Real-time Ethernet Residual Bus Simulation: A Model-Based Testing Approach for the Next-Generation In-Car Network Florian Bartols
Till Steinbach Franz Korf Thomas C. Schmidt
Bettina Buth
Hamburg University of Applied Sciences
[email protected]
October 10th, 2014 22nd International Conference on Real-Time Networks and Systems
RE
NET
Software and functions in modern cars
RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
Functions are implemented mostly in software today Utilization of software directly influences the development costs Testing in early development stages reduces these costs Distributed development makes early testing difficult 2 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Complex In-Car Interconnections Front Chassis Engine
...
Gearbox
Chassis Bus (FlexRay)
Engine Bus (High-Speed-CAN) Central Gateway
Dashboard
RT-Ethernet Residual Bus Simulation
Rear Chassis
F. Bartols
Breakes
Body Bus (Low-Speed-CAN)
...
Radio/ Navi
...
CD/DVD
Motivation & Introduction Background
Multimedia Bus (MOST)
RT Ethernet RBS Application & Results
Door
On-Board Systems
Doors (LIN)
AC
Headlights
...
Conclusion & Outlook
Lights (LIN)
Off-Board Systems
Diagnostics Bus (CAN / Ethernet) Service
The complexity of current in-car interconnections is hardly manageable 3 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Complex In-Car Interconnections
RT-Ethernet Residual Bus Simulation F. Bartols Engine
Front Chassis
Rear Breakes
Rear Chassis
Motivation & Introduction
Gearbox
Doors Front Breakes
RTEthernet Switch
Dashboard
RTEthernet Backbone
RTEthernet Switch
RT Ethernet RBS CD/DVD
Radio/ Navi Headlights
Background
Application & Results Conclusion & Outlook
Internet GPS
AC
On-Board Systems Off-Board Systems Service
RT Ethernet for in-car interconnection reduces the complexity 3 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Contribution
RE RT-Ethernet Residual Bus Simulation
Testing systems and applications in early development stages is important New applications will rely on RT Ethernet as communication technology Suitable methodology is needed to validate distributed applications
F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
RT Ethernet Residual Bus Simulation enables early testing Combination of model-based testing principles to validate non-functional requirements
4 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Agenda
RT-Ethernet Residual Bus Simulation F. Bartols
1 Motivation & Introduction Motivation & Introduction
2 Background
Background RT Ethernet RBS
3 Real-time Ethernet Residual Bus Simulation
Application & Results Conclusion & Outlook
4 Application & Results 5 Conclusion & Outlook
5 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Model-based Testing Approach
RE RT-Ethernet Residual Bus Simulation F. Bartols
The automotive development process is model driven Models are utilized as specifications for Representing implementation details Modeling system requirements
Test cases are systematically inherited from models Execution of cases on different test platforms
Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
MiL, SiL, PiL, HiL and Residual Bus Simulation
6 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Residual Bus Simulation
RE RT-Ethernet Residual Bus Simulation F. Bartols
The remaining network is simulated from the viewpoint of the SUT SUT and simulator are coupled via the communication interface Behavior and network specific characteristics are realistically emulated
Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
The simulator pretends to be a physical system
7 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RT Ethernet as In-Car Network Attributes of TTEthernet
TTEthernet provides three different message classes
RT-Ethernet Residual Bus Simulation F. Bartols
Chassis
TT
TT
t
TTESwitch
Cycle
0
RE
TT
Headlight
TTESwitch RC
BE
BE
TT
Motivation & Introduction Background
BE
t 0
RC
Cycle
RT Ethernet RBS
t
0
Application & Results
Multimedia
BE
BE
BE
0
TT
Time-Triggered Message
RC
Rate-Constrained Message
BE
Best-Effort Message
Conclusion & Outlook
t
Static designed routing for deterministic behavior Synchronized time base for time-triggered communication
8 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Agenda
RT-Ethernet Residual Bus Simulation F. Bartols
1 Motivation & Introduction Motivation & Introduction
2 Background
Background RT Ethernet RBS
3 Real-time Ethernet Residual Bus Simulation
Application & Results Conclusion & Outlook
4 Application & Results 5 Conclusion & Outlook
9 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Model-based Methodology Overview
RT-Ethernet Residual Bus Simulation T 1s 2s 5s 7s 9s 11s U T u1 = HL_OFF1s u1 = LED_02s u1 = LED_100 5s u1 = LED_507s u1 = LED_101 9s u1 = LED_75 11s Y U y1 T= HL_OFF u1 = HL_OFF1s y1 = LED_0 u1 = LED_02sy1 = LED_100 u1 = LED_100 u1 = LED_507sy1 = uLED_50 u1 = LED_75 1 = LED_101 5sy1 = LED_50 9sy1 = LED_75 11s Yact Y y1U= HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_75 y1 = HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = uLED_50 y1 = LED_75 u1 = HL_OFF u1 = LED_0 u1 = LED_100 u1 = LED_50 = LED_101 u1 = LED_75 1 L Yact Y y1 = HL_OFF 500µs y1 = LED_50 y1 = HL_OFF y1 = LED_0 y1 = LED_0 yl11 (u= 1LED_100 y,y1 1=) =LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_50 y1 = LED_75 y1 = LED_75 L L Y ,y100µs 1 ) = 500µs y1 = LED_50 y1 = HL_OFF y1 = LED_0 jL1 (lyl111)(u=1LED_100 y1 = LED_50 y1 = LED_75 act Lact L L l1 (u1 ,y1 ) = 517µs to 518µs,jL1MED 518µs, AVG = 518µs (ll11)(u=1 ,y100µs 1 ) = 500µs R Lact r1 (yto1 ) 518µs, = 5000µs l1 (u1 ,y1 ) = 517µs 518µs, AVG = 518µs jL1MED (l1 ) =100µs L (rr1 )1 (yto110µs R R L ) 518µs, = 5000µs l1 (u1 ,y1 ) =jR1517µs MED = 518µs, AVG = 518µs act Ract R R r1 (y1 ) = 4998µs to 5002µs, MED AVG = 5000µs jR1 (rr1=)1 (y5000µs, ) = 5000µs 1 10µs Ract R r1 (y1 ) = 4998µs to 5002µs, MED jR1 (r1=) 5000µs, 10µs AVG = 5000µs Table 3: Tested application with positive test result. Dark gray cells depict negative, light gray positive test results Ract r1 (y1 ) = 4998µs to 5002µs, MED = 5000µs, AVG = 5000µs Table 3: Tested application with positive test result. Dark gray cells depict negative, light gray positive test results Table 3: Tested application with positive test result. Dark light gray positiveMaytest results 7. REFERENCES FOSEgray ’07, cells pagesdepict 55–71,negative, Washington, DC, USA, 2007. FOSE IEEE Computer 7. REFERENCES ’07, pages Society. 55–71, Washington, DC, USA, May [1] Aeronautical Radio Incorporated. Aircraft Data [15] P. Skruch, Panek, Kowalczyk. Model-Based 2007.M.FOSE IEEE Computer Network, 7, Avionics Full-Duplex Switched 7. PartREFERENCES ’07,and pagesB. Society. 55–71, Washington, DC, USA, May [1] Aeronautical Radio Incorporated. Aircraft Data Testing Embedded Automotive In Model-Based [15] P. inSkruch, M.IEEE Panek, and B.Systems. Kowalczyk. Ethernet Network. Standard ARINC Report Switched 664P7-1, 2007. Computer Society. Network, Part 7, Avionics Full-Duplex [1] Aeronautical Radio Incorporated. Aircraft Data J. Zander, I. Schiefdecker, and P. J. Mosterman, TestingP. inSkruch, Embedded Automotive In Model-Based ARINC, 2009. Network. Standard ARINC Report 664P7-1, M. Panek, and B.Systems. Kowalczyk. Ethernet Network, Part 7, Avionics Full-Duplex Switched Editors,[15]Model-Based Testing for Embedded Systems, J. Zander, I. Schiefdecker, P. J. Mosterman, [2] E. Bringmann and Kr¨amer. Standard Model-Based Testing Testing in Embeddedand Automotive Systems. In ARINC, 2009.A.Network. Ethernet ARINC Report 664P7-1,Computational Analysis, Synthesis and Design of Editors, Model-Based Testing forand Embedded Systems, of [2] Automotive Systems. 1st Int. Conf. on Testing J. Zander, I. Schiefdecker, P. J. Mosterman, E. Bringmann and Kr¨amer. Model-Based ARINC, 2009.InA.2008 Dynamic Systems Series, Chap.Synthesis 19, pagesand 545–578. Computational Analysis, Design of Systems, Software Testing, Verification and Validation, pages Editors, Model-Based Testing for Embedded of [2] Automotive Systems. 1st Int. Conf. on Testing CRC Press, E. Bringmann and InA.2008 Kr¨amer. Model-Based BocaSystems Raton,Series, Florida,Chap. Sept.19,2011. Dynamic pages 545–578. 485–493, Apr. 2008. Computational Analysis, Synthesis and Design of Software Testing, Verification Validation, of Automotive Systems. and In 2008 1st Int. pages Conf. on[16] SocietyCRC of Automotive Engineers - AS-2D Time Press, BocaSystems Raton,Series, Florida, Sept. Dynamic Chap. 19,2011. pages 545–578. [3] S. Demathieu, F.Apr.Thomas, Andre, S. Gerard, and pages 485–493, 2008. Software Testing,C. Verification and Validation, Triggered Systems and Architecture [16] Society of Automotive - AS-2DSept. Time2011. CRC Press, BocaEngineers Raton, Committee. Florida, F. [3]Terrier. First Experiments the UMLS. Profile S. Demathieu, F.Apr.Thomas, C. Andre, Gerard, and 485–493, 2008.Using Time-Triggered Ethernetand AS6802. SAE Aerospace, Triggered Systems Architecture for MARTE. In 11th Int. Symp. on the Object [16] Society of Automotive EngineersCommittee. - AS-2D Time F. [3]Terrier. FirstIEEE Experiments Using UMLS. Profile S. Demathieu, F. Thomas, C. Andre, Gerard, and Nov. 2011. Time-Triggered Ethernetand AS6802. SAE Aerospace, Oriented Real-TimeInDistributed Computing 2008, Triggered Systems Architecture Committee. for MARTE. Int. Symp. on the Object F. Terrier.11th FirstIEEE Experiments Using UML Profile [17] T. Steinbach, H. Dieumo Kenfack, Korf, andSAE T. C.Aerospace, Nov. 2011. pages Oriented 50–57, Piscataway, Jersey, May 2008. IEEE Time-Triggered EthernetF. AS6802. Real-TimeInNew Distributed for MARTE. 11th IEEEComputing Int. Symp.2008, on Object An Extension of the OMNeT++ [17] T. Steinbach, H. Dieumo Kenfack, F.INET Korf, and T. C. Press.pages 50–57, Piscataway, New Jersey, May 2008. IEEE Schmidt. 2011. Oriented Real-Time Distributed Computing 2008, Framework Nov. for Simulating Real-time Ethernet with An Extension of the OMNeT++ [4] Ebersp¨ acher.pages FlexConfig RBS - Remaining Bus May 2008. IEEE Schmidt. [17] T. Steinbach, H. Dieumo Kenfack, F.INET Korf, and T. C. Press. 50–57, Piscataway, New Jersey, High Accuracy. InforProc. of the 4thReal-time Int. ICSTEthernet Conf. onwith Framework Simulating Simulation for FlexRay and CAN with FlexConfig Schmidt. An Extension of the OMNeT++ INET [4] Ebersp¨ a cher. FlexConfig RBS Remaining Bus Press. Simulation Tools and Techniques, pages 375–382, New High Accuracy. of the 4thReal-time Int. ICSTEthernet Conf. onwith RBS. Simulation http://www.eberspaecher-electronics.com, 2014. FrameworkInforProc. Simulating foracher. FlexRay and CAN FlexConfig [4] Ebersp¨ FlexConfig RBSwith - Remaining Bus York, Simulation Mar. 2011. Tools ACM-DL. and Techniques, pages High Accuracy. In Proc. of the 4th375–382, Int. ICSTNew Conf. on [5] FlexRay FlexRay Communications RBS.Consortium. http://www.eberspaecher-electronics.com, 2014. Simulation for FlexRay and CAN with FlexConfig [18] T. Steinbach, F. Korf, T.and C. Schmidt. Real-time York, Mar. 2011.and ACM-DL. Tools Techniques, pages 375–382, New System Electrical Physical Layer Specification. [5] FlexRay FlexRay Communications RBS.Consortium. http://www.eberspaecher-electronics.com, 2014.Ethernet forSimulation Automotive Applications: A Solution for [18] T. Steinbach, F. Korf, T. C. Schmidt. Real-time York, Mar. 2011.and ACM-DL. Specification 3.0.1, FlexRay Consortium, Stuttgart, System Electrical Physical Layer Specification. [5] FlexRay Consortium. FlexRay Communications FutureEthernet In-Car Networks. In 2011Applications: IEEE Int. Conf. on for for Automotive A Solution Oct. 2010. [18] T. Steinbach, F. Korf, and T. C. Schmidt. Real-time Specification FlexRay Consortium, Stuttgart, System 3.0.1, Electrical Physical Layer Specification. Consumer - Berlin, Inpages 216–220, FutureElectronics In-Car Networks. 2011Applications: IEEE Int. Conf. on for Ethernet for Automotive A Solution [6] T. M.Oct. Galla.2010. Cluster Simulation in Time-Triggered Specification 3.0.1, FlexRay Consortium, Stuttgart, Piscataway, New Jersey, Sept.- Berlin, 2011. IEEE Press. Consumer FutureElectronics In-Car Networks. Inpages 2011216–220, IEEE Int. Conf. on Real-Time PhD-Thesis, TU Wien, Dec. 1999. [6] T. M.Systems. Galla.2010. Cluster Simulation in Time-Triggered Oct. [19] T. Steinbach, H.-T.New Lim, F. Korf, C. Schmidt, Piscataway, Jersey, Sept.-T.Berlin, 2011. IEEE Electronics pagesPress. 216–220, [7] International for Standardization. Road Real-Time PhD-Thesis, TU Wien, Dec. 1999. D. Herrscher,Consumer [6] T.Organization M.Systems. Galla. Cluster Simulation in Time-Triggered and A.H.-T. Wolisz. Tomorrow’s [19] T. Steinbach, Lim,Jersey, F. Korf, C. Schmidt, Piscataway, New Sept.T.In-Car 2011. IEEE Press. vehicles – Controller Area Network ISO [7] International Organization for(CAN). Standardization. Real-Time Systems. PhD-Thesis, TU Wien,Road Dec. 1999.Interconnect? A Competitive Evaluation of IEEE D.[19]Herrscher, and A.H.-T. Wolisz. T. Steinbach, Lim,Tomorrow’s F. Korf, T.In-Car C. Schmidt, 11898,vehicles ISO, Genf, 2003. Area Network (CAN). ISO – Controller [7] International Organization for Standardization. Road 802.1 Interconnect? AVB and Time-Triggered Ethernet (AS6802). In A Competitive Evaluation of IEEE D. Herrscher, and A. Wolisz. Tomorrow’s In-Car [8] O. Karfich, F.ISO, Bartols, T.2003. Steinbach, Korf, and 11898,vehicles Genf, – Controller AreaF.Network (CAN). ISO 2012 IEEE Vehicular Technology Conf.Ethernet (VTC Fall), 802.1 AVB and Time-Triggered (AS6802). In Interconnect? A Competitive Evaluation of IEEE T.[8]C. O. Schmidt. A F.Hardware/Software Platform for and Karfich, Bartols, Steinbach, F. Korf, 11898, ISO, Genf,T.2003. Piscataway, New Jersey, Sept.Technology 2012. IEEE Press. 2012 IEEE Conf. (VTC Fall), 802.1 Vehicular AVB and Time-Triggered Ethernet (AS6802). In Real-time Cluster Simulation in OMNeT++. T.[8]C.Ethernet Schmidt. Platform for and[20] W. Steiner O. Karfich,A F.Hardware/Software Bartols, T. Steinbach, F. Korf, and G.IEEE Bauer. Mixed-criticality Networks Piscataway, New Jersey, Sept.Technology 2012. IEEE Press. 2012 Vehicular Conf. (VTC Fall), In Proc. of the 6th Int. ICST Conf. on Simulation Real-time Simulation in OMNeT++. T. C.Ethernet Schmidt.Cluster A Hardware/Software Platform for for[20]Adaptive Systems. 2010Jersey, IEEE/AIAA 29thIEEE W. Steiner and G.InNew Bauer. Mixed-criticality Networks Piscataway, Sept. 2012. Press. Tools InandProc. Techniques, pages 334–337, NewonYork, Mar. of the 6th Int. ICST Conf. Simulation Real-time Ethernet Cluster Simulation in OMNeT++.DigitalforAvionics Systems Conf. 2010 (DASC), pages 29th Systems. IEEE/AIAA [20]Adaptive W. Steiner and G.InBauer. Mixed-criticality Networks 2013. Tools ACM-DL. Techniques, NewonYork, Mar. 5.A.3–1–5.A.3–10, InandProc. of the 6thpages Int. 334–337, ICST Conf. Simulation Oct. 2010. Conf. (DASC), pages AdaptiveSystems Systems. In 2010 IEEE/AIAA 29th [9] MOST2013. Cooperation. Specification Rev. 3.0New E2. York, Mar. DigitalforAvionics ACM-DL. Tools andMOST Techniques, pages 334–337, [21] M. Utter, A.Digital Pretschner, and B. Legeard. A 5.A.3–1–5.A.3–10, Oct. 2010. Avionics Systems Conf. (DASC), pages Technical report, MOST, July 2010.Specification Rev. 3.0 E2. [9] MOST Cooperation. MOST 2013. ACM-DL. Taxonomy of5.A.3–1–5.A.3–10, Modelbased Testing. Report [21] M. Utter, A. Pretschner, andTechnical B. Legeard. A Oct. 2010. [10] K. M¨uTechnical ller, Steinbach, F. Korf,July and2010. T.Specification C. Schmidt. Rev. 3.0 E2.Working report, MOST, [9] T.MOST Cooperation. MOST Paper: 04/2006, University of Waikato, Taxonomy of Modelbased Testing. Report [21] M. Utter, A. Pretschner, andTechnical B. Legeard. A A[10] Real-time Ethernet Prototype forT. C. Schmidt. Hamilton, K. M¨uTechnical ller, T. Steinbach, F.Platform Korf,July and2010. report, MOST, NewPaper: Zealand, Apr. 2006. Working University of Waikato, Taxonomy 04/2006, of Modelbased Testing. Technical Report Automotive Applications. InPrototype 2011 IEEEPlatform Int. Conf. on A[10] Real-time Ethernet K. M¨uller, T. Steinbach, F. Korf, andforT. C. Schmidt. [22] VectorHamilton, Informatik. 8.204/2006, -Apr. ECU2006. Development & NewCANoe Zealand, Working Paper: University of Waikato, Consumer Electronics - Berlin, pages 221–225, Automotive Applications. In 2011 IEEE Int. Conf. on A Real-time Ethernet Prototype Platform for Test CANoe. http://vector.com, 2014. [22] with Vector Informatik. 8.2 -Apr. ECU2006. Development & Hamilton, NewCANoe Zealand, Piscataway, New Electronics Jersey, Sept.- Berlin, 2011. IEEE Press. Consumer Automotive Applications. pages In 2011221–225, IEEE Int. Conf. on [23] J. Zander, I.Vector Schiefdecker, and CANoe P. J. Mosterman. Test CANoe. http://vector.com, [22] with Informatik. 8.2 - 2014. ECUADevelopment & [11] ObjectPiscataway, Management - Modeling And NewGroup. Jersey,MARTE Sept.- Berlin, 2011. IEEE Consumer Electronics pagesPress. 221–225, Taxonomy of Modelbased Testing [23] J. Zander, I. Schiefdecker, andforP.Embedded J. Mosterman. with CANoe. http://vector.com, 2014.A Analysis OfPiscataway, Real-Time Embedded Systems. [11] Object Management - Modeling And Systems fromTestMultiple NewGroup. Jersey,MARTE Sept. 2011. IEEE Press. Industry Testing Domains.forInEmbedded Taxonomy of Modelbased [23] J. Zander, I. Schiefdecker, and P. J. Mosterman. A Angewandte Wissenschaften Hamburg [12] ObjectAnalysis Management Group. UML - Unified Modeling Of Real-Time Embedded Systems. [11] Object Management Group. MARTE - Modeling AndJ. Zander, I. Schiefdecker, andIndustry P. J. Mosterman, Systems from Multiple Domains.forInEmbedded Taxonomy of Modelbased Testing Language. [12] ObjectAnalysis Management Group. UML - Unified Modeling editors,J. Model-Based Of Real-Time Embedded Systems. Testing for and Embedded Systems, Zander, I. Schiefdecker, P. J. Mosterman, Hamburg University of Applied Sciences Systems from Multiple Industry Domains. In [13] OMNeT++ Community. OMNeT++ 4.4.1. Language. Analysis, Synthesis andEmbedded Design of Systems, [12] Object Management Group. UML - Unified ModelingComputational editors,J. Model-Based Testing for Zander, I. Schiefdecker, and P. J. Mosterman, [14] A.[13]Pretschner, M. Broy, I. H. Kr¨ u ger, and T. Stauner. OMNeT++ Community. OMNeT++ 4.4.1. Dynamic Systems Series, Chap.Synthesis 1, pages 3–22. CRC of Language. Computational Analysis, andEmbedded Design editors, Model-Based Testing for Systems, Software EngineeringM.forBroy, Automotive [14] A. Pretschner, I. H. Kr¨Systems: uger, andAT. Stauner. Press, Boca Raton, Florida, Sept. 2011.
Test Cases
Require ments Models
Test Case Generation
Downl oad
F. Bartols Motivation & Introduction
Test Data
Background
Stimuli
Test Case Execution
Reaction
RT Ethernet RBS SUT
SUT Data
Application & Results Conclusion & Outlook
Requirements are modeled within suitable diagrams Test cases are inherited from the diagrams Test cases are executed on a suitable residual bus simulation platform Hochschule für
10 / 23
Modeling System Requirements UML-MARTE
Classic UML is not sufficient for embedded Real-time Systems Utilization of UML-Profile Modeling and Analysis of Real-time Embedded Systems (MARTE)
RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background
sd MessageProcessing
on = [MARTE_Library::TimedLibrary::idealClock] {(messageReceived - replySent) = (500,µs)} {(jitter(messageReceived - replySent)) ≤ (100,µs)}
Dashboard-System
RT Ethernet RBS Application & Results Conclusion & Outlook
Headlight-Controller @messageReceived setNewLightStatus(status)
sendCurrentLightStatus(status)
@replySent
11 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Abstract Test Cases Definition
RE RT-Ethernet Residual Bus Simulation
Base Model
F. Bartols
ATCFR = (T , U, Y ) u(t)
y(t)
System
Modeling specific values of inputs and outputs at specific points in time
Motivation & Introduction Background RT Ethernet RBS Application & Results
Extending the Model t1
Latency
t2 t3
Rate
u(t)
System
y(t)
Conclusion & Outlook
ATCNFR = (T , U, Y , L, R, ∆L , ∆R ) Extending with reply time (latency) & transmission rate (rate) 12 / 23
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Abstract Test Cases Utilization
RE RT-Ethernet Residual Bus Simulation F. Bartols
Abstract representation of to be generated test data Modeling functional requirements with expected output Modeling non-functional requirements with expected timing constraints
Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
Utilization as simulation model to drive the simulator
13 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Implementation of our Approach Requirements and Architecture
RT-Ethernet Residual Bus Simulation
Requirements
F. Bartols
TTEthernet compliant message transmission Support of timing analyzes
Motivation & Introduction
Execution of the abstract test case model
Background RT Ethernet RBS
Abstract Test Case
Application & Results Conclusion & Outlook
XMLDoc
Ethernet Frames DPM
UML-MARTE Models
SUT Configurator
Residual Bus Simulator
14 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Agenda
RT-Ethernet Residual Bus Simulation F. Bartols
1 Motivation & Introduction Motivation & Introduction
2 Background
Background RT Ethernet RBS
3 Real-time Ethernet Residual Bus Simulation
Application & Results Conclusion & Outlook
4 Application & Results 5 Conclusion & Outlook
15 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Overview of the physical system
RE RT-Ethernet Residual Bus Simulation
Headlight L
Drive-bywire (W)
Headlight R
SuT
Switch
F. Bartols Drive-bywire (SW)
Switch
Motivation & Introduction Background
Camera
Multimedia Display
Multimedia Dashboard
Lightcontrol Dashboard
RT Ethernet RBS Application & Results
to be simulated by the residual bus simulator
Conclusion & Outlook
Light control dashboard transmits new light states Headlights reply each received light state and Periodically provide their current light state Light control dashboard presents the light state to the user 16 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Validating the Headlight Controller Requirement Modelling with UML-MARTE
sd MessageProcessing
on = [MARTE_Library::TimedLibrary::idealClock]
RE RT-Ethernet Residual Bus Simulation F. Bartols
{(messageReceived - replySent) = (500,µs)} {(jitter(messageReceived - replySent)) ≤ (100,µs)}
Dashboard-System
Headlight-Controller @messageReceived setNewLightStatus(status)
Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
sendCurrentLightStatus(status)
@replySent
Timing requirements of the reply message Latency: 500 µs Jitter: ± 50 µs 17 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Validating the Headlight Controller Requirement Modelling with UML-MARTE
sd TimedStateTransmission
on = [MARTE_Library::TimedLibrary::idealClock] on = [MARTE_Library::TimedLibrary::idealClock] {(sendStatusi - sendStatusi-1) = (5000,µs)} {(jitter(sendStatusi - sendStatusi-1)) ≤ (10,µs)}
Headlight-Controller
Dashboard-System
RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS
Repeat [“timedEvent” (5,ms)]
Application & Results updateCurrentLightstatus(status)
Conclusion & Outlook
@ sentStatusi
Timing requirements of the message transmission Rate: 5000 µs Jitter: ± 5 µs 18 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Validating the Headlight Controller T U Y Yact L ∆L Lact R ∆R Ract
1s u1 = HL_OFF y1 = HL_OFF y1 = HL_OFF
2s u1 = LED_0 y1 = LED_0 y1 = HL_OFF
5s 7s 9s u1 = LED_100 u1 = LED_50 u1 = LED_101 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = HL_OFF y1 = HL_OFF y1 = HL_OFF l1 (u1 , y1 ) = 500 µs jL1 (l1 ) ≤ 100 µs l1 (u1 , y1 ) = 518 µs to 518 µs, MED = 518 µs, AVG = 518 µs r1 (y1 ) = 5000 µs jR1 (r1 ) ≤ 10 µs r1 (y1 ) = 4998 µs to 5002 µs, MED = 5000 µs, AVG = 5000 µs
11 s u1 = LED_75 y1 = LED_75 y1 = HL_OFF
RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results
Functional requirements cannot be fulfilled
Conclusion & Outlook
Expected values are not located at the output Non-functional timing requirement are fulfilled Latency of the acknowledgement lay within the allowed range
19 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Agenda
RT-Ethernet Residual Bus Simulation F. Bartols
1 Motivation & Introduction Motivation & Introduction
2 Background
Background RT Ethernet RBS
3 Real-time Ethernet Residual Bus Simulation
Application & Results Conclusion & Outlook
4 Application & Results 5 Conclusion & Outlook
20 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
Conclusion Residual bus simulator is directly connected with the SUT Message classes and a synchronization procedure are supported Non-functional timing requirements are modeled within UML-MARTE
RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
Abstract test case model models functional and non-functional test data Utilization of abstract test cases as simulation model Successful utilization for the validation of an RT Ethernet application 21 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Outlook
RT-Ethernet Residual Bus Simulation F. Bartols
Investigate how AUTOSAR and EAST-ADL could co-exist with our approach Implement a RBS with a more suitable architecture without dual-port memory
Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
Analyze the real-time and performance aspects of the new architecture
22 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Thank you for your attention
RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook
Visit us at: https://core.informatik.haw-hamburg.de Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
23 / 23