triggered the development of many privacy-preserving data mining techniques. ... are examples of additional distributed data mining algorithms that can be used ...
½ ! " # $% &% ' ( # # # (# ) (# **+,-. " /0 $%0 %
! "
#
$
$
#
#
$
$ %# # & #
Æ !"#
Æ ½
!
$ $ $$ % $ $
#
$ & ' $
$ $ $
% ( & ' ) $ $ * %
+ %% , + %%%
$ + %- $ $
# + - $
$ $ $
+ -% $
+ -%% $
$ * + -%%%
+ %.
$ $ , /
$ 0
$ $1
$
& ' $ * $ !2 2# $ $ 34 56# $ * $
!7 "# 8 !5# $ $ *
$ % $ $
4 7#
!9# 6# !"# 52# $
!: (;) < 5 () = ( $) (= ) < 5># 52# ,
$ $ *
$ ? $ ? # 7#
4 ? $ 5"#
# $ , $ %
$ $ $
$ 4 4 !#
# ? (@) $
$ $ ( ) $ ?
4 4 !# # $ ( $ ) A !# @* 2 "# =? 9#
# $ /
$ * $ $ B ? #
4 $ ?
&' C ?
5
$
= = $ ?
$ $$ + ?
* $$ ? !# , * $ = ! # % & ' $ ! (;) ! () $ ! (= ) $ ! (;) ! (;) (= )
,
A $ 8 (;) + ,
$
(= ) < !
$ %
$ $ / ! 4 4
C $ $ $ & ' D ,
?
* $
$1 $ # ( ) $ $ $ C # 6
: (;) @ + ,
$
(= ) @
$ $
$ ? #
$
E -8 $ - E ? -
%
F $ $ $ # G $ H > ? $ () $ H ! $ $ %
$ $ $ F F F $ ( ) $ $ ()
$
# $ () H F H ! () I BJ
$ ()
F H $ ( ) ( ) () H ( ) ( )
"
, ( ) () ( ) H ( ) ( ) () () $$ % F H H !
$ $ $ $ : ! ( ) () () H (!) ( ) ( ) Æ $ $ $ () % ()
(!) H !
() ! (!) ? , $ $ %
$
$ &
' $ $ A
$ K % C
* $ $
= 5# $
5# 5 # !L# $ $
$
% * $ $ $ / *
$ $ $ 5# $
4 $ $$
@ , C J 5L# ? $ 2
¼
$$ $
( ) () H >
% $ $
$ ; $ H ! H ! $ ? $ H 8 ; $ ; ! ( ) () H
$ $ ( ) (! ) ! > () H > > % () H ( ) H ( ) $ $ C ( ) ( ) ! I $ !6# () $$ $ () $$ ( ) $
() H
:
>
()
H (! ! )
H (! F ! )
(5)
* $ 5 9 5 L 59 5!#
! " # $
8
$ * H F / $M 4 * , $ $ = * $$ $
$
7
2
1.5
1
0.5
0
−0.5
−1 −1.5
−1
−0.5
0
0.5
1
5: C J : $
1.5
¼
%
8 :
H ( F ) ( F )
H F
F
F
(6)
< ( ) ( ) # H # H > $ =
$ % $ $ Æ > > @ 6 $ * :
H F
+
*
H N H N H N
(")
(2)
N N N
$ 57# $ N N N
L
57# +
> H ! F F # $ < $
; $ ? H F ; $
N N N $ * (2) % N H ON O F N O H )1 I @ " 2
N
H N F N N H N F N H ON O F N (7) ; $ % ( ) (5) N $ H H () N $ $ ( $ *) H N H H (7) $ N H ON O F N N H ON O F N (L)
% $ $ % $ $ $ ( $ ) $ H F $ ( ) $ H H ( ) $ $ ( ) ( ) 57 55# (( )) Æ
9
Æ $ Æ $
Æ
M
8 O H
$ $ 0 O H L $ N N FN (9) +
H ! F ! +
" % N N N $ $ < (9)
A * $
* $ @
%& # '
"
$
* $ +
$ $ H F ; H F H ! $ ( $)
$
* * $ I $
$ $ M
$ %
* C * $ () ( ) $ $ #
6: * $
$
; N H ( ) $ # $
+ N $ # $
! (! ) B
H F H # N #
H # N #
4 P $ $
M $ $ # % P H # #
I $ - * $ * $ * $ % * $ $ 4 $ () ( ) < () ()
*
*
!!
Spectral Filtering : Plot of Estimated Data vs Actual Data with SNR =1.5326 .
Eigenvalue Distribution
2
1.5
10 Actual data Estimeted data Perturbed data
0
10
−2
1
10
−4
−−Eigenvalues(log)−−>
−−−− Value of Feature−−−−>
10
0.5
0
−6
10
−8
10
−10
10
−12
10
−14
−0.5
10
Estimated Data Eigenvalue Actual Data Eigenvalue Estimated Noise Eigenvalue Lambda (Max) Lambda (Min)
−16
10
−1
−18
0
50
100 150 200 −− Number of Instances−−−−>
250
300
10
0
5
10
15 20 −−− Number of Features−−>
25
30
35
": (;) @ (= ) $
$ 4 $ $ * () $
(%!
%
* C * * , *
C $ , ? C $ * 5" 5>> @ * $ $ G ( ? )
$ " (;) * *
" (= ) $
$ % * $ 4 * $
< $ !
Plot of a Fraction of Dataset, Estimated vs Actual Signal (Mean SNR = 1.3)
−− Value of Feature−−>
2 Estimated Data Actual Data Perturbed Data
1.5 1 0.5 0 −0.5 −1
0
10
20
30
40
50
60
70
80
90
100
80
90
100
Estimation Error for the Dataset Shown
−− Estimation Error−−>
2 1.5 1 0.5 0 −0.5 −1
0
10
20
30
40 50 60 −−− Number of Instances−−−>
70
2: + * C $ $ $ $ * $ $ $ * $
*
4 C * * !> >>>
C $ G C * ! "## $ (+ ">
* 2 4 2 $ !5
Plot of a Fraction of dataset,Estimated vs Actual Signal 0.9 0.8 0.7 0.6
−− Values −−−>
0.5 0.4 0.3 0.2 0.1 0 Estimated data Actual data Perturbed data
−0.1 0
5
10
15
20 25 30 −−− No of instances−−−>
35
40
45
50
7: D Q J $ + * ,
( " (;)) %& ' $" ()*
*
$
$ $ $ !# $
$ $ 0 $
*
$ C
# $ C !> >>> $ # > ! C G > H > " "> >> C
* $ 7
< $ I
$ L (;) $
$ $ , $ $ $
$ L (= ) (!> >>>
) > "
$
!6
Plot of Estimation Error
Triangle Distribution 1
1200 Estimated Distribution Perturbed Distribution Actual Distribution
0.8
1000 0.6
0.4 −− Estimation Error−−−>
−−No of Records−−>
800
600
400
0.2
0
−0.2
−0.4
−0.6
200 −0.8
0 −1
−1
−0.5
0
0.5 −−−Attribute value−−−−>
1
1.5
2
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
−−− No of data Points−−>
L: (;) = Q J $ D$ $
$ $ $ * $ $ (= ) @
* > "
# # $ $ $ $ $ * * $ $ ? $
% %& +, , ' " -
* * $ %
* C
* * ? * C * 6# * (4) * $ * ?
C * $
( )
C
4 C + * $ $ * $ 4 C * 9 * 4 * * 4 * ? !> !> C * 8 * $ M $ C * !"
−−−− Value of Feature−−> −−− Value of Feature−−> −−− Estimation Error−−>
Spectral Filtering : Plot of Estimated Data vs Actual Data with SNR =2.0008 . 2 Actual data Estimeted data Perturbed data
1 0 −1 −2
0
50 100 150 200 250 Moving Average : Plot of Estimated Data vs Actual Data with SNR =2.0008 .
300
2 Actual data Estimeted data Perturbed data
1 0 −1 −2
0
50
100 150 200 Estimation Error: Spectral Filtering vs. Moving Average
250
300
1 Spectral Filtering Moving Average
0.5 0 −0.5 −1
0
50
100
150 200 −− Number of Instances−−−>
250
300
9: = * * + * , $ * *
%& &" %& " .%/ " -
% * D84 $ * C ? , $ $ (R ( ))
$ D84 $ % 9>S 7"S
$ $ * % * !>> >>>> $ C * !>> $ $ !>> $ $ $ ( R H T ) ! @ > $ +5 !! * $ $ ( R ) * D84 $ 9>S 7"S * ? !>> $ * * $ $ < 2
7 $ * $ * * $ * 0 1 $ %& "
R
$ C +)) $ 4 +
−− Value of Feature−−−>
−−− Value of Feature
Spectral Filtering:Plot of Estimated Signal vs Actual signal with SNR =2.0008 . 2 Actual data Estimeted data Perturbed data
1 0 −1 −2
0
50 100 150 200 250 Weiner Filtering: Plot of Estimated vs Actual Signal with SNR =2.0008 .
300
2 Actual data Estimeted data Perturbed data
1 0 −1 −2
0
50
100 150 200 Estimation Error: Spectral Filtering vs. Weiner Filtering
250
300
0.5 0 −0.5 Spectral Filtering Moving Average −1
0
50
100 150 200 −−− Number of Instances−−−>
250
300
!>: = + * C * + * , $ * C * * $ + ( !>>S ) " (;)
+
−−Data Value−−>
0.5
0
0.5
0
−0.5
−0.5
−1 −1
−1.5
−1.5
0
10
20
30
40
50
60
70
80
90
−2
100
0
10
20
30
40
50
60
70
80
90
100
!5: (;) * * (= ) %
A
$ ? $ , $ * *
$ $ $
* *
$
$
%
$ $ (
!!#) M /
$
$ $ , + $ &'
& '
C % $ $
? $ H
% $ $
!># A M $
$
$ $ >#
>
Plot of Data Feature: Actual vs Estimated
Eigenvalue Distribution When Noise Variance is Not Known
4
8
10
Estimated data Actual data 2
10
6
0
10
4 −2
−−−Eigenvalue (log)−−>
−−Value of Feature−−>
10
2
0
−2
Eigenvalues of Estimated Data Actual Data Eigenvalues Eigenvalues of Estimated Noise Lanmbda (Max) Lambda (Min)
−4
10
−6
10
−8
10
−10
10
−4 −12
10
−6
−8
−14
10
−16
10
0
50
100
150 −−No of Instances−−−>
200
250
300
0
5
10
15 20 −−No of Features−−−>
25
30
35
!6: (;) @ $ (= ) $
@ "
I + >955"5 >>> 48 D 5# V B 3 C + W R W 4 5 " +" , " 2( ):!22U!2L 4 !9LL 6# C 3 4 + $
: 4 $ % ! ' & !! U > >>! "# 4 @* 3 G = + ; $ % %+ !1+3 63 ! % + 84 3 >>5 2# 4 @* = + = 4 3 G D % %+ !1
% @ 8 >> 7# + @* = ? % !14
7&" 6( ) >> L# + G 4
" " L( ): " U 2! 4 !9L> !
9# I G 3 C + +
!1+ 5 " &&" + 5 ( ):699U"!9 !977 !># A