,π) σ΅©σ΅© σ΅© σ΅© σ΅© = σ΅©σ΅©σ΅©π΅ (π β π₯) β πσΈ β π₯σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π) β₯ π σ΅©σ΅©σ΅©π β π₯σ΅©σ΅©σ΅©πΏ1 (R,π) .
(27)
We show that πAβπβ
is a lower πΏ 1 (R, π)-Fourier multiplier. Observe that since ππ΅βπβ
maps ππ΅ (R, π) σ³¨β π(R, π), πAβπβ
maps πA (R, π) σ³¨β π(R, π). Recall that (π΄ 0 , π·(π΄ 0 )) is the generator of the nilpotent left shift semigroup (π0 (π‘))π‘β©Ύ0 in πΏπ (R, πΏπ ([β1, 0], π)). Since Ξ¦π
(πβ
, π΄ 0 ) is an πΏ1 (R, π) Fourier multiplier, therefore, there exists 0 < π1 < 1 such that, for all π β πΏ1 (R, π), σ΅©σ΅© Μ σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©π1 (π)σ΅©σ΅©σ΅© 1 σ΅© σ΅©πΏ (R,π) β€ π1 σ΅©σ΅©πσ΅©σ΅©πΏ1 (R,π) .
Note that (Fβ1 ππ΅βπβ
Fπ) (π ) = π΅π (π ) β πσΈ (π ) .
(2) Ξ¦π
(πβ
, π΄ 0 ) is a πΏπ Fourier multiplier for some/all π β [1, β) from πΏπ (R, π) to πΏπ (R, π); that is, the map Μ π : π(R, π) β π(R, π), given by π
(28)
In particular, for π β π·(π΄ 0 ) and π β π(R), letting π = (Fβ1 ππ΄ 0 βπβ
F)(π β π) = π β (π΄ 0 π) β πσΈ β π β πΏ1 (R, π), it follows from (28) that for all π β π(R), π β π·(π΄ 0 ) σ΅© σ΅©σ΅© σ΅©σ΅©Ξ¦ (π β π)σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅© σ΅© β€ π1 σ΅©σ΅©σ΅©σ΅©(Fβ1 ππ΄ 0 βπβ
F) (π β π)σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅© σ΅© β€ π1 σ΅©σ΅©σ΅©σ΅©π΄ 0 (π β π) β (πσΈ β π)σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π) .
(29)
Now, for π = π Γ πΏ1 ([β1, 0], π), we have, on using (27) and (29), that σ΅©σ΅© σ΅©σ΅© π₯ σ΅©σ΅© β1 σ΅© σ΅©σ΅©F πAβπβ
F (π β ( ))σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅©πΏ1 (R,π) σ΅©σ΅© π΅ Ξ¦ πβπ₯ πσΈ β π₯ σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© = σ΅©σ΅©σ΅©( )( )β( σΈ )σ΅©σ΅©σ΅© σ΅©σ΅© 0 π΄ 0 πβπ π β π σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅© σ΅©σ΅© π΅ (π β π₯) + Ξ¦ (π β π) β πσΈ β π₯ σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© = σ΅©σ΅©σ΅©( )σ΅©σ΅©σ΅© σΈ σ΅©σ΅© σ΅©σ΅© 1 π΄ 0 (π β π) β π β π σ΅© σ΅©πΏ (R,π)ΓπΏ1 (R,πΏ1 ([β1,0],π))
Abstract and Applied Analysis
5
σ΅© σ΅© = σ΅©σ΅©σ΅©σ΅©π΅ (π β π₯) + Ξ¦ (π β π) β πσΈ β π₯σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π)
for every π β N, π₯π β π·(π΅). Recall from [5] that π
(πβ
, π΄ 0 ) is an πΏπ (T, πΏπ ([β1, 0], π)) Fourier multiplier for π β [1, β). The following theorem relates the approximate spectrum of an operator from the delay semigroup to that of the semigroup generated by (π΅, π·(π΅)).
σ΅© σ΅© + σ΅©σ΅©σ΅©σ΅©π΄ 0 (π β π) β πσΈ β πσ΅©σ΅©σ΅©σ΅©πΏ1 (R,πΏ1 ([β1,0],π)) σ΅© σ΅© σ΅© σ΅© β₯ σ΅©σ΅©σ΅©σ΅©π΅ (π β π₯) β πσΈ β π₯σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π) β σ΅©σ΅©σ΅©Ξ¦ (π β π)σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅© σ΅© + σ΅©σ΅©σ΅©σ΅©π΄ 0 (π β π) β πσΈ β πσ΅©σ΅©σ΅©σ΅©πΏ1 (R,πΏ1 ([β1,0],π)) σ΅© σ΅© β₯ π σ΅©σ΅©σ΅©π β π₯σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅© σ΅© + (1 β π1 ) σ΅©σ΅©σ΅©σ΅©π΄ 0 (π β π) β πσΈ β πσ΅©σ΅©σ΅©σ΅©πΏ1 (R,πΏ1 ([β1,0],π)) σ΅© σ΅© σ΅© σ΅© = π σ΅©σ΅©σ΅©π β π₯σ΅©σ΅©σ΅©πΏ1 (R,π) + πσΈ σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©πΏ1 (R,πΏ1 ([β1,0],π)) ,
Theorem 9. Let π be a Banach space and consider the delay equation (DE). Assume that Ξ¦ satisfies the following conditions:
(30) where we have used the fact that π΄ 0 is the generator of a hyperbolic semigroup and therefore also generator of quasi hyperbolic semigroup so that π΄ 0 β πβ
is a lower πΏ1 Fourier multiplier. Thus, σ΅©σ΅© π₯ σ΅©σ΅©σ΅© σ΅©σ΅© β1 σ΅©σ΅©F πAβπβ
F (π β ( ))σ΅©σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© β₯ π1 (σ΅©σ΅©σ΅©π β π₯σ΅©σ΅©σ΅©πΏ1 (R,π) + σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©πΏ1 (R,πΏ1 ([β1,0],π)) ) , σ΅©σ΅© π₯ σ΅©σ΅©σ΅© σ΅©σ΅© β1 σ΅©σ΅©F πAβπβ
F (π β ( ))σ΅©σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅©σ΅© σ΅©σ΅© π₯ σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© β₯ π1 σ΅©σ΅©σ΅©π β ( )σ΅©σ΅©σ΅© . σ΅©σ΅© π σ΅©σ΅©σ΅©πΏ1 (R,π) σ΅©
π₯
(31)
(32)
π₯
for every π β πA (R, π) = lin{π β ( π ) : ( π ) β π·(A), π β S(R)}. It now follows from Theorem 7 that (A, π·(A)) generates a quasi-hyperbolic πΆ0 -semigroup. π
We next turn to πΏ (T, π) multipliers. Following Batty and Tomilov [5], we set π
π (T, π) fl { β ππ π₯π : π β T, π₯π β π, π β N} , π=βπ
(33)
π
ππ΅ (T, π) fl { β ππ π₯π : π β T, π₯π β π· (π΅) , π β N} , π=βπ
and say that the linear operator ππ΅βπβ
: ππ΅ (T, π) σ³¨β π(T, π), defined by π
π
π
π
ππ΅βπβ
( β π π₯π ) fl β π (π΅ β ππ) π₯π , π=βπ
(2) Ξ¦π
(πβ
, π΄ 0 ) is a πΏπ Fourier multiplier for some/all π β [1, β) from πΏπ (T, π) to πΏπ (T, π), that is, the map ππ : π(T, π) β π(T, π) given by π
π
π=βπ
π=βπ
ππ ( β ππ π₯π ) fl β ππ Ξ¦π
(ππ, π΄ 0 ) π₯π
(36)
extends to a bounded linear operator from πΏπ (T, π) to πΏπ (T, π),
It follows similarly that σ΅©σ΅© β1 σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©F πAβπβ
Fπσ΅©σ΅©σ΅© 1 σ΅© σ΅©πΏ (R,π) β₯ π1 σ΅©σ΅©πσ΅©σ΅©πΏ1 (R,π)
(1) (A, π·(A)) is a generator of a πΆ0 -semigroup on π = π Γ πΏπ ([β1, 0], π) whenever (π΅, π·(π΅)) generates a πΆ0 semigroup on π.
(34)
π=βπ
is a lower πΏ π (T, π)-Fourier multiplier if there exists π > 0 such that σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅© π σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© β ππ π₯π σ΅©σ΅©σ΅© σ΅©σ΅© β ππ (π΅ β ππ) π₯π σ΅©σ΅©σ΅© β₯ π (35) σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πΏπ (T,π) σ΅©σ΅©πΏπ (T,π) σ΅©σ΅©π=βπ σ΅©σ΅©π=βπ
(3) βπ1 βL(πΏ1 (T,π),πΏ1 (T,π)) < 1. Let (π(π‘))π‘β©Ύ0 be πΆ0 -semigroup generated by the operator π΅ and (T(π‘))π‘β©Ύ0 be the delay semigroup generated by (A, π·(A)) on π Γ πΏπ ([β1, 0], π), π β [1, β) fixed. Then 1 β πππ (π(2π)) implies 1 β πππ (T(2π)). Proof. Suppose 1 β πππ (π(2π)). Then by [5, Theorem 3.12], ππ΅βπβ
is a lower πΏ π (T, π) Fourier multiplier for π = 1, and there exists π > 0 such that σ΅©σ΅©σ΅© σ΅©σ΅©σ΅© σ΅©σ΅©σ΅© π σ΅©σ΅©σ΅© π σ΅© σ΅© σ΅© σ΅©σ΅© π β₯ π σ΅©σ΅©σ΅© β ππ π₯π σ΅©σ΅©σ΅© σ΅©σ΅© β π (π΅ β ππ) π₯π σ΅©σ΅©σ΅© (37) σ΅©σ΅© 1 σ΅©σ΅© 1 σ΅©σ΅©π=βπ σ΅©σ΅©π=βπ σ΅©πΏ (T,π) σ΅©πΏ (T,π) σ΅© σ΅© for every π β N, π₯π β π·(π΅). We show that πAβπβ
is lower πΏ π (T, π)-Fourier multiplier. Note that πAβπβ
: πA (T, π) σ³¨β π(T, π). Since Ξ¦π
(πβ
, π΄ 0 ) is an πΏ1 (T, πΏ1 ([β1, 0], π)) Fourier multiplier, therefore, there exists 0 < π1 < 1 and for all π β N, ππ β πΏ1 (T, πΏ1 ([β1, 0], π)) σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅© σ΅© σ΅©σ΅©π1 ( β ππ ππ )σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πΏ1 (T,π) π=βπ σ΅©σ΅© σ΅©σ΅©σ΅© π σ΅©σ΅© σ΅© β€ π1 σ΅©σ΅©σ΅© β ππ ππ σ΅©σ΅©σ΅© . σ΅©σ΅©π=βπ σ΅©σ΅© 1 1 σ΅© σ΅©πΏ (T,πΏ ([β1,0],π))
(38)
Choosing ππ = (ππβπ΄ 0 )ππ , ππ β π·(π΄ 0 ), in the above inequality, we get σ΅©σ΅© σ΅©σ΅© π σ΅© σ΅©σ΅© σ΅©σ΅©Ξ¦ ( β ππ ππ )σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πΏ1 (T,π) σ΅©σ΅© π=βπ σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© β€ π1 σ΅©σ΅©σ΅© β ππ (π΄ 0 β ππ) ππ σ΅©σ΅©σ΅© . σ΅©σ΅©π=βπ σ΅©σ΅© 1 1 σ΅© σ΅©πΏ (T,πΏ ([β1,0],π))
(39)
6
Abstract and Applied Analysis
Now, for π = π Γ πΏ1 ([β1, 0], π), we have, for π₯π β π·(π΅), ππ β π·(π΄ 0 ), on using (37) and (39), that σ΅©σ΅© π π₯ σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© β ππ (A β ππ) ( π )σ΅©σ΅©σ΅© σ΅©σ΅© ππ σ΅©σ΅©σ΅©σ΅©πΏ1 (T,π) σ΅©σ΅©π=βπ σ΅©σ΅© π ππ (π΅ β ππ) π₯π + ππ Ξ¦ππ σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© σ΅© = σ΅©σ΅© β ( )σ΅©σ΅©σ΅© σ΅©σ΅©π=βπ σ΅©σ΅© 1 ππ (π΄ 0 β ππ) ππ σ΅© σ΅©πΏ (T,π) σ΅©σ΅© σ΅©σ΅© π π σ΅©σ΅© σ΅©σ΅© = σ΅©σ΅©σ΅© β ππ (π΅ β ππ) π₯π + β ππ Ξ¦ππ σ΅©σ΅©σ΅© σ΅©σ΅© 1 σ΅©σ΅©π=βπ π=βπ σ΅©πΏ (T,π) σ΅© σ΅©σ΅©σ΅© π σ΅©σ΅©σ΅© σ΅© σ΅© + σ΅©σ΅©σ΅© β ππ (π΄ 0 β ππ) ππ σ΅©σ΅©σ΅© σ΅©σ΅©π=βπ σ΅©σ΅© 1 1 σ΅© σ΅©πΏ (T,πΏ ([β1,0],π)) σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© π π σ΅© σ΅© σ΅© β₯ σ΅©σ΅© β π (π΅ β ππ) π₯π σ΅©σ΅© β σ΅©σ΅© β π Ξ¦ππ σ΅©σ΅©σ΅© σ΅©σ΅© 1 σ΅©σ΅© 1 σ΅©σ΅©π=βπ σ΅©σ΅©π=βπ σ΅©πΏ (T,π) σ΅© σ΅©πΏ (T,π) σ΅© (40) σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅© π + σ΅©σ΅©σ΅© β π (π΄ 0 β ππ) ππ σ΅©σ΅©σ΅© σ΅©σ΅© 1 1 σ΅©σ΅©π=βπ σ΅©πΏ (T,πΏ ([β1,0],π)) σ΅© σ΅©σ΅© σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅© β₯ π σ΅©σ΅©σ΅© β ππ π₯π σ΅©σ΅©σ΅© σ΅©σ΅© 1 σ΅©σ΅©π=βπ σ΅©πΏ (T,π) σ΅© σ΅©σ΅©σ΅© σ΅©σ΅©σ΅© π σ΅© σ΅© + (1 β π1 ) σ΅©σ΅©σ΅© β ππ (π΄ 0 β ππ) ππ σ΅©σ΅©σ΅© σ΅©σ΅© 1 1 σ΅©σ΅©π=βπ σ΅©πΏ (T,πΏ ([β1,0],π)) σ΅© σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© = π σ΅©σ΅©σ΅© β ππ π₯π σ΅©σ΅©σ΅© σ΅©σ΅©π=βπ σ΅©σ΅© 1 σ΅© σ΅©πΏ (T,π) σ΅©σ΅© π σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© + πσΈ σ΅©σ΅©σ΅© β ππ ππ σ΅©σ΅©σ΅© , σ΅©σ΅©π=βπ σ΅©σ΅© 1 1 σ΅© σ΅©πΏ (T,πΏ ([β1,0],π)) where we have used the fact that π΄ 0 β πβ
is a lower πΏ1 Fourier multiplier. Thus, σ΅©σ΅© π π₯ σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© β ππ (A β ππ) ( π )σ΅©σ΅©σ΅© σ΅©σ΅© ππ σ΅©σ΅©σ΅©σ΅©πΏ1 (T,π) σ΅©σ΅©π=βπ (41) σ΅©σ΅© π π₯π σ΅©σ΅©σ΅©σ΅© σ΅©σ΅© π β₯ π σ΅©σ΅©σ΅© β π ( )σ΅©σ΅©σ΅© σ΅©σ΅©π=βπ ππ σ΅©σ΅©σ΅©πΏ1 (T,π) σ΅© π₯
for some π > 0 and ( πππ ) β π·(A). It follows from [5, Theorem 3.12] that 1 β πππ (T(2π)).
Competing Interests The authors declare that they have no competing interests.
Acknowledgments The first author would like to thank CSIR for JRF Fellowship while the second author acknowledges with gratitude the support from the R & D grant of University of Delhi.
References [1] J. K. Hale, Functional Differential Equation, vol. 3 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1971. [2] G. F. Webb, βFunctional differential equations and nonlinear semigroups in Lπ -spaces,β Journal of Differential Equations, vol. 20, no. 1, pp. 71β89, 1976. [3] A. BΒ΄atkai, βHyperbolicity of linear partial differential equations with delay,β Integral Equations and Operator Theory, vol. 44, no. 4, pp. 383β396, 2002. [4] A. Batkai, E. Fasanga,, and R. Shvidkoy, βHyperbolicity of delay equations via Fourier multipliers,β Acta Scientiarum Mathematicarum, vol. 69, no. 1-2, pp. 131β145, 2003. [5] C. J. K. Batty and Y. Tomilov, βQuasi-hyperbolic semigroups,β Journal of Functional Analysis, vol. 258, no. 11, pp. 3855β3878, 2010. [6] C. J. Batty, βDifferentiability and growth bounds of solutions of delay equations,β Journal of Mathematical Analysis and Applications, vol. 299, no. 1, pp. 133β146, 2004. [7] Y. Latushkin and R. Shvidkoy, βHyperbolicity of semigroups and fourier multipliers,β in Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), vol. 129 of Operator Theory: Advances and Applications, pp. 341β363, BirkhΒ¨auser, Basel, Switzerland, 2000.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014