Capacitive Interface Electronics for Sensing and Actuation

72 downloads 1019 Views 2MB Size Report
B. E. Boser. 1. Capacitive Interface Electronics for Sensing and Actuation. Bernhard E. Boser. University of California, Berkeley [email protected].
Capacitive Interface Electronics for Sensing and Actuation

Bernhard E. Boser University of California, Berkeley [email protected]

B. E. Boser

Capacitive Interface Electronics

1

Outline • Capacitive Sensors – Applications – Displacement sensors • Readout electronics – Sensor interface – Circuit topologies – Electronic noise

• Feedback – Electrostatic force feedback – Stability – Sigma-delta conversion • Conclusions B. E. Boser

Capacitive Interface Electronics

2

Applications

B. E. Boser

Capacitive Interface Electronics

3

Accelerometer flexture

anchor

x

a

2



1mG

 2π  10kHz 

2

1  2.5pm  Angstrom 40

N Unit Cells Fixed Plates

acceleration

B. E. Boser

Capacitive Interface Electronics

4

Gyroscope • Vibrate along drive axis with oscillator @ fdrive

• Detect vibration @ fdrive about sense axis with accelerometer xtyp  20 fm Classical radius of electron: 2.8 fm

B. E. Boser

Capacitive Interface Electronics

5

Capacitive Displacement Sensors Gap closing

Overlap

xo

x

x xo C  x   Co

xo xo  x

1 dC  x  1  Co dx xo

C  x   Co

xo  x xo

1 dC  x  1  Co dx xo

x 0

Cap closing actuator has higher sensitivity B. E. Boser

Capacitive Interface Electronics

6

Capacitive Displacement Sensors Gap closing

Overlap

x=20fm xo=20mm

x=20fm xo=2mm Co = 1pF

Co = 1pF

Co  10 zF  1020 F    

High sensitivity Limited travel range Nonlinear Pull-in B. E. Boser

Co  1 zF  1021 F    

Low sensitivity (large xo) Large travel range Linear (first order) No pull-in (first order)

Capacitive Interface Electronics

7

Alternative Geometries Gap Closing Design

Overlap Sensor Design

• •

• •

low sensitivity large travel range

Displacement

high sensitivity small travel range

Compromise

B. E. Boser

Capacitive Interface Electronics

8

Outline • Capacitive Sensors – Applications – Displacement sensors  Readout electronics – Sensor interface – Circuit topologies – Electronic noise

• Feedback – Electrostatic force feedback – Stability – Sigma-delta conversion • Conclusions B. E. Boser

Capacitive Interface Electronics

9

Capacitance to Voltage Conversion x N movable fingers

+Vs = 1V

Co = 1 pF C = 10 zF

L A

Cs1 = Co + C

A

Vx =Vs C/Co = 10 nV

Anchor A

t

x0+x

A

Cs2 = Co - C

x= 0 x> 0

-Vs = -1V

• • • sense capacitor Cs B. E. Boser

maximize C minimize Co maximize Vs

reference capacitor Cref Capacitive Interface Electronics

10

Parasitics Parasitic Elements Cs1 Cs2

substrate

B. E. Boser

Capacitive Interface Electronics

shield

11

Capacitive Transducer Interface

B. E. Boser

Capacitive Interface Electronics

12

Interference

B. E. Boser

Capacitive Interface Electronics

13

Differential Interface Single-Ended

Pseudo-Differential

Interference  common-mode signal

B. E. Boser

Capacitive Interface Electronics

14

Modulation • Low frequency acceleration signal – Subject to low-frequency interference E.g. 1/f noise – Capacitors do not pass DC

• Solution: modulate signal before it can be corrupted

B. E. Boser

Capacitive Interface Electronics

15

Modulation in 2-Chip Sensors

Modulation

Sense Voltage

Reject drift in bond-wire capacitance Ref: Lang et al, Cancelling low frequency errors in MEMS systems, 2009. B. E. Boser

Capacitive Interface Electronics

16

Mechanical Modulation

Ref: P. Lajevardi, V.P. Petkov, and B. Murmann, "A ΣΔ Interface for MEMS Accelerometers using Electrostatic SpringConstant Modulation for Cancellation of Bondwire Capacitance Drift," in Digest ISSCC 2012, pp. 196-197. B. E. Boser

Capacitive Interface Electronics

17

Capacitive Interface Circuits Continuous Time

• •

Output modulated High valued bias resistor

B. E. Boser

Sampled Data

• •

No bias resistor, direct interface to ADC Noise folding

Capacitive Interface Electronics

18

Noise Folding

B. E. Boser

Capacitive Interface Electronics

19

“Boxcar” Sampling

• ~ 10dB noise / power reduction possible • sensitive to clock jitter & nonlinearity B. E. Boser

Capacitive Interface Electronics

20

Outline • Capacitive Sensors – Applications – Displacement sensors • Readout electronics – Sensor interface – Circuit topologies – Electronic noise

 Feedback – Electrostatic force feedback – Stability – Sigma-delta conversion • Conclusions B. E. Boser

Capacitive Interface Electronics

21

Electrostatic Force Feedback Benefits: • Reduced sensitivity to transducer nonlinearity ain

+

S

A

Vout

• Increased bandwidth (gyroscopes)

F

Challenges: • Need accurate feedback force • Stability • Increased noise

B. E. Boser

Capacitive Interface Electronics

22

Scale Factor Openloop Vout

Feedback 1 dC 2 Vfb  mx 2 dx acceleration force

x dC Vs x Vs  2   2 r dx Co r xo

feedback force

x C

2 V 1 dC xˆ    fb 2 dx m

Vs

xcell

xˆ 

ADC

Do ADC output

B. E. Boser

r2 xo scale factor

Do 

Vout Vs

• • •

Capacitive Interface Electronics

Final measurement depends on absolute voltage Need precision reference for good scale factor accuracy Feedback is nonlinear 23

Stability Sense mode

typical high performance gyroscope frequency response

Challenges:

“Parasitic” modes

• 2nd order system • High Q  180o phase lag at resonance

• Higher order resonances • Additional loop delay (e.g. DAC) B. E. Boser

Capacitive Interface Electronics

24

Feedback Actuator Non-Collocated

Collocated

separate electrodes for sense and feedback

same electrodes for sense and feedback

Normalized Magnitude (dB)

Normalized Magnitude (dB)

Phase (°)

Phase (°)

Frequency (Hz)

Frequency (Hz)

Stabilize with lead compensator? B. E. Boser

Capacitive Interface Electronics

25

Sampled Data System Loop Gain

B. E. Boser

Capacitive Interface Electronics

26

Positive Feedback Magnitude (dB)

Phase (°)

DC gain < 0

Small But Enough Margin

Huge Positive Margins

stable

Frequency (kHz)

B. E. Boser

Capacitive Interface Electronics

27

Sigma-Delta A/D Conversion



x

• Very low overhead: only comparator (and 1-bit DAC) • Sensor acts as loop filter • Or so it seems … B. E. Boser

Capacitive Interface Electronics

28

Input

Power

Broad-band Noise

Noise Frequency

ONLY Electronic Noise ONLY Quantization Noise Quantization + Electronic Noise

B. E. Boser

Capacitive Interface Electronics

29

Noise Filter with Feed-forward for Stability

B. E. Boser

Capacitive Interface Electronics

30

Lead Compensator

B. E. Boser

Capacitive Interface Electronics

31

Outline • Capacitive Sensors – Applications – Displacement sensors • Readout electronics – Sensor interface – Circuit topologies – Electronic noise

• Feedback – Electrostatic force feedback – Stability – Sigma-delta conversion  Conclusions B. E. Boser

Capacitive Interface Electronics

32

Conclusions • Capacitive sensor interfaces can resolve femto-meter displacements • Challenges – Transducer: • Parasitic capacitance, resistance • Interference  pseudo differential interface • Nonlinearity

– Electrostatic Force-Feedback • Scale-factor sensitivity to absolute voltage • Stability: 2nd order system, parasitic resonances • Sigma-delta ADC: noise enhancement B. E. Boser

Capacitive Interface Electronics

33