Reduced basis methods and high performance computing ... - HAL-UPS

3 downloads 21488 Views 8MB Size Report
Python ... Octave. Gmsh/OneLab. Wrappers are automatically generated by the framework. Octave code. # setup parameters. # kIC : thermal conductivity ...
,

Reduced basis methods and high performance computing. Applications to non-linear multi-physics problems Christophe Prud’homme [email protected] Cemosis - http://www.cemosis.fr IRMA Université de Strasbourg

23 octobre 2014

1/70

C. Prud’homme

Aristote ROC & ROM

Collaborators on the framework • Cecile Daversin (IRMA - UdS,

Strasbourg)

Non-intrusive RB • Rachida Chakir (LJLL

- UPMC, Paris)

• Christophe Prud’homme (IRMA -

UdS, Strasbourg)

• Yvon Maday (LJLL -

UPMC, Paris)

• Alexandre Ancel (IRMA - UdS, Current Funding

Strasbourg) • Christophe Trophime

(CNRS/LNCMI, Grenoble) • Stephane Veys (LJK - UJF,

Grenoble) • Jean-Baptiste Wahl

ANR/CHORUS, ANR/HAMM, FRAE/RB4FASTSIM, ANR/Vivabrain, Labex IRMIA, IDEX

(IRMA,Strasbourg) and former collaborators : S. Vallaghe, E. Schenone.

2/70

C. Prud’homme

Aristote ROC & ROM

1 Motivations and Framework 2 Reduced Basis for Non-Linear Problems and Extension to Multiphysics 3 Applications 4 Conclusions

3/70

C. Prud’homme

Aristote ROC & ROM

Motivations and Framework

4/70

C. Prud’homme

Aristote ROC & ROM

Motivations and Context

5/70

C. Prud’homme

Aristote ROC & ROM

An open reduced basis framework

Objectives • Provide an open framework for certified reduced basis methods

and low rank methods • Provide a rapid prototyping framework using the Feel++

language for the standard finite/spectral element methods • Provide interfaces to various open "mathematical" programming

environments such as Python/OpenTURNS(UQ) or Octave Where to get it ? • sources are available at http://www.feelpp.org • available as Debian/Ubuntu packages

6/70

C. Prud’homme

Aristote ROC & ROM

Feel++ Features • Galerkin methods (fem,sem, cG, dG) in 1D, 2D and 3D on simplices and hypercubes • Interfaces to PETSc/SLEPc • Language embedded in C++ close to variational formulation language that shortens tremendously the “time to results” // Th = {elements} auto mesh = loadMesh ( new Mesh < Simplex > ); // Xh = {v ∈ C 0 (Ω)|vK ∈ P2 (K), ∀K ∈ Th } auto Xh = Pch ( mesh ); auto u = Xh - > element () , v = Xh - > element (); auto a = form2 ( _test = Xh , _trial = Xh , ); R // a(u, v) = Ω ∇u · ∇v a = integrate ( elements ( mesh ) , gradt ( u )* trans ( grad ( v ))); auto b = form2 R ( _test = Xh , _trial = Xh ); // a(u, v) = Ω u v b = integrate ( elements ( mesh ) , idt ( u )* id ( v ) );

7/70

C. Prud’homme

Aristote ROC & ROM

Feel++ Reduced Basis/Low Rank Methods Features

Lower bound for coercivity/inf-sup

OK

90%

CRB Linear Elliptic case

OK

100% (coercive) 90% (non-coercive)

CRB Linear Parabolic case

OK

100%

Automatic differentiation

OK

90%

EIM

OK

100%

CRB Nonlinear case

Ok

80%

Not OK

50%

CRB for multiphysics

OK

80%

Low Rank Tensor

OK

Demonstrator

CRB automated affine decomposition

8/70

C. Prud’homme

Aristote ROC & ROM

Feel++ Framework : the User point of view Parametric FEM

Cmd line Python

Specifications Geometry, PDE,... µ0 , µ1 , ..., µP , t

Affine decomposition to be automated

CRB ...

Code generator SCM

Octave EIM Offline/Online Database handling

Gmsh/OneLab

Auto. diff.

class MyModel : public ModelBase < ParameterSpace , decltype ( Pch ( Mesh < Simplex { ... init (){ auto mesh = loadMesh ( _mesh = new Mesh < Simplex setFunctionSpaces ( Pch ( mesh ) ); // define bounds for $D ^\ mu$ ... // affine decomposition here ... }

9/70

C. Prud’homme

Aristote ROC & ROM

Wrappers : Python/OpenTURNS Parametric FEM

Cmd line Python

Specifications Geometry, PDE,... µ0 , µ1 , ..., µP , t

Affine decomposition to be automated

CRB ...

Code generator SCM

Octave EIM Offline/Online Database handling

Gmsh/OneLab

Auto. diff.

Wrappers are automatically generated by the framework Python Code (OpenTURNS wrapper for UQ) # fem code modelfem = Numer icalM athFun ction ( " modelfem " ) # crb code modelrb = Num erica lMathF uncti on ( " modelrb " ) mu [0] = 10 mu [1] = 7e -3 outputfem = modelfem ( mu ) outputrb = modelrb ( mu ) 10/70

C. Prud’homme

Aristote ROC & ROM

Wrapper : Octave Parametric FEM

Cmd line Python

Specifications Geometry, PDE,... µ0 , µ1 , ..., µP , t

Affine decomposition to be automated

CRB ...

Code generator SCM

Octave EIM Offline/Online Database handling

Gmsh/OneLab

Auto. diff.

Wrappers are automatically generated by the framework Octave code # setup parameters # kIC : thermal conductivity ( default : 2) inP (1) = 1.0 e +1; # D : fluid flow rate ( default : 5e -3) inP (2) = 7.0 e -3; .... for i =1: N inP (1)= 0.2+( i -1)*(150 -0.2)/ N ; D =[ D inP (1)]; s = [ s opuseadscrb ( inP )]; end 11/70

C. Prud’homme

Aristote ROC & ROM

High Performance Computing

12/70

C. Prud’homme

Aristote ROC & ROM

HPC Strategies MPI

Computing ressources

HARTS processors

cores

mesh partition

Objectives : GPU

• Realistic geometries • Accurate

computing

GPU

Consequences : • Memory

GPU

• Performance Technologies • MPI : Data partitioning • MT : Global assembly • GPU : Local assembly

13/70

C. Prud’homme

Aristote ROC & ROM

High Performance Computing and RB

• Training parameter sampling • Offline : identical on all cores • Online : distributed (greedy) • Parallel in spatial domain • RB construction • Residual parameter independent terms • SCM • Collective communications • Scalar products • Outputs • Opportunities : Robust preconditioners reuse • Memory hungry RB : matrix free operators

Reconstruction of reduced basis fields : for visualisation or usage in other context might be tricky due to spatial partitioning.

14/70

C. Prud’homme

Aristote ROC & ROM

HPC Strategies MPI

Computing ressources

HARTS processors

cores

mesh partition

Objectives : GPU

• Realistic geometries • Accurate

computing

GPU

Consequences : • Memory

GPU

• Performance Technologies • MPI : (Spatial,Parameter)Data

partitioning • (MT,)GPU : Online computations

15/70

C. Prud’homme

Aristote ROC & ROM

“Truth” FEM Approximation

Let I = (0, Tf ) , with Tf is the final time. Let µ ∈ Dµ and t ∈ I, evaluate sN (t; µ) = `(t; uN (µ)) , where uN (t; µ) ∈ X N ⊂ X satisfies  N  ∂u (µ) m , v; µ + a(uN (µ), v; µ) = f (t; v), ∂t

∀ v ∈ XN

∀t∈I .

• a(·, ·; µ) and m(·, ·; µ) are bilinear, f (·; µ) and `(·; µ) are linear • f and ` are bounded

16/70

C. Prud’homme

Aristote ROC & ROM

“Truth” FEM Approximation : Inner products and Norms T

Let ∆t the time step defined by ∆t = Kf . ∀w, v ∈ X and 1 ≤ k ≤ K we next define the • energy inner product and associated norm (parameter dependent)



w(tk ), v(tk )



= m(w(tk ), v(tk ); µ)+

µ

k X

0

0

aS (w(tk ), v(tk ); µ)∆t

k0 =1

q k 0 0 v(t ) = m(v(tk ), v(tk ); µ) + aS (v(tk ), v(tk ); µ)∆t µ

• X-inner product and associated norm (parameter independent)



   w(tk ), v(tk ) = w(tk ), v(tk ) X µ ¯ k k v(t ) = v(t ) X

µ ¯

where as denotes the symmetric part of a. 17/70

C. Prud’homme

Aristote ROC & ROM

∀w, v ∈ X, 1 ≤ k ≤ K ∀v ∈ X, 1 ≤ k ≤ K

Spaces ¯ a postivie number such that 1 ≤ N ¯ ≤ Nmax . Let N Parameter Samples : ¯, Sample : SN¯ = {µ1 ∈ Dµ , . . . , µN¯ ∈ Dµ } 1 ≤ N ≤ N with S1 ⊂ S2 . . . SN¯ ⊂ Dµ n o Let Snap(µ) = uN (tk , µ), 1 ≤ k ≤ K a snapshot set with µ ∈ SN¯ . ¯ = Nmax . Let Nm such that 1 ≤ Nm ≤ K, So we have N Nm N Let ρi (µ) ∈ X ,1 ≤ i ≤ Nm , eigen modes (associated to µ) selected a Proper Orthogonal Decomposition algorithm n o   ρi (µ) ∈ X N , 1 ≤ i ≤ Nm = P OD Snap(µ), Nm n o WN = span ζn ≡ ρi (µ) such that bn/Nm cNm +i ≤ n, µ ∈ SN¯ , n = 1, . . . , N with W1 ⊂ W2 . . . WNmax ⊂ X N ⊂ X 18/70

C. Prud’homme

Aristote ROC & ROM

Algorithm

POD algorithm : Algorithm 1 {ρi (µ) ∈ X N , 1 ≤ i ≤ Nm } = P OD(Snap(µ), Nm )     Build matrix M such that M = uN (ti , µ), uN (tj , µ) 1 ≤ i, j ≤ K ij

X

Solve M ϕi = λi ϕi for (ϕi ∈ RK , λi ∈ R)1≤i≤Nm associated to Nm larger eigen values of M PK Build ρi (µ) = k=1 ϕk uN (tk , µ) with 1 ≤ i ≤ Nm .

19/70

C. Prud’homme

Aristote ROC & ROM

A posteriori error estimation

Given µ ∈ Dµ we define εN (tk ; µ) = r(uN (tk ; µ), v; µ)

X0

, 1 ≤ k ≤ K.

Let e(tk , µ) = uN (tk , µ) − uN (tk , µ) X , we can write v u u k k e(t , µ) ≤ ∆N (t , µ) ≡ t

k ∆t X εN (tk0 ; µ)2 , 1 ≤ k ≤ K. αLB (µ) 0 k =1

∀µ ∈ Dµ and 1 ≤ k ≤ K the output error bound is given by N k k s (t , µ) − sN (tk , µ) ≤ ∆sN (tk , µ) ≡ ∆N (tk , µ) ∆du N (t , µ).

20/70

C. Prud’homme

Aristote ROC & ROM

Example Heat Shield : Problem statement



−∆u + ∂u ∂t = 0 boundaries conditions

in Ω, on ∂Ω.

Boundaries conditions

∂Ωext : heat transfert with Tair = 1 • −∇u · n = Biotext (u − Tair );

∂Ωint : heat transfert, Tair = 0 ∂Ωiso (10,4)

∂Ωext (1,1) (0,0)

• −∇u · n = Biotint (u − Tair );

∂Ωiso : Insulated.

(3,3)

(4,1)

∂Ωint

2 parameters



• Biotext and Biotint .

21/70

C. Prud’homme

Aristote ROC & ROM

Example Heat Shield • final time : 20 s ; • time step : 0.2 s ; • Minimum parameters values.

• Maximum parameters values.

22/70

C. Prud’homme

Aristote ROC & ROM

Example Heat Shield • Configuration : • 33 000 dofs ; • Preconditioner : LU(MUMPS) – Solver : KSP • Ξ : parameter sampling of dimension 430. • Let es (Tf ; µ) =

|sN (Tf ; µ) − sN (Tf ; µ)| , plot max es (Tf ; µ) µ∈Ξ sN (Tf ; µ) 101

es (Tf ; µ) ∆sN (Tf ; µ)/sN (Tf ; µ)

Relative error

10−1 10−3 10−5 10−7 10−9 0

5

10

15 N

23/70

C. Prud’homme

Aristote ROC & ROM

20

25

30

Example Heat Shield : Scalability • Time to build the first reduced basis • Configuration : 292 000 dofs for FEM approximation. • Solver : KSP. Preconditioner : LU(MUMPS), GASM(1 or 2),

Multigrid Multigrid Theoretical LU GASM(overlap=1) GASM(overlap=2)

Speed up

10

5

20

40

60

Number of processors

24/70

C. Prud’homme

Aristote ROC & ROM

80

Example Heat Shield : Basis construction • Time to build the full reduced basis on 32 procs • Configuration : 292 000 dofs for FEM approximation. • Solver : KSP Preconditioner : LU(MUMPS, GASM(1 or 2),

Time (s)

Multigrid Multigrid GASM(overlap=1) GASM(overlap=2) LU

104

103

0

5

10

Number of elements in the RB

25/70

C. Prud’homme

Aristote ROC & ROM

15

Reduced Basis for Non-Linear Problems and Extension to Multiphysics

26/70

C. Prud’homme

Aristote ROC & ROM

Notations

NonLinear µ-parametrized PDE • Set of parameters : µ ∈ D µ ⊂ Rp , • Solution of the nonlinear µ-PDE : u(µ) ∈ X ≡ H 1 (Ω ⊂ Rd ), • PDE weak formulation : We look for u(µ) ∈ X such that

g(v; µ, u(µ)) = 0, ∀ v ∈ X .

27/70

C. Prud’homme

Aristote ROC & ROM

Bootstrap Truth approximation

• X N ⊂ X : finite element approximation of dimension N >> 1. • uN (µ) ∈ X N is solution of g(v; µ, uN (µ)) = 0, ∀ v ∈ X N . • Solution strategies such as Newton or Picard iterations, e.g. given 0 N

u , build the nonlinear iterates 1 uN , . . . , k uN , . . . j(δ k uN (µ), v; k uN (µ), µ) = −g(v; µ, k uN (µ))

where δ k uN (µ) = k+1 uN (µ) − k uN (µ). We recover the linear case. • Equate u(µ) and uN (µ), i.e. ku(µ) − uN (µ)kX ≤ tol, ∀ µ ∈ D µ . • Bootstrapping the reduced basis method

28/70

C. Prud’homme

Aristote ROC & ROM

Decomposition of the jacobian and residual

Non affine decomposition of g and j

We suppose that we have ∀v ∈ X and ∀µ ∈ Dµ , j reads j(u(µ), v; µ, w(µ)) =

Qj Z X

σqj (x, µ; w(µ)) jq (u(µ), v)

ωq

q=1

and g reads g(v; µ, w(µ)) =

Qg Z X q=1

σqg (x, µ; w(µ))gq (v).

ωq

where jq and gq no longer depend on µ, however σqj and σqg depend on x, µ and u. ωq denotes a part of the computational domain.

29/70

C. Prud’homme

Aristote ROC & ROM

Recovering affine decomposition (Nonlinear-case) Apply EIM on all σqg and build gAD (u(µ), v; µ) such that Mg

g (v; µ, w(µ), ) ≈ gAD (v; µ, w(µ)) =

Qg q X X

βgqm (µ; w(µ))

Z

qm (x)gq (v) ,

ωq

q=1 m=1

|

{z

g qm (v)

and similarly build EIM expansion for σqj and build jAD (u(µ), v; µ, w(µ)) such that j (u(µ), v; µ; w(µ)) ≈ jAD (u(µ), v; µ; w(µ)) = Mj

Qj q X X

βjqm (µ; w(µ))

Z

q=1 m=1

|

30/70

C. Prud’homme

j qqm (x)jq (u(µ), v) ,

ωq

Aristote ROC & ROM

{z

j qm (u(µ),v)

}

(1)

}

Truth Finite element approximations

• X N ⊂ X : finite element approximation of dimension N >> 1. N N • uN is solution of gAD (uN . AD (µ) ∈ X AD (µ), v; µ) = 0, ∀ v ∈ X

• Solution strategies such as Newton or Picard iterations, e.g. given 0 N uAD ,

k N build the nonlinear iterates 1 uN AD , . . . , uAD , . . .   k N k N jAD δ k uN AD (µ), v; µ; uAD (µ) = −gAD v; µ, uAD (µ) ,

for the increment δ k uN (µ) defined by δ k uN (µ) =

31/70

C. Prud’homme

k+1 N

 u (µ) − k uN (µ) .

Aristote ROC & ROM

(2)

Empirical Interpolation Method

[Barrault et al., 2004]

Ingredients µ • Training set Ξµ train ⊂ D • Offline step µ • Sample SM = {µ1 ∈ Ξµ train , ..., µM ∈ Ξtrain }, Interpolation points

t1 , . . . , t M ∈ Ω • Approximation space WM = span{q1 (x), . . . , qM (x)} • Residual rm (x) = σ(x, µm ; uN (µm )) − σm (x, µm ; uN (µm )) • qm+1 (x) = rrm(t(x)) (matrix (Bi,j ) = qj (ti ) lower triangular) m

m

• Online step : Compute approximation coefficients βm (µ; uN AD (µ))

σM (ti ; µ; uN AD (ti , µ)) =

M X

N βm (µ; uN AD (ti , µ)) qm (ti ) = σ(ti ; µ; uAD (ti , µ))

m=1

∀i = 1, . . . , M

32/70

C. Prud’homme

Aristote ROC & ROM

A language embedded in C++ : EIM expansion Let u be the solution of g(u, v; µ) = 0 ∀v ∈ X N and σ(u) the non linear expression involving a field. p a r a m e te rsp ac e_p tr typ e D ; parameter_type mu ; //µ ∈ Dµ auto TrainSet = Dmu - > sampling (); int eim_sampling_size = 1000; TrainSet - > randomize ( eim_sampling_size ); // expression we want EIM expansion auto sigma = ref ( mu (0))/(1+ ref ( mu (2))*( idv ( u ) - u0 )); // call Feel ++ function eim auto eim_sigma = eim ( _model = solve ( g(u, v; µ; x) = 0 ) , _element =u , // uN (µ) _parameter = mu , // µ _expr = sigma , // σ(u) _space =XN , _name = " eim_sigma " , _sampling = TrainSet ); // then we can have access to β coefficients PM // of EIM expansion m=1 β(µ, uN (µ)) qm (x) std :: vector < double > beta_sigma = eim_sigma - > beta ( mu );

33/70

C. Prud’homme

Aristote ROC & ROM

Reduced Basis Approximation • Build SN = {µi , i = 1, ..., N } : a parameter sampling • Build XN = {uN AD (µi ), i = 1, ...N } : reduced basis approximation

space of dimension N γ 99.0% : 343K = 70◦ C 80.0% : 336.5K = 63.5◦ C

L2 relative error FEM/RB max(relative L2 error)

Helix magnet - Convergence study Random

10−1 10−3 10−5 5

10

Number of basis (RB)

max(relative L2 error)

Output error Random 10−2 10−4 10−6 5 Number of basis (RB)

49/70

C. Prud’homme

Aristote ROC & ROM

10

Helix magnet - Performances

PFEM time

Simulation characteristics

• FEM approx. using affine

• Number of dofs ≈ 2.4 × 106 • 16 processors • Dofs / proc ≈ 155000

decomposition • 16 processors

• Number of inputs : 6 • σ0 , α, L, U , h, Tw

Mean time ≈ 35min

• Reduced basis approximation : • EIM basis space : 10 basis (sampling size = 100) • RB space : 25 basis (sampling size = 1000)

RB time • RB approximation • For any number of procs

Gain factor ≈ 17

50/70

C. Prud’homme

Aristote ROC & ROM

Mean time ≈ 2min

Perspectives

Ongoing work on electro-thermal model • Continue investigations with large simulations • Increase number of basis • Analyse convergence (EIM, RB) • ... • Work on error estimation for such a model • Error estimation for EIM approximation • Dealing with non-linearity

Towards full reduced model • Add Linear Elasticity model • Add Magnetostatic model

51/70

C. Prud’homme

Aristote ROC & ROM

Conclusions

• Framework in place, need to add rigor in the nonlinear case if

possible • HPC is definitely required for (non-linear multiphysics) RB but it

should be as seamless as possible • Still some ingredients are missing • hp framework for eim and rb ; • Lego simulation ( with domain decomposition ) ; • Another application : Aerothermal problems

(Navier-Stokes+Heat Transfer) ; • Embed advanced analysis tools (automatic differentiation,

polynomial chaos, ...)

52/70

C. Prud’homme

Aristote ROC & ROM

References

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. (2004). An empirical interpolation method : application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9) :667–672.

53/70

C. Prud’homme

Aristote ROC & ROM

OPUS Heat Transfer Benchmark

Back

54/70

C. Prud’homme

Aristote ROC & ROM

/

Thermal Testcase Description y Hot air outflow

Overview

Γ3

• Heat-Transfer with conduction

Ω43 Ω4 (Air) = ∪4i=1 Ω4i eIC

Γ32 = Γ23 = Ω 2 ∩ Ω3

hPCB Ω42

Ω2 (IC2 )

hIC

x2

Γ1

Γ2 Ω44 eIC

and convection possibly coupled with Navier-Stokes • Simple but complex enough to contain all difficulties to test the certified reduced basis • non symmetric, non

compliant

Γ1 Γ31 = Γ13 = Ω 1 ∩ Ω3

Ω1 (IC1 )

• steady/unsteady • physical and geometrical

hIC

parameters

x1

Ω41

Ω3 (PCB) Γ4 ePCB

x ea

Cooling air inflow (fan)

• coupled models

• Testcase can be easily

complexified Back

55/70

C. Prud’homme

Aristote ROC & ROM

/

Thermal Testcase Description y Hot air outflow

Heat transfer equation Γ3 Ω43 Ω4 (Air) = ∪4i=1 Ω4i eIC

 ∂T ∂t

 +v·∇T −∇·(ki ∇T ) = Qi , i = 1, 2, 3, 4

Γ32 = Γ23 = Ω 2 ∩ Ω3

hPCB Ω42

ρCi

Ω2 (IC2 )

hIC

Inputs

x2

Γ1

Γ2 Ω44

µ = {ea ; kIc ; D; Q; r}.

eIC Γ1 Γ31 = Γ13 = Ω 1 ∩ Ω3

Ω1 (IC1 )

Outputs

hIC

x1

Ω41

Ω3 (PCB) Γ4 ePCB

x ea

Cooling air inflow (fan)

Z 1 s1 (µ) = T eIC hIC Ω2 Z 1 s2 (µ) = T ea Ω4 ∩Γ3 Back

56/70

C. Prud’homme

Aristote ROC & ROM

/

Thermal Testcase Description y Hot air outflow

Fluid model Γ3

Poiseuille flow or Navier-Stokes flow

Ω43 Ω4 (Air) = ∪4i=1 Ω4i eIC

Γ32 = Γ23 = Ω 2 ∩ Ω3

hPCB Ω42

Ω2 (IC2 )

• on Γ3 ∩ Ω3 , a zero flux

hIC

• on Γ3 ∩ Ω4 , outflow

x2

Γ1

Boundary conditions

Γ2 Ω44 eIC

• on Γ4 , (0 ≤ x ≤ eP cb + ea , y = 0)

temperature is set

Γ1 Γ31 = Γ13 = Ω 1 ∩ Ω3

Ω1 (IC1 )

• Γ1 and Γ2 periodic

hIC

• at interfaces between the ICs and

x1

Ω41

PCB, thermal discontinuity (conductance)

Ω3 (PCB) Γ4 ePCB

x ea

• on other internal boundaries, the

Cooling air inflow (fan)

continuity of the heat flux and temperature Back

57/70

C. Prud’homme

Aristote ROC & ROM

/

Thermal Testcase Description

Finite element method • Pk , k = 1, ..., 4 Lagrange elements

y Hot air outflow

• Weak treatment of Dirichlet Γ3

conditions

Ω43 Ω4 (Air) = ∪4i=1 Ω4i eIC

• CIP Stabilisation • Locally Discontinuous FEM

Γ32 = Γ23 = Ω 2 ∩ Ω3

hPCB Ω42

Ω2 (IC2 )

Validation

x2

Γ1

functions

hIC

Γ2 Ω44 eIC

• Comparison between

Comsol(EADS) and Feel++

Γ1 Γ31 = Γ13 = Ω 1 ∩ Ω3

Ω1 (IC1 )

• Extensive testing and

hIC

comparisons

x1

Ω41

Ω3 (PCB) Γ4 ePCB

• Implementation validated, ref.

config. max rel error < 1%

x ea

Cooling air inflow (fan)

• Diff. : mesh, stabilisation,

Dirichlet Back

58/70

C. Prud’homme

Aristote ROC & ROM

/

Thermal Testcase Description y Hot air outflow

Γ3 Ω43 Ω4 (Air) = ∪4i=1 Ω4i eIC

Γ32 = Γ23 = Ω 2 ∩ Ω3

hPCB Ω42

Ω2 (IC2 )

hIC

x2

Γ1

Γ2 Ω44 eIC

Γ1 Γ31 = Γ13 = Ω 1 ∩ Ω3

Ω1 (IC1 )

hIC

x1

Ω41

Ω3 (PCB) Γ4 ePCB

x ea

Cooling air inflow (fan)

Figure : Temperature plot for ea ∈ {2.5e − 3, 8e − 3, 5e − 2} Back

59/70

C. Prud’homme

Aristote ROC & ROM

/

Aerothermic : air conditioning/environment control systems y 1

• Steady Navier-Stokes/Heat

Γ4 Γf

transfer problem

T0

Γ1

Γ3

• 2 parameters : Grashof and

Heat flux

Ω(Fluid) Γ2 0

Prandtl number

W

• Study the average

x 0

temperature on heated surface with respect to parameters • Application to aerothermal

studies (buildings, cars, airplane cabins,...)

W

Figure : Geometry of the 2D model. Consider an extrusion of this geometry in 3D case is the extrusion in z axis of length 1.

100

10

−0.2

10−0.4

10−0.6

FEM RB 101

(a) temperature isosur60/70

C. faces Prud’homme

(b) Stream lines

Aristote ROC & ROM

102

103 Gr

104

105

106

(c) Tav versus Gr

Aerothermic : air conditioning/environment control systems

• Steady Navier-Stokes/Heat

transfer problem • Coupling 2D/3D mesh based

aerothermal model with ECS modelica model • ECS and A/C design

parameters to be optimized

(a) Airplane Cabin

Figure : Design and sizing of thermal control of avionic bay and cabin

(b) Airplane Bay

(c) Temperature Field

High performance computing is required ! 61/70

C. Prud’homme

Aristote ROC & ROM

Back

/

HiFiMagnet project High Field Magnet Modeling

Back

62/70

C. Prud’homme

Aristote ROC & ROM

/

Laboratoire National des Champs Magnétiques Intenses Large scale user facility in France • High magnetic field : from 24 T • Grenoble : continuous magnetic field (36 T) • Toulouse : pulsed magnetic field (90 T) Magnetic Field

Application domains

• Earth : 5.8 · 10−4 T

• Magnetoscience • Solide state physic • Chemistry

• Supraconductors : 24T • Continuous field : 36T

• Biochemistry

• Pulsed field : 90T

Access • Call for Magnet Time : 2 × per year • ≈ 140 projects per year Back

63/70

C. Prud’homme

Aristote ROC & ROM

/

High Field Magnet Modeling

Back

64/70

C. Prud’homme

Aristote ROC & ROM

/

Why use Reduced Basis Methods ? Challenges • Modeling : multi-physics non-linear models, complex geometries,

genericity • Account for uncertainties : uncertainty quantification, sensitivity

analysis • Optimization : shape of magnets, robustness of design Objective 1 : Fast

Objective 2 : Reliable

• Complex geometries • Large number of dofs • Uncertainty quantification • Large number of runs

• Field quality • Design optimization • Certified bounds • Reach material limits Back

65/70

C. Prud’homme

Aristote ROC & ROM

/

Non-Intrusive Low Rank Approximation

Context and Notations • (D, B, P) a probability space, • D = D 1 × . . . × D d ⊂ Rd , • B a σ-algebra on D, N • P = dk=1 Pk a probability measure, • Parametric Linear Problem : find u(µ) ∈ RN such that ˆ A(µ)u(µ) = ˆb(µ),

66/70

C. Prud’homme

Aristote ROC & ROM

∀µ ∈ D,

(3)

Non-Intrusive Low Rank Approximation

Principle

L2P (D; RN )

N

'R ⊗

L2P (D; R)

N

'R ⊗

d O

! L2Pk (Dk ; R)

,

k=1

Goal : compute a low-rank approximation of the solution u ur ∈ W = RN ⊗ S 1 ⊗ . . . ⊗ S d k With S k = span{ϕki }ni=1 ⊂ L2Pk (Dk ; R) defined on the orthonormal k nk family {ϕi }i=1

67/70

C. Prud’homme

Aristote ROC & ROM

Optimization Framework Looking for an approximation of u by solving Z min JD (v) = J(µ; v(µ))P(dµ). v∈W

D

where the quadratic functional J : D × RN → R defined by J(µ; v) =

1 T v A(µ)v − v T b. 2

Discrete formulation JD (v) ≈ JZ (v) =

X

ωz J(µz ; v(µz ))

z∈Z

Alternating Minimization Algorithm

Resolution alternatively until convergence : min JZ (q⊗β 1 ⊗. . .⊗β d ), min JZ (q⊗β 1 ⊗. . .⊗β d ), β 1 ∈S 1 q∈RN 68/70 C. Prud’homme Aristote ROC & ROM

. . . , min JZ (q⊗β 1 ⊗. . .⊗ β d ∈S d

Algorithms

Algorithm 2 Alternating minimization algorithm. Initialize β k , k = 1, . . . , d. ` ← 0. (` ≤ `max ) and (q ⊗ β 1 ⊗ . . . ⊗ β d has converged) Compute q by solving Equation (28) k = 1, . . . , d Compute β k by solving Equation (??) q ← kβ k kk q β k ← β k /kβ k kk ` ← ` + 1

Algorithm 3 Greedy rank-one algorithm. u0 ← 0 r ← 1. (r < rmax ) and (ur has converged) Compute vr+1 with previous Algorithm with b = br ur+1 ← ur + vr+1 r ← r + 1

69/70

C. Prud’homme

Aristote ROC & ROM

First Implementation In Feel++ Application to a 3-Paremeters Heat Transfert Problem

Collaboration • A. Nouy (ECN) • L. Giraldi (ECN) • C. Prud’homme (UDS/IRMA) • JB Wahl (UDS/IRMA)

Figure : Geometry of the thermal fin Problem Setting • Steady Heat

Transfert • 3 Parameters (heat

transfert coefficients) • Study of Average Figure : First modes obtained with rank-one greedy algorithm

70/70

C. Prud’homme

Aristote ROC & ROM

Temperature on ΓRoot