Random Data Perturbation Techniques and Privacy Preserving Data ...

4 downloads 3088 Views 925KB Size Report
triggered the development of many privacy-preserving data mining techniques. ... are examples of additional distributed data mining algorithms that can be used ...
             ½                                    ! " #  $% &% ' (   #  #   #             (#         )   (#   **+,-.  " /0  $%0 %                                   

                                              



           

            

                                             

!   "           

        #                                

      $         

        $           

          #

 # 

                              $   

                 

        

  $             %#         #                & #                            

   

                        Æ                                                         !"#                        

       Æ             ½

               

 

         

!

                $    $          $$    %        $  $ 

    #                  

         $                   &  '           $          

    $        $ $ 

   %           (    &  '    )  $       $       *                 %                 

   +   %% ,               +   %%%

     $         +   %-  $     $    

   # +   -                 $          

                $      $ $ 

   +   -%     $          

            

 +   -%%  $  

   $ *           +   -%%% 

  

    

             +   %.                  

     $              $    ,    / 

      $  0   

                                $                     $1     

    $ 

   

               & '      $                            *   $   !2 2#     $                $ 34  56#          $      *            $ 

             !7 "#  8       !5#       $       $      *    

      $  %      $          $ 

 4              7# 

   !9#           6#             !"#     52# $                

  !: (;) <       5    ( ) =    (   $) (= ) <                         5>#            52#        , 

       $         $ *

$     ?    $                ?                #        7#      

   4      ?     $     5"#         

    #    $                    , $ %

          $      $  $                

   $       4   4  !#   

     #        ?  (@)         $        

$ $             (   )           $   ?  

   4   4  !#          #          $       (    $                ) A  !#                   @*    2 "#  =?  9#      

     #                     $  /

 $          *    $         $          B              ?       #         

4             $              ?     

 &'    C   ?    

 

   5

$          

   =            =     $  ?  

   $     $$    +   ?     

   *                $$   ?                      !# ,  *                 $    =              ! # %          & '      $                                ! (;)         ! ( )                   $    ! (= )    $           ! (;)             ! (;)  (= )

 

   ,            

    A    $   8    (;)                           +       ,        

             $                  

      (= )                <                  !     

 $   %                  

$     $  /                     !      4                                            4                   

          

 C                      $ $                           $ &     '                 D    ,          

        ?    

                                             *        $  

                  

          $1      $        #      (               )    $ $       $  C                         # 6

  : (;) @               +       ,        

             $                  

    (= ) @            

     $             $    

   $    ?    #      

$  

   E - 8  $  -     E   ?  -     

   %  

             F                      $        $      $      #  G $     H >                        ?          $ ()   $   H !            $        $   %  

$                      $           $    F   F        F      $     ( )         $      $  ()        

$  

















               

    #           $  ()          H  F   H !        () I BJ   

  $     ()

    F H   $     (   ) ( ) () H    (   ) ( ) 



















 











"

  

 ,                (  ) ()  ( ) H    (   ) ( )   ()  ()     $$            %         F  H   H !        



  $   $ $ $   : !    (  ) ()   () H (!)    (   ) ( )   Æ     $          $       $          () %          ()            

   (!)                H !      

    ()      !           (!)         ?            ,  $    $    %                

     $               





















































 

     

   $    &

 '     $             $     A     

     

 $          K %           C  

   *        $                                   $    

  =     5#   $              

   5#     5 #     !L#           $              $ 

 $    

     %           *    $                  $ $     / *  

    $   $    $            5# $                      

           4              $     $$     

                       @        ,         C J     5L#                ?       $      2



 ¼   



   $$       $   

 (    )       () H  >

 %          $  $            

$       ; $             H !       H !          $   ?                $  H   8          ;          $        ; !  (   ) () H 





















$       $     ( )        (!   )    !   > () H  >   >        %             ()        H ( )   H ( )     $      $    C                   ( )   ( )           ! I       $    !6#      ()     $$      $     ()        $$      ( )   $ 











 () H

       :



        

>



    



()



 



 H   (!  ! )  

 H   (! F ! ) 

(5)

 *           $    5  9  5 L 59 5!# 

! "  #   $ 

8                     

$       *   H F  / $M         4               *  ,  $       $       =      *  $$      $       



  $     

                                 







7

2

1.5

1

0.5

0

−0.5

−1 −1.5

−1

−0.5

0

0.5

1

  5: C J    : $                

 

1.5

¼

 

      %

8       : 

  H ( F ) ( F )

H F 



F 

F



(6)



<              (   )         (   )         # H   # H >                            $         =       

$                             %  $  $   Æ        >  > @  6    $  *   : 







  H  F 

+         

 

   

  

 * 

H N   H  N    H N   



(")











 



 

 





(2)

                               N  N  N        

                 $    57#      $ N  N   N  











 









L





57# +

                >                      H !            F        F    #        $                                     <                     $        

    ;       $  ?     H F  ;      $

     N  N  N $      *    (2) %    N H ON O F N  O H    )1 I @  "  2      

 

 



 

 





 

 

 

 

 

























 







 N 

H N  F N  N H  N   F  N   H ON O F   N   (7) ;         $            %       ( )  (5)          N $           H      H  ()         N                 $  $         (       $     *) H  N  H     H         (7) $  N H ON O F   N   N H ON O F N  (L) 



 



 







 







 

 



 







 



 





 

 









 



 







 





 











 







 







%      $                $            %  $        $      $     (  $  )        $  H F          $         (   ) $             H   H  ( ) $       $    ( )                       (   )   57 55# ((   ))  Æ   

 



 



























9



 



 Æ     $             Æ                  $     





 



   



    



Æ



    M 

   8       O H        

     $           $     0  O H         L $  N N FN  (9) +

                                           H ! F !                     +

    "                  %                  N  N       N   $  $           <     (9)     

   A           *  $   

    *    $      @                  

          





 

 













 

 

 

 

 







 

   %&  # '

  "

     $  

 *               $  +

     $ $               H F  ;  H F   H !       $  ( $) 

   $         

 *    *          $   I  $                           

             

                  $   $    M               

  $         %           

 *    C *       $  ()       (    )      $      $     #

  6:         *                    $       

         $                                                                

     ; N H  (          ) $              # $        

     +    N $              # $  

            !  (!  ) B       

              H  F     H # N #       

         H # N #       

      4  P       $ $

 M       $     $    #  %    P H # #  













































 











 





       



 

I        $     -     *      $                              *   $             *   $  %           *               $  $  4        $                        ()     ( ) <         ()                       ()  

 *   

             

                *         

          





!!

Spectral Filtering : Plot of Estimated Data vs Actual Data with SNR =1.5326 .

Eigenvalue Distribution

2

1.5

10 Actual data Estimeted data Perturbed data

0

10

−2

1

10

−4

−−Eigenvalues(log)−−>

−−−− Value of Feature−−−−>

10

0.5

0

−6

10

−8

10

−10

10

−12

10

−14

−0.5

10

Estimated Data Eigenvalue Actual Data Eigenvalue Estimated Noise Eigenvalue Lambda (Max) Lambda (Min)

−16

10

−1

−18

0

50

100 150 200 −− Number of Instances−−−−>

250

300

10

0

5

10

15 20 −−− Number of Features−−>

25

30

35

  ": (;) @                 (= )  $                       

$  4        $           $ *   ()   $  

 (%!     

%               

    *    C          *         *                   ,                 *               

C     $        , ? C  $  *                 5"   5>>   @       *                  $ $  G   ( ?      )   

    

           $    " (;)           *                   *    

 

                 " (= )    $ 

         $  %   *             $      4    *         $          

     <                               $         !

Plot of a Fraction of Dataset, Estimated vs Actual Signal (Mean SNR = 1.3)

−− Value of Feature−−>

2 Estimated Data Actual Data Perturbed Data

1.5 1 0.5 0 −0.5 −1

0

10

20

30

40

50

60

70

80

90

100

80

90

100

Estimation Error for the Dataset Shown

−− Estimation Error−−>

2 1.5 1 0.5 0 −0.5 −1

0

10

20

30

40 50 60 −−− Number of Instances−−−>

70

  2: +   *           C            $            $          $                                $ *       $                           $              $           * $                 

          *      

          4                    C                       *                         *                !> >>>  

 C $     G   C *   ! "##  $  (+     ">

  

     *                    2                               4      2  $    !5

Plot of a Fraction of dataset,Estimated vs Actual Signal 0.9 0.8 0.7 0.6

−− Values −−−>

0.5 0.4 0.3 0.2 0.1 0 Estimated data Actual data Perturbed data

−0.1 0

5

10

15

20 25 30 −−− No of instances−−−>

35

40

45

50

  7: D                Q  J $  +   *          ,              

                         (   " (;))  %&  '  $" ()*

 

    *          

    $  

     $       $              $   !#        $          

$ $       0 $                

     *                     

       $       C         

   #            $  C        !> >>>         $          #           >  ! C  G     >      H > "             ">     >>   C  

     *            $    7   

                   <                    $   I     

      $         L (;)       $          

  $    $    ,        $  $   $ 

     

  $    L (= )                    (!> >>>

)        > "          

        $          

    !6

Plot of Estimation Error

Triangle Distribution 1

1200 Estimated Distribution Perturbed Distribution Actual Distribution

0.8

1000 0.6

0.4 −− Estimation Error−−−>

−−No of Records−−>

800

600

400

0.2

0

−0.2

−0.4

−0.6

200 −0.8

0 −1

−1

−0.5

0

0.5 −−−Attribute value−−−−>

1

1.5

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−−− No of data Points−−>

  L: (;) =      Q  J $  D$  $     

      $  $    $      *  $     $    (= ) @         

    *       > "    

   #  #       $   $  $            $         $        *   *               $      $     ?  $         

 % %&    +, ,    '   "  -

    *                 *    $       %      

                      *  C         

    *            *    ?     *   C *   6#                   *         (4) *           $       * ?      

   C *      $  

     (      )

      C 

 4 C  +   *      $            $     *    $   4  C *    9           *      4 *             *           4 *                    ?       !>   !>             C *  8           *     $ M $    C *  !"

−−−− Value of Feature−−> −−− Value of Feature−−> −−− Estimation Error−−>

Spectral Filtering : Plot of Estimated Data vs Actual Data with SNR =2.0008 . 2 Actual data Estimeted data Perturbed data

1 0 −1 −2

0

50 100 150 200 250 Moving Average : Plot of Estimated Data vs Actual Data with SNR =2.0008 .

300

2 Actual data Estimeted data Perturbed data

1 0 −1 −2

0

50

100 150 200 Estimation Error: Spectral Filtering vs. Moving Average

250

300

1 Spectral Filtering Moving Average

0.5 0 −0.5 −1

0

50

100

150 200 −− Number of Instances−−−>

250

300

  9: =          *              *  +   *  , $ *             *    

 %&      &" %&    "  .%/   "  -

%                 *     D84 $ *   C    ?  ,   $  $ (R    ( ))        

     $    D84         $       %                                      9>S  7"S       

           $      $          *   %       *      !>>   >>>> $  C   * !>> $    $       !>>   $            $  $ ( R H T )     ! @      > $   +5       !!   *                           $  $ ( R )     *      D84 $          9>S  7"S               *      ? !>>  $   *                  *          $  $  <    2

 7 $  *          $       *          *     $   *         0           1   $  %&      " 

R         

         $  C   +))                 $  4              +

−− Value of Feature−−−>

−−− Value of Feature

Spectral Filtering:Plot of Estimated Signal vs Actual signal with SNR =2.0008 . 2 Actual data Estimeted data Perturbed data

1 0 −1 −2

0

50 100 150 200 250 Weiner Filtering: Plot of Estimated vs Actual Signal with SNR =2.0008 .

300

2 Actual data Estimeted data Perturbed data

1 0 −1 −2

0

50

100 150 200 Estimation Error: Spectral Filtering vs. Weiner Filtering

250

300

0.5 0 −0.5 Spectral Filtering Moving Average −1

0

50

100 150 200 −−− Number of Instances−−−>

250

300

  !>: =      +   *          C *  +   *  , $ *         C *     *           $      + ( !>>S  )         " (;) 

   +

−−Data Value−−>

0.5

0

0.5

0

−0.5

−0.5

−1 −1

−1.5

−1.5

0

10

20

30

40

50

60

70

80

90

−2

100

0

10

20

30

40

50

60

70

80

90

100

  !5: (;)     *            *        (= ) %  

         

       A       

    

            

   $    ? $     ,    $  *      *  

     

          $              $ $                  

                                   *       *   

           $ 

          $        

      %    

 $                      $      ( 

   !!#)    M        /       

          $     

        $ $  ,                   +    $               &'      

        & '      

   C                  % $     $  

   ?                $  H        

   %        $ $             

   !># A   M           $   

      

       $  

$   $      ># 

>

Plot of Data Feature: Actual vs Estimated

Eigenvalue Distribution When Noise Variance is Not Known

4

8

10

Estimated data Actual data 2

10

6

0

10

4 −2

−−−Eigenvalue (log)−−>

−−Value of Feature−−>

10

2

0

−2

Eigenvalues of Estimated Data Actual Data Eigenvalues Eigenvalues of Estimated Noise Lanmbda (Max) Lambda (Min)

−4

10

−6

10

−8

10

−10

10

−4 −12

10

−6

−8

−14

10

−16

10

0

50

100

150 −−No of Instances−−−>

200

250

300

0

5

10

15 20 −−No of Features−−−>

25

30

35

  !6: (;) @          $       (= ) $ 

 @                         " 

        

    I + >955"5      >>> 48 D 5# V  B 3 C +   W R W 4                     5 "  +" ,   "  2( ):!22U!2L 4  !9LL 6# C    3 4  +         $    

  : 4     $  %  !    '  &   !! U > >>! "# 4 @* 3 G  = + ;   $         %      %+ !1+3 63 ! %   +   84 3 >>5 2# 4 @* = + = 4    3 G D          %      %+ !1

%   @   8 >>  7# + @* = ?                % !14

7&"     6( )  >>  L# + G 4                

"   "  L( ): " U 2! 4  !9L> !

9# I G  3 C +  +           

 !1+ 5 "  &&"  +   5 ( ):699U"!9 !977 !>#  A

Suggest Documents