Real-time Ethernet Residual Bus Simulation: A ... - Semantic Scholar

3 downloads 0 Views 2MB Size Report
Oct 10, 2014 - Test Case. Generation. T. 1s. 2s. 5s. U u1 = HL_OFF u1 = LED_0 u1 = LE. Y y1 = HL_OFF y1 = LED_0 y1 = LE. Yact y1 = HL_OFF y1 = LED_0.
Real-time Ethernet Residual Bus Simulation: A Model-Based Testing Approach for the Next-Generation In-Car Network Florian Bartols

Till Steinbach Franz Korf Thomas C. Schmidt

Bettina Buth

Hamburg University of Applied Sciences [email protected]

October 10th, 2014 22nd International Conference on Real-Time Networks and Systems

RE

NET

Software and functions in modern cars

RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

Functions are implemented mostly in software today Utilization of software directly influences the development costs Testing in early development stages reduces these costs Distributed development makes early testing difficult 2 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Complex In-Car Interconnections Front Chassis Engine

...

Gearbox

Chassis Bus (FlexRay)

Engine Bus (High-Speed-CAN) Central Gateway

Dashboard

RT-Ethernet Residual Bus Simulation

Rear Chassis

F. Bartols

Breakes

Body Bus (Low-Speed-CAN)

...

Radio/ Navi

...

CD/DVD

Motivation & Introduction Background

Multimedia Bus (MOST)

RT Ethernet RBS Application & Results

Door

On-Board Systems

Doors (LIN)

AC

Headlights

...

Conclusion & Outlook

Lights (LIN)

Off-Board Systems

Diagnostics Bus (CAN / Ethernet) Service

The complexity of current in-car interconnections is hardly manageable 3 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Complex In-Car Interconnections

RT-Ethernet Residual Bus Simulation F. Bartols Engine

Front Chassis

Rear Breakes

Rear Chassis

Motivation & Introduction

Gearbox

Doors Front Breakes

RTEthernet Switch

Dashboard

RTEthernet Backbone

RTEthernet Switch

RT Ethernet RBS CD/DVD

Radio/ Navi Headlights

Background

Application & Results Conclusion & Outlook

Internet GPS

AC

On-Board Systems Off-Board Systems Service

RT Ethernet for in-car interconnection reduces the complexity 3 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Contribution

RE RT-Ethernet Residual Bus Simulation

Testing systems and applications in early development stages is important New applications will rely on RT Ethernet as communication technology Suitable methodology is needed to validate distributed applications

F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

RT Ethernet Residual Bus Simulation enables early testing Combination of model-based testing principles to validate non-functional requirements

4 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Agenda

RT-Ethernet Residual Bus Simulation F. Bartols

1 Motivation & Introduction Motivation & Introduction

2 Background

Background RT Ethernet RBS

3 Real-time Ethernet Residual Bus Simulation

Application & Results Conclusion & Outlook

4 Application & Results 5 Conclusion & Outlook

5 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Model-based Testing Approach

RE RT-Ethernet Residual Bus Simulation F. Bartols

The automotive development process is model driven Models are utilized as specifications for Representing implementation details Modeling system requirements

Test cases are systematically inherited from models Execution of cases on different test platforms

Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

MiL, SiL, PiL, HiL and Residual Bus Simulation

6 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Residual Bus Simulation

RE RT-Ethernet Residual Bus Simulation F. Bartols

The remaining network is simulated from the viewpoint of the SUT SUT and simulator are coupled via the communication interface Behavior and network specific characteristics are realistically emulated

Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

The simulator pretends to be a physical system

7 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RT Ethernet as In-Car Network Attributes of TTEthernet

TTEthernet provides three different message classes

RT-Ethernet Residual Bus Simulation F. Bartols

Chassis

TT

TT

t

TTESwitch

Cycle

0

RE

TT

Headlight

TTESwitch RC

BE

BE

TT

Motivation & Introduction Background

BE

t 0

RC

Cycle

RT Ethernet RBS

t

0

Application & Results

Multimedia

BE

BE

BE

0

TT

Time-Triggered Message

RC

Rate-Constrained Message

BE

Best-Effort Message

Conclusion & Outlook

t

Static designed routing for deterministic behavior Synchronized time base for time-triggered communication

8 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Agenda

RT-Ethernet Residual Bus Simulation F. Bartols

1 Motivation & Introduction Motivation & Introduction

2 Background

Background RT Ethernet RBS

3 Real-time Ethernet Residual Bus Simulation

Application & Results Conclusion & Outlook

4 Application & Results 5 Conclusion & Outlook

9 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Model-based Methodology Overview

RT-Ethernet Residual Bus Simulation T 1s 2s 5s 7s 9s 11s U T u1 = HL_OFF1s u1 = LED_02s u1 = LED_100 5s u1 = LED_507s u1 = LED_101 9s u1 = LED_75 11s Y U y1 T= HL_OFF u1 = HL_OFF1s y1 = LED_0 u1 = LED_02sy1 = LED_100 u1 = LED_100 u1 = LED_507sy1 = uLED_50 u1 = LED_75 1 = LED_101 5sy1 = LED_50 9sy1 = LED_75 11s Yact Y y1U= HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_75 y1 = HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = uLED_50 y1 = LED_75 u1 = HL_OFF u1 = LED_0 u1 = LED_100 u1 = LED_50 = LED_101 u1 = LED_75 1 L Yact Y y1 = HL_OFF 500µs y1 = LED_50 y1 = HL_OFF y1 = LED_0 y1 = LED_0 yl11 (u= 1LED_100 y,y1 1=) =LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_50 y1 = LED_75 y1 = LED_75 L L Y ,y100µs 1 ) = 500µs y1 = LED_50 y1 = HL_OFF y1 = LED_0 jL1 (lyl111)(u=1LED_100 y1 = LED_50 y1 = LED_75 act Lact L L l1 (u1 ,y1 ) = 517µs to 518µs,jL1MED 518µs, AVG = 518µs (ll11)(u=1 ,y100µs 1 ) = 500µs R Lact r1 (yto1 ) 518µs, = 5000µs l1 (u1 ,y1 ) = 517µs 518µs, AVG = 518µs jL1MED (l1 ) =100µs L (rr1 )1 (yto110µs R R L ) 518µs, = 5000µs l1 (u1 ,y1 ) =jR1517µs MED = 518µs, AVG = 518µs act Ract R R r1 (y1 ) = 4998µs to 5002µs, MED AVG = 5000µs jR1 (rr1=)1 (y5000µs, ) = 5000µs 1 10µs Ract R r1 (y1 ) = 4998µs to 5002µs, MED jR1 (r1=) 5000µs, 10µs AVG = 5000µs Table 3: Tested application with positive test result. Dark gray cells depict negative, light gray positive test results Ract r1 (y1 ) = 4998µs to 5002µs, MED = 5000µs, AVG = 5000µs Table 3: Tested application with positive test result. Dark gray cells depict negative, light gray positive test results Table 3: Tested application with positive test result. Dark light gray positiveMaytest results 7. REFERENCES FOSEgray ’07, cells pagesdepict 55–71,negative, Washington, DC, USA, 2007. FOSE IEEE Computer 7. REFERENCES ’07, pages Society. 55–71, Washington, DC, USA, May [1] Aeronautical Radio Incorporated. Aircraft Data [15] P. Skruch, Panek, Kowalczyk. Model-Based 2007.M.FOSE IEEE Computer Network, 7, Avionics Full-Duplex Switched 7. PartREFERENCES ’07,and pagesB. Society. 55–71, Washington, DC, USA, May [1] Aeronautical Radio Incorporated. Aircraft Data Testing Embedded Automotive In Model-Based [15] P. inSkruch, M.IEEE Panek, and B.Systems. Kowalczyk. Ethernet Network. Standard ARINC Report Switched 664P7-1, 2007. Computer Society. Network, Part 7, Avionics Full-Duplex [1] Aeronautical Radio Incorporated. Aircraft Data J. Zander, I. Schiefdecker, and P. J. Mosterman, TestingP. inSkruch, Embedded Automotive In Model-Based ARINC, 2009. Network. Standard ARINC Report 664P7-1, M. Panek, and B.Systems. Kowalczyk. Ethernet Network, Part 7, Avionics Full-Duplex Switched Editors,[15]Model-Based Testing for Embedded Systems, J. Zander, I. Schiefdecker, P. J. Mosterman, [2] E. Bringmann and Kr¨amer. Standard Model-Based Testing Testing in Embeddedand Automotive Systems. In ARINC, 2009.A.Network. Ethernet ARINC Report 664P7-1,Computational Analysis, Synthesis and Design of Editors, Model-Based Testing forand Embedded Systems, of [2] Automotive Systems. 1st Int. Conf. on Testing J. Zander, I. Schiefdecker, P. J. Mosterman, E. Bringmann and Kr¨amer. Model-Based ARINC, 2009.InA.2008 Dynamic Systems Series, Chap.Synthesis 19, pagesand 545–578. Computational Analysis, Design of Systems, Software Testing, Verification and Validation, pages Editors, Model-Based Testing for Embedded of [2] Automotive Systems. 1st Int. Conf. on Testing CRC Press, E. Bringmann and InA.2008 Kr¨amer. Model-Based BocaSystems Raton,Series, Florida,Chap. Sept.19,2011. Dynamic pages 545–578. 485–493, Apr. 2008. Computational Analysis, Synthesis and Design of Software Testing, Verification Validation, of Automotive Systems. and In 2008 1st Int. pages Conf. on[16] SocietyCRC of Automotive Engineers - AS-2D Time Press, BocaSystems Raton,Series, Florida, Sept. Dynamic Chap. 19,2011. pages 545–578. [3] S. Demathieu, F.Apr.Thomas, Andre, S. Gerard, and pages 485–493, 2008. Software Testing,C. Verification and Validation, Triggered Systems and Architecture [16] Society of Automotive - AS-2DSept. Time2011. CRC Press, BocaEngineers Raton, Committee. Florida, F. [3]Terrier. First Experiments the UMLS. Profile S. Demathieu, F.Apr.Thomas, C. Andre, Gerard, and 485–493, 2008.Using Time-Triggered Ethernetand AS6802. SAE Aerospace, Triggered Systems Architecture for MARTE. In 11th Int. Symp. on the Object [16] Society of Automotive EngineersCommittee. - AS-2D Time F. [3]Terrier. FirstIEEE Experiments Using UMLS. Profile S. Demathieu, F. Thomas, C. Andre, Gerard, and Nov. 2011. Time-Triggered Ethernetand AS6802. SAE Aerospace, Oriented Real-TimeInDistributed Computing 2008, Triggered Systems Architecture Committee. for MARTE. Int. Symp. on the Object F. Terrier.11th FirstIEEE Experiments Using UML Profile [17] T. Steinbach, H. Dieumo Kenfack, Korf, andSAE T. C.Aerospace, Nov. 2011. pages Oriented 50–57, Piscataway, Jersey, May 2008. IEEE Time-Triggered EthernetF. AS6802. Real-TimeInNew Distributed for MARTE. 11th IEEEComputing Int. Symp.2008, on Object An Extension of the OMNeT++ [17] T. Steinbach, H. Dieumo Kenfack, F.INET Korf, and T. C. Press.pages 50–57, Piscataway, New Jersey, May 2008. IEEE Schmidt. 2011. Oriented Real-Time Distributed Computing 2008, Framework Nov. for Simulating Real-time Ethernet with An Extension of the OMNeT++ [4] Ebersp¨ acher.pages FlexConfig RBS - Remaining Bus May 2008. IEEE Schmidt. [17] T. Steinbach, H. Dieumo Kenfack, F.INET Korf, and T. C. Press. 50–57, Piscataway, New Jersey, High Accuracy. InforProc. of the 4thReal-time Int. ICSTEthernet Conf. onwith Framework Simulating Simulation for FlexRay and CAN with FlexConfig Schmidt. An Extension of the OMNeT++ INET [4] Ebersp¨ a cher. FlexConfig RBS Remaining Bus Press. Simulation Tools and Techniques, pages 375–382, New High Accuracy. of the 4thReal-time Int. ICSTEthernet Conf. onwith RBS. Simulation http://www.eberspaecher-electronics.com, 2014. FrameworkInforProc. Simulating foracher. FlexRay and CAN FlexConfig [4] Ebersp¨ FlexConfig RBSwith - Remaining Bus York, Simulation Mar. 2011. Tools ACM-DL. and Techniques, pages High Accuracy. In Proc. of the 4th375–382, Int. ICSTNew Conf. on [5] FlexRay FlexRay Communications RBS.Consortium. http://www.eberspaecher-electronics.com, 2014. Simulation for FlexRay and CAN with FlexConfig [18] T. Steinbach, F. Korf, T.and C. Schmidt. Real-time York, Mar. 2011.and ACM-DL. Tools Techniques, pages 375–382, New System Electrical Physical Layer Specification. [5] FlexRay FlexRay Communications RBS.Consortium. http://www.eberspaecher-electronics.com, 2014.Ethernet forSimulation Automotive Applications: A Solution for [18] T. Steinbach, F. Korf, T. C. Schmidt. Real-time York, Mar. 2011.and ACM-DL. Specification 3.0.1, FlexRay Consortium, Stuttgart, System Electrical Physical Layer Specification. [5] FlexRay Consortium. FlexRay Communications FutureEthernet In-Car Networks. In 2011Applications: IEEE Int. Conf. on for for Automotive A Solution Oct. 2010. [18] T. Steinbach, F. Korf, and T. C. Schmidt. Real-time Specification FlexRay Consortium, Stuttgart, System 3.0.1, Electrical Physical Layer Specification. Consumer - Berlin, Inpages 216–220, FutureElectronics In-Car Networks. 2011Applications: IEEE Int. Conf. on for Ethernet for Automotive A Solution [6] T. M.Oct. Galla.2010. Cluster Simulation in Time-Triggered Specification 3.0.1, FlexRay Consortium, Stuttgart, Piscataway, New Jersey, Sept.- Berlin, 2011. IEEE Press. Consumer FutureElectronics In-Car Networks. Inpages 2011216–220, IEEE Int. Conf. on Real-Time PhD-Thesis, TU Wien, Dec. 1999. [6] T. M.Systems. Galla.2010. Cluster Simulation in Time-Triggered Oct. [19] T. Steinbach, H.-T.New Lim, F. Korf, C. Schmidt, Piscataway, Jersey, Sept.-T.Berlin, 2011. IEEE Electronics pagesPress. 216–220, [7] International for Standardization. Road Real-Time PhD-Thesis, TU Wien, Dec. 1999. D. Herrscher,Consumer [6] T.Organization M.Systems. Galla. Cluster Simulation in Time-Triggered and A.H.-T. Wolisz. Tomorrow’s [19] T. Steinbach, Lim,Jersey, F. Korf, C. Schmidt, Piscataway, New Sept.T.In-Car 2011. IEEE Press. vehicles – Controller Area Network ISO [7] International Organization for(CAN). Standardization. Real-Time Systems. PhD-Thesis, TU Wien,Road Dec. 1999.Interconnect? A Competitive Evaluation of IEEE D.[19]Herrscher, and A.H.-T. Wolisz. T. Steinbach, Lim,Tomorrow’s F. Korf, T.In-Car C. Schmidt, 11898,vehicles ISO, Genf, 2003. Area Network (CAN). ISO – Controller [7] International Organization for Standardization. Road 802.1 Interconnect? AVB and Time-Triggered Ethernet (AS6802). In A Competitive Evaluation of IEEE D. Herrscher, and A. Wolisz. Tomorrow’s In-Car [8] O. Karfich, F.ISO, Bartols, T.2003. Steinbach, Korf, and 11898,vehicles Genf, – Controller AreaF.Network (CAN). ISO 2012 IEEE Vehicular Technology Conf.Ethernet (VTC Fall), 802.1 AVB and Time-Triggered (AS6802). In Interconnect? A Competitive Evaluation of IEEE T.[8]C. O. Schmidt. A F.Hardware/Software Platform for and Karfich, Bartols, Steinbach, F. Korf, 11898, ISO, Genf,T.2003. Piscataway, New Jersey, Sept.Technology 2012. IEEE Press. 2012 IEEE Conf. (VTC Fall), 802.1 Vehicular AVB and Time-Triggered Ethernet (AS6802). In Real-time Cluster Simulation in OMNeT++. T.[8]C.Ethernet Schmidt. Platform for and[20] W. Steiner O. Karfich,A F.Hardware/Software Bartols, T. Steinbach, F. Korf, and G.IEEE Bauer. Mixed-criticality Networks Piscataway, New Jersey, Sept.Technology 2012. IEEE Press. 2012 Vehicular Conf. (VTC Fall), In Proc. of the 6th Int. ICST Conf. on Simulation Real-time Simulation in OMNeT++. T. C.Ethernet Schmidt.Cluster A Hardware/Software Platform for for[20]Adaptive Systems. 2010Jersey, IEEE/AIAA 29thIEEE W. Steiner and G.InNew Bauer. Mixed-criticality Networks Piscataway, Sept. 2012. Press. Tools InandProc. Techniques, pages 334–337, NewonYork, Mar. of the 6th Int. ICST Conf. Simulation Real-time Ethernet Cluster Simulation in OMNeT++.DigitalforAvionics Systems Conf. 2010 (DASC), pages 29th Systems. IEEE/AIAA [20]Adaptive W. Steiner and G.InBauer. Mixed-criticality Networks 2013. Tools ACM-DL. Techniques, NewonYork, Mar. 5.A.3–1–5.A.3–10, InandProc. of the 6thpages Int. 334–337, ICST Conf. Simulation Oct. 2010. Conf. (DASC), pages AdaptiveSystems Systems. In 2010 IEEE/AIAA 29th [9] MOST2013. Cooperation. Specification Rev. 3.0New E2. York, Mar. DigitalforAvionics ACM-DL. Tools andMOST Techniques, pages 334–337, [21] M. Utter, A.Digital Pretschner, and B. Legeard. A 5.A.3–1–5.A.3–10, Oct. 2010. Avionics Systems Conf. (DASC), pages Technical report, MOST, July 2010.Specification Rev. 3.0 E2. [9] MOST Cooperation. MOST 2013. ACM-DL. Taxonomy of5.A.3–1–5.A.3–10, Modelbased Testing. Report [21] M. Utter, A. Pretschner, andTechnical B. Legeard. A Oct. 2010. [10] K. M¨uTechnical ller, Steinbach, F. Korf,July and2010. T.Specification C. Schmidt. Rev. 3.0 E2.Working report, MOST, [9] T.MOST Cooperation. MOST Paper: 04/2006, University of Waikato, Taxonomy of Modelbased Testing. Report [21] M. Utter, A. Pretschner, andTechnical B. Legeard. A A[10] Real-time Ethernet Prototype forT. C. Schmidt. Hamilton, K. M¨uTechnical ller, T. Steinbach, F.Platform Korf,July and2010. report, MOST, NewPaper: Zealand, Apr. 2006. Working University of Waikato, Taxonomy 04/2006, of Modelbased Testing. Technical Report Automotive Applications. InPrototype 2011 IEEEPlatform Int. Conf. on A[10] Real-time Ethernet K. M¨uller, T. Steinbach, F. Korf, andforT. C. Schmidt. [22] VectorHamilton, Informatik. 8.204/2006, -Apr. ECU2006. Development & NewCANoe Zealand, Working Paper: University of Waikato, Consumer Electronics - Berlin, pages 221–225, Automotive Applications. In 2011 IEEE Int. Conf. on A Real-time Ethernet Prototype Platform for Test CANoe. http://vector.com, 2014. [22] with Vector Informatik. 8.2 -Apr. ECU2006. Development & Hamilton, NewCANoe Zealand, Piscataway, New Electronics Jersey, Sept.- Berlin, 2011. IEEE Press. Consumer Automotive Applications. pages In 2011221–225, IEEE Int. Conf. on [23] J. Zander, I.Vector Schiefdecker, and CANoe P. J. Mosterman. Test CANoe. http://vector.com, [22] with Informatik. 8.2 - 2014. ECUADevelopment & [11] ObjectPiscataway, Management - Modeling And NewGroup. Jersey,MARTE Sept.- Berlin, 2011. IEEE Consumer Electronics pagesPress. 221–225, Taxonomy of Modelbased Testing [23] J. Zander, I. Schiefdecker, andforP.Embedded J. Mosterman. with CANoe. http://vector.com, 2014.A Analysis OfPiscataway, Real-Time Embedded Systems. [11] Object Management - Modeling And Systems fromTestMultiple NewGroup. Jersey,MARTE Sept. 2011. IEEE Press. Industry Testing Domains.forInEmbedded Taxonomy of Modelbased [23] J. Zander, I. Schiefdecker, and P. J. Mosterman. A Angewandte Wissenschaften Hamburg [12] ObjectAnalysis Management Group. UML - Unified Modeling Of Real-Time Embedded Systems. [11] Object Management Group. MARTE - Modeling AndJ. Zander, I. Schiefdecker, andIndustry P. J. Mosterman, Systems from Multiple Domains.forInEmbedded Taxonomy of Modelbased Testing Language. [12] ObjectAnalysis Management Group. UML - Unified Modeling editors,J. Model-Based Of Real-Time Embedded Systems. Testing for and Embedded Systems, Zander, I. Schiefdecker, P. J. Mosterman, Hamburg University of Applied Sciences Systems from Multiple Industry Domains. In [13] OMNeT++ Community. OMNeT++ 4.4.1. Language. Analysis, Synthesis andEmbedded Design of Systems, [12] Object Management Group. UML - Unified ModelingComputational editors,J. Model-Based Testing for Zander, I. Schiefdecker, and P. J. Mosterman, [14] A.[13]Pretschner, M. Broy, I. H. Kr¨ u ger, and T. Stauner. OMNeT++ Community. OMNeT++ 4.4.1. Dynamic Systems Series, Chap.Synthesis 1, pages 3–22. CRC of Language. Computational Analysis, andEmbedded Design editors, Model-Based Testing for Systems, Software EngineeringM.forBroy, Automotive [14] A. Pretschner, I. H. Kr¨Systems: uger, andAT. Stauner. Press, Boca Raton, Florida, Sept. 2011.

Test Cases

Require ments Models

Test Case Generation

Downl oad

F. Bartols Motivation & Introduction

Test Data

Background

Stimuli

Test Case Execution

Reaction

RT Ethernet RBS SUT

SUT Data

Application & Results Conclusion & Outlook

Requirements are modeled within suitable diagrams Test cases are inherited from the diagrams Test cases are executed on a suitable residual bus simulation platform Hochschule für

10 / 23

Modeling System Requirements UML-MARTE

Classic UML is not sufficient for embedded Real-time Systems Utilization of UML-Profile Modeling and Analysis of Real-time Embedded Systems (MARTE)

RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background

sd MessageProcessing

on = [MARTE_Library::TimedLibrary::idealClock] {(messageReceived - replySent) = (500,µs)} {(jitter(messageReceived - replySent)) ≤ (100,µs)}

Dashboard-System

RT Ethernet RBS Application & Results Conclusion & Outlook

Headlight-Controller @messageReceived setNewLightStatus(status)

sendCurrentLightStatus(status)

@replySent

11 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Abstract Test Cases Definition

RE RT-Ethernet Residual Bus Simulation

Base Model

F. Bartols

ATCFR = (T , U, Y ) u(t)

y(t)

System

Modeling specific values of inputs and outputs at specific points in time

Motivation & Introduction Background RT Ethernet RBS Application & Results

Extending the Model t1

Latency

t2 t3

Rate

u(t)

System

y(t)

Conclusion & Outlook

ATCNFR = (T , U, Y , L, R, ∆L , ∆R ) Extending with reply time (latency) & transmission rate (rate) 12 / 23

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Abstract Test Cases Utilization

RE RT-Ethernet Residual Bus Simulation F. Bartols

Abstract representation of to be generated test data Modeling functional requirements with expected output Modeling non-functional requirements with expected timing constraints

Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

Utilization as simulation model to drive the simulator

13 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Implementation of our Approach Requirements and Architecture

RT-Ethernet Residual Bus Simulation

Requirements

F. Bartols

TTEthernet compliant message transmission Support of timing analyzes

Motivation & Introduction

Execution of the abstract test case model

Background RT Ethernet RBS

Abstract Test Case

Application & Results Conclusion & Outlook

XMLDoc

Ethernet Frames DPM

UML-MARTE Models

SUT Configurator

Residual Bus Simulator

14 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Agenda

RT-Ethernet Residual Bus Simulation F. Bartols

1 Motivation & Introduction Motivation & Introduction

2 Background

Background RT Ethernet RBS

3 Real-time Ethernet Residual Bus Simulation

Application & Results Conclusion & Outlook

4 Application & Results 5 Conclusion & Outlook

15 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Overview of the physical system

RE RT-Ethernet Residual Bus Simulation

Headlight L

Drive-bywire (W)

Headlight R

SuT

Switch

F. Bartols Drive-bywire (SW)

Switch

Motivation & Introduction Background

Camera

Multimedia Display

Multimedia Dashboard

Lightcontrol Dashboard

RT Ethernet RBS Application & Results

to be simulated by the residual bus simulator

Conclusion & Outlook

Light control dashboard transmits new light states Headlights reply each received light state and Periodically provide their current light state Light control dashboard presents the light state to the user 16 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Validating the Headlight Controller Requirement Modelling with UML-MARTE

sd MessageProcessing

on = [MARTE_Library::TimedLibrary::idealClock]

RE RT-Ethernet Residual Bus Simulation F. Bartols

{(messageReceived - replySent) = (500,µs)} {(jitter(messageReceived - replySent)) ≤ (100,µs)}

Dashboard-System

Headlight-Controller @messageReceived setNewLightStatus(status)

Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

sendCurrentLightStatus(status)

@replySent

Timing requirements of the reply message Latency: 500 µs Jitter: ± 50 µs 17 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Validating the Headlight Controller Requirement Modelling with UML-MARTE

sd TimedStateTransmission

on = [MARTE_Library::TimedLibrary::idealClock] on = [MARTE_Library::TimedLibrary::idealClock] {(sendStatusi - sendStatusi-1) = (5000,µs)} {(jitter(sendStatusi - sendStatusi-1)) ≤ (10,µs)}

Headlight-Controller

Dashboard-System

RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS

Repeat [“timedEvent” (5,ms)]

Application & Results updateCurrentLightstatus(status)

Conclusion & Outlook

@ sentStatusi

Timing requirements of the message transmission Rate: 5000 µs Jitter: ± 5 µs 18 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Validating the Headlight Controller T U Y Yact L ∆L Lact R ∆R Ract

1s u1 = HL_OFF y1 = HL_OFF y1 = HL_OFF

2s u1 = LED_0 y1 = LED_0 y1 = HL_OFF

5s 7s 9s u1 = LED_100 u1 = LED_50 u1 = LED_101 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = HL_OFF y1 = HL_OFF y1 = HL_OFF l1 (u1 , y1 ) = 500 µs jL1 (l1 ) ≤ 100 µs l1 (u1 , y1 ) = 518 µs to 518 µs, MED = 518 µs, AVG = 518 µs r1 (y1 ) = 5000 µs jR1 (r1 ) ≤ 10 µs r1 (y1 ) = 4998 µs to 5002 µs, MED = 5000 µs, AVG = 5000 µs

11 s u1 = LED_75 y1 = LED_75 y1 = HL_OFF

RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results

Functional requirements cannot be fulfilled

Conclusion & Outlook

Expected values are not located at the output Non-functional timing requirement are fulfilled Latency of the acknowledgement lay within the allowed range

19 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Agenda

RT-Ethernet Residual Bus Simulation F. Bartols

1 Motivation & Introduction Motivation & Introduction

2 Background

Background RT Ethernet RBS

3 Real-time Ethernet Residual Bus Simulation

Application & Results Conclusion & Outlook

4 Application & Results 5 Conclusion & Outlook

20 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Conclusion Residual bus simulator is directly connected with the SUT Message classes and a synchronization procedure are supported Non-functional timing requirements are modeled within UML-MARTE

RE RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

Abstract test case model models functional and non-functional test data Utilization of abstract test cases as simulation model Successful utilization for the validation of an RT Ethernet application 21 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Outlook

RT-Ethernet Residual Bus Simulation F. Bartols

Investigate how AUTOSAR and EAST-ADL could co-exist with our approach Implement a RBS with a more suitable architecture without dual-port memory

Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

Analyze the real-time and performance aspects of the new architecture

22 / 23 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Thank you for your attention

RT-Ethernet Residual Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

Visit us at: https://core.informatik.haw-hamburg.de Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

23 / 23

Suggest Documents