Quotient dissimilarities, Euclidean embeddability, and Huygens ... - Unil

0 downloads 0 Views 168KB Size Report
(see e.g. Joly and Le Calvйe (1994)) is not aggregation invariant. .... SCHOENBERG, I.J. (1935): Remarks to Maurice Fr'echet's article "Sur la d'efinition.
                                           ! "# $ %  &'(

&&)



*    +    "           , "" "     # -& .       /+0+  "     ,  1  +# , 21, 3  2 3   #  &    " +       1     , ,   4  + +# 1 1 #      ,0 #" 1 1       # 5  # 51 +" 1  +#       # & 6  ""   1     " 7"    1 8# +#      +#     1    1&  1        11 "         5#             . #& 



      

                                                                                          !      "                                  ! #             $$  $        ! %              %     &     '$   (                     !







 "  ,   9:   ;  11   "  # 0,"& . , 0  +-   : "     #     ,     ."#   &


    )? 3   >     )?    * 3 )      



¼

¼

¼

¼

             5   K )FH4   &    ! "$    8 $        3   )     $  B C          *888   $           9  : / ! - .          ! -        $          3 )         *  )         ) 8 )   ! !$       $            L&         $    $           $     $       )!  

        3   )     $         )! -     8         3 )! -     )*    $ 9                $   (  )F)     8      8 ? ¼

              $       !  ¼

 >)

 



   8      8 ?  ¼

  !! M   5 N )FF4     ! -    /           M

>      1 1 

       !  ¼

!

     ¼



B

 +    

     ¼  +    

     ¼





    8     8    >)     8     8?  

¼

¼

.!  , %           )! -                      ! ;,$    $      $                 " 3  "  )   )  )   "  8!  4!           )3 "  ) *    ) 3 )! 5           )  8    )  )! -    $  ) )         )     >   )? 3 )  *    *    









 



    















 

  



 

   



       3         



          3          8     $              @          @   )! - $      $   " $                 &               3            1                 /  = +   #  -!

$ - (    

  ,   $                            &                     < ! #      $                            ! -    

        @        $    ! =                            $     $            / 9  : ! ¼





 # ¼ C   $ $ ) ))&

¼

  $ ¾

  )       ,  %C ¼

D

 = '



  

- (    

              1    = +  ! J      / 9 $  :  ,            

                            "  !!  )F2F     ! -                       O 1$  5    +      1   $      ! #   





   $            $       .!!*!              $        

    .! !                        .!!*  .!!.                  

 1   !

  '868! & $