Missing:
Relevance of the ecological restoration in the Estepa Comarca`s oliove groves (Spain) based on the agricultural sustainability of mediterranean systems Authors: Rodríguez Sousa, Antonio Alberto Rescia Perazzo, Alejandro J. Barandica Fernández, Jesús Mª Institution: Departamento de Ecología Facultad de Ciencias Biológicas Universidad Complutense de Madrid Date: August 31th, 2017 Oral Session: 36; Ecological restoration & conservation in productive systems
INTRODUCTION • Iberian Peninsula > 50% agricultural área = olive groves • Mediterranean climate (Guzmán, 2004)
(Fernández, 2008)
• Summer drought • Mild temperaturas • Light rain (477 mm)
• Great socio-economic and cultural relevance • Multifunctionality (approach SE), (Zander et al., 2007) • • • • •
Social Cultural Economic Productive Ecological
• Application of sustainable landscape management • Tradicionally extensive (Duarte et al., 2008) • Dry lands • ↓ Productivity
INTRODUCTION • Change in 1950s: Europe rural abandonment + CAP (1962)
Vulnerable rural economies (Sánchez Martínez et al., 2011)
Intensification Abandonment
• Intensification/abandonment multidimensional effects • Biomass increase; > fire risk; alteration of income and social stability • > soil erosion; > terrestrial and atmospheric pollution; > income at the expense of environmental damage (Mann & Wüstemann, 2008) Vegetation covers
• This situation analysis of the current management model for: • Future projections • Establish sustainable alternative dynamics models • Production-Economy-Environmental impact equilibrium
OBJECTIVES • Study of the Estepa comarca´s olive groves to:
• Generate a dynamic simulation model to créate future scenarios • Analyzed advantages and disadvantages of each proposed scenario • Recommend a balanced, multifunctional and multiservice ecosystems management
METHODOLOGY: study area • Study model: olive grove of Estepa comarca (Seville, Andalusia, Spain) • 40.000 has olive grove + 20.000 has other agricultural uses and relicts of vegetation (Guerrero, 2012)
• Protected Designation of Origin Estepa • Peri-urban character
Figure 1.- Estepa comarca´s location, appreciating its proximity to various towns
• • • • • •
200-400 m altitude (Guzmán, 2004) Olive groves on sandy limestone soils (Guerrero, 2012) Subtropical mediterranean climate with moderate rainfall (477 mm annually) Rainfed cultivation (déficit irrigation) Integrated olive growing Cooperativa Oleoestepa
METHODOLOGY: mathematical model • Software Stella 9.1.4: grapfic interface (Forrester diagrams) to create system structure (Guisande González et al., 2011) • Assumptions: • Olive groves considered: • Integrated: varying degrees of intensification • Intensive farming • Superintensive farming • Ecological
• Data implemented in the model: bibliographic or direct consultations to experts. Constants • CAP would currently subsidize any type of olive growing. Crop of historical carácter (OCDE, 2006)
METHODOLOGY: mathematical model • Assumptions: • Gómez Calero 2010 production 1.500-4.000 kg olives/ha < production = abandonment • Estepa comarca´s: no measures to recovery hectares permanent abandonment • Delgado et al, 1998 exponential decay of production over time
• Conservative assumption regarding the erosive state of the plots • Simulation time = 100 years
METHODOLOGY: mathematical model • Conceptual model:
Figure 2.- Conceptual model of the olive exploitation and Dynamics (Rodríguez Sousa et al., 2016)
METHODOLOGY: mathematical model • Model`s calibration: • The olive-tree hectares of the Estepa comarca´s were classified according to their erosive state, calculating an annual erosion rate, in percentage, based on data from the Universal Soil Loss Equation (USLE) applied to our area of study (Baoyuan et al., 2002):
Chart 1.- Classification of hectares in terms of their erosive state • Data corresponding to expenses, production and sales prices of the oil of each type of management were (del Olivo, A.D.E.M., 2012): Chart 2.- Annual production/ha, oil´s sale price and anual costs of the exploitation according to the studied olive growing • CAP grant considered = 1,05 €/l oil • 5 kgs olive = 1 l oil
METHODOLOGY: mathematical model • Stage design: • • • • •
Starting situation (integrated) Stage 1 (intensification) Stage 2 (superintensification) Stage 3 (ecologic) Stage 4 (mixed): integrated, ecological and intensive olive management
Figure 3.- Integrated management
Figure 4.- Intensive management Figure 5.- Superintensive management Figure 6.- Ecological management • Conversion in 10 years. Gradual and uniform • Transition rate = 10% in each scenario
RESULTS • Productive dimension: superintensive grove present an early increase in transient agricultural productivity because of the impacts derived from this olive growing. Mixed production is the one with the greatest long-term production.
Figure 7.- Production`s analysis, in oil´s liters per year, from the current stage (IM), transition to intensive farming (IvM), superintensive farming (SIvM), ecological farming (EM) and the proposed mixed management (MM)
RESULTS • Ecological dimension: the abandonment is higher with the intensification (consequence of its soil impacts). Mixed management shows an intermediate abandonment, while scenarios of integrated and ecological management are the most conservatives.
Figure 8.- Abandonment, in percentage, of cultivated hectares at the current stage (IM), transition to intensive farming (IvM), superintensive farming (SIvM), ecological farming (EM) and the proposed mixed management (MM)
RESULTS • Economic dimension: without CAP (A), all managements analyzed are subject to early economic losses. However, the ecological grove and the mixed stage can be partially recovered in the long-term. With CAP (B), is the ecological management the one that present a greater benefits in long-term.
Figure 9.- Benefits, without CAP (A) and with CAP (B) of the current stage (IM), transition to intensive farming (IvM), superintensive farming (SIvM), ecological farming (EM) and the proposed mixed management (MM)
DISCUSSION • Non categorical inferences, predictions of the expected according to the starting data • More specific information • Experimental sampling
• Base for design management oriented to sustainability of olive groves • Integrated management: • • • • • • •
Optimization natural resources and production mechanisms (Gil & Blanco, 2002) Abandonment (mild & severe erosion). Low (Jurado et al., 2006) Plots with high erosion woul be very degraded to be exploted Soil recovery; vegetable coverings effective Not sustainable CAP = profitability (Cabrera et al., 2013) Vegetable covers; practices of tillage ↓ (Picazo-Tadeo et al., 2011)
DISCUSSION • Intensification practices: • Production above environmental consequences (Gil & Blanco, 2002) • ↑ production at the beginning until complete abandonment by erosion and descent productivity (Fernández, 2008) • No protection practices • Useful life = abandonment cultivation • Scenarios with lower income, even with CAP
• Ecological production: • • • • • • •
Obtain quality food (Milgroom et al., 2006) Promote edaphic fertilityand biodiversity Controlled vegetable covers Conservation practices (Baoyuan et al., 2002) Minimum abandonment Profitability without CAP (> oil Price) Sustainable management
DISCUSSION • Mixed management: • • • • •
Combination crops Intermediate abandonment > productivity CAP = profitability Alternative to current management (eq)
• Strategy abandoned hectares: • Restore biodiversity (Nekhay et al., 2009) • Organic and integrated production (↑) • Intensive practices (↓)
CONCLUSIONS • Currently, profitability olive groves linked to the CAP approach alternative exploitation strategies that guarantee the sustainability of this agrosystem in the long term • Intensification not profitable for economic losses due to erosion and < useful life time • More profitable scenario in the long term, no more productive, is the ecological olive grove for > oil price and level environmental impact • Mixed strategy is balanced, and can be a valuable alternative to the current olive management • Including conservation of biodiversity and non-productive ecosystem services in the economy of the olive grove would improve its profitability, harmonizing agricultural production and nature conservation.
REFERENCES • Baoyuan, L., Keli, Z., Yun, X. (2002). An empirical soil loss equation. In Proceedings 12th International Soil Conservation Organization Conference (Vol. 2, p. 15). Vol. III. Tsinghua University Press. Beijing, China. • Cabrera, E., Gallardo, R., Gómez-Limón, J. A. (2013). La sostenibilidad del olivar: producción convencional vs. ecológica en Los Pedroches”. Itea. Información Técnica Económica Agraria, 109 (3), 345-369. • del Olivo, A. E. D. M. (2010). Aproximación a los costes del cultivo del olivo. Cuaderno de conclusiones del seminario AEMO. Córdoba. • Delgado, F., Terrazas, R., López, R. (1998). Planificación de la conservación de suelos en cuencas altas, utilizando relaciones erosión-productividad. Agronomía Tropical, 48 (4), 395-411. • Duarte, F., Jones, N., Fleskens, L. (2008). Traditional olive orchards on sloping land: sustainability or abandonment. Journal of Environmental Management, 89 (2), 86-98. • Fernández, R. (2008). Fertilización. El cultivo del olivo. Editorial Mundi-Prensa y Junta de Andalucía. • Gil, J., Blanco, G.L. (2002). Recolección mecanizada del olivar: olivar tradicional y olivar intensivo (I y II). Vida Rural, nº 157 y 158.
REFERENCES • Gómez Calero, J. A. (2010). Olivar Sostenible: prácticas para una producción sostenible de olivar en Andalucía. Junta de Andalucía, Córdoba. • Guerrero, M. C. (2012). La cultura del olivo: aspectos distintivos en el cultivo del olivar entre la región de Umbría (Italia) y la provincia de Sevilla. Espacio y Tiempo: Revista de Ciencias Humanas, 26, 75-102. • Guisande González, C., Vaamonde Liste, A., Barreiro Felpeto, A. (2011). Tratamiento de datos con R, STATISTICA y SPSS. Ediciones Díaz de Santos. Madrid, pp: 453-557. • Guzmán J.R. (2004). Geografía de los paisajes del olivar andaluz, Sevilla, Eds. Junta de Andalucía, 202 pp. • Jurado, A. A., Gómez, J. A., Castiel, E. F. (2006). Evaluación del riesgo de erosión y productividad del olivar en producción integrada. Agricultura: Revista agropecuaria, 885, 426-433. • Mann, S. & Wüstemann, H. (2008). Multifunctionality and a new focus on externalities. The Journal of Socio-Economics, 37, 293–307. • Milgroom, J., Garrido, J. M., Soriano, M., Gomez, J. A., Fereres Castiel, E. (2006). Erosión en olivar ecológico. Manual de campo: diagnóstico y recomendaciones. Junta de Andalucía.
REFERENCES • Nekhay, O., Arriaza, M., Guzmán, J. R. (2009). Spatial analysis of the suitability of olive plantations for wildlife habitat restoration. Computers and Electronics in Agriculture, 65 (1), 49-64. • OCDE. (2006). El nuevo paradigma rural. Políticas y gobernanza, Madrid, Eds. MAPA y OCDE, 187pp. • Picazo-Tadeo, A. J., Gómez-Limón, J. A., Reig, E. (2011). Assessing farming eco-efficiency: a data envelopment analysis approach. Journal of Environmental Management, 92 (4), 1154-1164. • Rodríguez Sousa, A.A., Barandica Fernández, J. Mª., Rescia Perazzo, A.J. (2016). Análisis de la sostenibilidad de un paisaje agrícola de olivar en Andalucía aplicando un modelo dinámico: diferentes escenarios de manejo. In: VI Congreso Internacional de Agroecología de Vigo: cambiando los modelos de consumo para construír sistemas agroalimentarios sostenibles, 102-117. Vigo, España. • Sánchez Martínez, J. D., Gallego Simón, V. J., Araque Jiménez, E. (2011). El olivar andaluz y sus transformaciones recientes. Estudios Geográficos, vol. LXXII, 203-229. • Zander P., Knierim A., Groot J.C.J., Rossing W.A.H. (2007). Multi-functionality of agriculture: tools and methods for impact assessment and valuation. Agriculture, Ecosystems and Environment, 120, 1-4.