February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Journal of Algebra and Its Applications Vol. 16, No. 5 (2017) 1750093 (28 pages) c World Scientific Publishing Company DOI: 10.1142/S0219498817500931
Representations of simple anti-Jordan triple systems of m × n matrices
Hader A. Elgendy
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
Department of Mathematics, Faculty of Science Damietta University, Egypt
[email protected] Received 21 April 2014 Accepted 28 April 2016 Published 9 June 2016 Communicated by L. Bokut We show that the universal associative envelope of the simple anti-Jordan triple system of all m×n (m is even, m, n ≥ 2) matrices over an algebraically closed field of characteristic 0 is finite-dimensional. The monomial basis and the center of the universal envelope are determined. The explicit decomposition of the universal envelope into matrix algebras is given. The classification of finite-dimensional irreducible representations of an antiJordan triple system is obtained. The semi-simplicity of the universal envelope is shown. We also show that the universal associative envelope of the simple polarized anti-Jordan triple system of (n + 1) × (n + 1)(n > 2) matrices is infinite-dimensional. Keywords: Anti-Jordan triple systems; noncommutative Gr¨ obner–Shirshov bases; representation theory; universal enveloping algebras; free associative algebras. Mathematics Subject Classification: 17C55, 13P10, 16S30, 17B35, 17A40
1. Introduction An anti-Jordan triple system is vector space V over a field F of characteristic = 2 endowed with a trilinear operation V × V × V → V , (a, b, c) → a, b, c that satisfies for all a, b, c, d, e ∈ V a, b, c = −c, b, a, a, b, c, d, e = a, b, c, d, e + c, b, a, d, e + c, d, a, b, e. An anti-Jordan triple system J is called polarized if J = J+ ⊕ J− and the triple product satisfies J , J , J = 0 = J, J , J and J , J− , J ⊂ J , = ±. A representation of an anti-Jordan triple system J is a homomorphism ρ : J → (End V )− from J to the anti-Jordan triple system of endomorphisms of a vector
1750093-1
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy
space V . In other words, ρ is a linear mapping that satisfies
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
ρ(a, b, c) = ρ(a)ρ(b)ρ(c) − ρ(c)ρ(b)ρ(a)
for all a, b, c ∈ J.
A subspace W of V is called invariant under ρ if ρ(x)W ⊆ W for all x ∈ J. A representation ρ is called irreducible if the only invariant subspaces of V under ρ are the trivial ones, {0} and V . Finite-dimensional simple anti-Jordan triple systems over algebraically closed fields of characteristic 0 were classified [3] based on the classification of simple anti-Jordan pairs [11]. The classification provides seven types of simple anti-Jordan triple system, none of them is exceptional. Anti-Jordan triple system is a special case of more general (, δ)-Freudenthal– Kantor triple systems [15], which have the potential for a wide range of applications to various branches of mathematics and physics. They have been appearing in physical applications, especially in connection to Maxwell–Einstein Supergravity Theories, U-duality, and black hole entropy and in studying gauge theories [6, 13]. Also, they have been used to find solutions of the Yang–Baxter equation [12]. Moreover, anti-Jordan triple systems are the 3-algebras in [2] which are used to reformulate the N = 6 theories of [1]. In [9] we showed that the universal associative envelope of the simple antiJordan triple system of all n × n (n ≥ 2) matrices is finite-dimensional. We also classified all finite-dimensional irreducible representations and showed that up to equivalence there exist only five finite-dimensional irreducible representations of this anti-Jordan triple system. In general, the universal associative envelopes of antiJordan triple systems are not necessary finite-dimensional, for examples of simple and nonsimple anti-Jordan triple systems with infinite-dimensional envelopes see [8–10, 14]. The aim of the present paper is to extend our results on the simple anti-Jordan triple system of all n × n (n ≥ 2) matrices with the triple product x, y, z = xyz − zyx [9] to the simple anti-Jordan triple system of all m × n (m, n ≥ 2)
matrices with the triple product x, y, z = xy t az − zy t ax, where a = −I0 r I0r , and 2r = m, and to prove our conjecture on the semi-simplicity of finite-dimensional envelopes of finite-dimensional simple anti-Jordan triple systems in this case. We also aim to show that the universal associative envelope of the simple polarized anti-Jordan triple system of (n + 1) × (n + 1) (n > 2) matrices with the triple product x, y, z = xyz − zyx is infinite-dimensional. This paper is organized as follows. In Sec. 2, we recall basic results on noncommutative Gr¨ obner–Shirshov bases developed in [4] and give examples of anti-Jordan triple systems. In Sec. 3, we use the theory of noncommutative Gr¨ obner–Shirshov bases to prove that the universal enveloping algebra of the simple anti-Jordan triple system of m × n (m is even, m, n ≥ 2) matrices over an algebraically closed field is finite-dimensional (Theorem 3.13). We also determine the complete decomposition of the universal enveloping algebra into a direct sum of matrix algebras (Theorem 1750093-2
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system
3.14) and the center (Lemma 3.15). Finally, in Sec. 4 we construct the universal associative envelope of the simple polarized anti-Jordan triple system of (n+ 1)× (n+ 1) (n > 2) matrices and show that it has infinite dimension (Theorem 4.6). We assume throughout that all vector spaces are over an algebraically closed field F of characteristic 0. 2. Preliminaries 2.1. Gr¨ obner–Shirshov bases in free associative algebras
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
We recall basic results about noncommutative Gr¨ obner–Shirshov bases for ideals in free associative algebras following [7, 9]. For a comprehensive survey on Gr¨ obner– Shirshov bases and their calculations, see [5]. Definition 2.1. Let X = {x1 , . . . , xn } be a set of symbols with the total order xi < xj if and only if i < j. The free monoid generated by X is the set X ∗ of all (possibly empty) words w = xi1 · · · xik (k ≥ 0) with the (associative) operation of concatenation. For w = xi1 · · · xik ∈ X ∗ the degree is deg(w) = k. The degreelexicographical (deglex ) order < on X ∗ is defined as follows: u < v if and only if either (i) deg(u) < deg(v) or (ii) deg(u) = deg(v) and u = wxi u , v = wxj v where xi < xj (w, u , v ∈ X ∗ ). The free (unital) associative algebra generated by X is the vector space F X with basis X ∗ and multiplication extended bilinearly from concatenation in X ∗ . Definition 2.2. The support of a noncommutative polynomial f ∈ F X is the set of all monomials w ∈ X ∗ that occur in f with nonzero coefficient. The leading monomial of f ∈ F X, denoted LM(f ), is the highest element of the support of f with respect to deglex order. If I is any ideal of F X then the set of normal words modulo I is defined by N (I) = {u ∈ X ∗ | u = LM(f ) for any f ∈ I}. We write C(I) for the subspace of F X spanned by N (I). Proposition 2.3. We have F X = C(I) ⊕ I. Definition 2.4. Let G ⊂ F X be a subset generating an ideal I. An element f ∈ F X is in normal form modulo G if no monomial in the support of f has LM(g) as a factor for any g ∈ G. Definition 2.5. A subset G ⊂ I is a Gr¨ obner–Shirshov basis of I if for every f ∈ I there exists g ∈ G such that LM(g) is a factor of LM(f ). A subset G ⊂ F X is self-reduced if every g ∈ G is in normal form modulo G\{g} and every g ∈ G is monic: the coefficient of LM(g) is 1. Definition 2.6. Consider elements g, h ∈ F X such that LM(g) is not a factor of LM(h) and LM(h) is not a factor of LM(g). Assume that u, v ∈ X ∗ satisfy LM(g) u = v LM(h), u is a proper right factor of LM(h), and v is a proper left factor of LM(g). Then gu − vh is called a composition of g and h. 1750093-3
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy
Theorem 2.7. If I ⊂ F X is an ideal generated by a self-reduced set G, then G is a Gr¨ obner–Shirshov basis of I if and only if for all compositions f of the elements of G the normal form of f modulo G is zero (all compositions f of the elements of G vanish upon the elimination of the leading terms LM(g) for g ∈ G). 2.2. Examples of anti-Jordan triple systems We recall some examples of finite-dimensional anti-Jordan triple systems. The next three examples are simple anti-Jordan triple systems (see [3]).
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
Example 2.8. Let V be the vector space of all n × n matrices over an algebraically closed field of characteristic 0. Then V is an anti-Jordan triple system with respect to the triple product x, y, z = xyz − zyx. Example 2.9. Let V be the vector space of all m×n matrices over an algebraically closed field of characteristic 0. Then V is an anti-Jordan triple system with respect t t t to the tripleproduct x, y, z = xy az − zy ax, where y is the transpose of y, a = −I0 r I0r , Ir is the r × r unit matrix and 2r = m. Example 2.10. Let V be the vector space of all m×n matrices over an algebraically closed field of characteristic 0. Then V is an anti-Jordan triple system with respect t t t to the triple product x, y, z = xby z − zby x, where y is the transpose of y, b=
0
Ir
−Ir
0
, Ir is the r × r unit matrix and 2r = n.
The next example is a nonsimple anti-Jordan triple system (see [8, 10]). Example 2.11. Let V be the vector space of 2 × 2 matrices A = (aij ) with a11 = a22 = 0 over an algebraically closed field of characteristic 0. Then V is an anti-Jordan triple system with respect to the triple product a, b, c = abc − cba. Universal associative envelopes for the anti-Jordan triple systems given in Examples 2.8 and 2.11 have been constructed (see [8–10]). 3. The Universal Associative Envelope of the Anti-Jordan Triple System of m × n Matrices Definition 3.1. Let J be the anti-Jordan triple system of all m × n matrices over an algebraically closed field F of characteristic 0 with product x, y, z = the triple xy t az − zy t ax, where y t is the transpose of y, a = matrix and 2r = m.
0
Ir
−Ir
0
, Ir is the r × r unit
Definition 3.2. Let C = {1, 2, . . . , r}, D = {r + 1, r + 2, . . . , m}, H = {m + 1, . . . , m + n}, Ω = C ∪ D and Ω = {1, 2, . . . , n} be finite index sets. Let B = {Ei,j }i∈Ω, j∈Ω be a basis of J, where Ei,j denote the m×n matrix whose (i, j)-entry (resp. Ei,j ) denote the (m + n) × (m + n) is 1 and all the other entries are 0. Let Ei,j (resp. m × m) matrix whose (i, j)-entry is 1 and all the other entries are 0. 1750093-4
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system
Notation 3.3. We use the following notation throughout the paper: • δi,j for the Kronecker delta, and δi,j = 1 − δi,j , • ∆i,S = 1 if i ∈ S, and 0 otherwise. The structure constants for J can be determined by the following lemma. Lemma 3.4. The structure constants of J are given by Ei,j , Ek, , Es,d = δj, (δk,s−r − δk,s+r )Ei,d + δ,d (−δk,i−r + δk,i+r )Es,j ,
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
for all i, k, s ∈ Ω and j, , d ∈ Ω . Proof. For all i, k, s ∈ Ω and j, , d ∈ Ω , we have Ei,j , Ek, , Es,d = Ei,j (Ek, )t
r
(Et,t+r − Et+r,t )Es,d − Es,d (Ek, )t
r
t=1
=
δj, Ei,k (∆s,D Es−r,d
(Et,t+r − Et+r,t )Ei,j
t=1
− ∆s,C Es+r,d ) −
δ,d Es,k (∆i,D Ei−r,j
− ∆i,C Ei+r,j )
= δj, (∆s,D δk,s−r Ei,d − ∆s,C δk,s+r Ei,d ) − δ,d (∆i,D δk,i−r Es,j − ∆i,C δk,i+r Es,j ). Consider the bijection φ : B → X = {ei,j }i∈Ω, j∈Ω defined by φ(Ei,j ) = ei,j . We extend φ to a linear map φ : J → F X. Throughout this paper we use the deglex order < where ei,j < ek, if either i < k, or i = k and j < . Definition 3.5. Let G ⊂ F X consist of these elements: (i,j,s,d)
R1
= ei,j es−r,j es,d − es,d es−r,j ei,j − ei,d (r + 1 ≤ s < i ≤ m; 1 ≤ j, d ≤ n),
(s,d,j,i)
R2
= es,d es−r,j ei,j − ei,j es−r,j es,d + ei,d (1 ≤ i < s ≤ m; r + 1 ≤ s; 1 ≤ j, d ≤ n),
(i,j,d) R3
= ei,j ei−r,j ei,d − ei,d ei−r,j ei,j − ei,d
(1 ≤ d < j ≤ n; r + 1 ≤ i ≤ m),
(i,d,j)
= ei,d ei−r,j ei,j − ei,j ei−r,j ei,d + ei,d
(1 ≤ j < d ≤ n; r + 1 ≤ i ≤ m),
R4
(i,j,s,d)
R5
= ei,j es+r,j es,d − es,d es+r,j ei,j + ei,d (1 ≤ s < i ≤ m; s ≤ r; 1 ≤ j, d ≤ n),
(s,d,j,i)
R6
(i,j,d)
R7
= es,d es+r,j ei,j − ei,j es+r,j es,d − ei,d = ei,j ei+r,j ei,d − ei,d ei+r,j ei,j + ei,d 1750093-5
(1 ≤ i < s ≤ r; 1 ≤ j, d ≤ n), (1 ≤ d < j ≤ n; 1 ≤ i ≤ r),
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy (i,d,j)
R8
(i,j,k,,s,d)
R9
= ei,d ei+r,j ei,j − ei,j ei+r,j ei,d − ei,d
(1 ≤ j < d ≤ n; 1 ≤ i ≤ r),
= ei,j ek, es,d − es,d ek, ei,j (1 ≤ s < i ≤ m; 1 ≤ k ≤ m; 1 ≤ j, , d ≤ n),
and either (1)
(j, d = ) or
(2) (k = s ± r, i ± r; j = or d = ) or
(3)
(k = i ± r; k = s − r or s + r; j = , d = ) or
(4)
(k = s ± r; k = i − r or i + r; d = ; j = )
(i,j,k,,d)
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
R10 = ei,j ek, ei,d − ei,d ek, ei,j (1 ≤ d < j ≤ n; 1 ≤ ≤ n; 1 ≤ i, k ≤ m), and either (1) (j, d = ) or (2) (k = i ± r; j = or d = ). Let I ⊂ F X be the ideal generated by G. We write A(J) = F X/I with surjection π : F X → A(J) sending f to f + I, and ı = π ◦ φ for the natural map ı : J → A(J). Lemma 3.6. The unital associative algebra A(J) and the linear map ı form the universal associative envelope of the anti-Jordan triple system J. 3.1. Gr¨ obner–Shirshov basis and finite-dimensionality Our goal in this subsection is to derive a Gr¨ obner–Shirshov basis for the ideal I from the set G of generators. Notation 3.7. Throughout the proofs we write ≡L to indicate congruence modulo L. We also use R9,t ; t = 1, . . . , 4 (resp. R10,s ; s = 1, 2) to indicate the relation R9 (resp. R10 ) of Definition 3.5 with case number t (resp. s). Lemma 3.8. The set of all normal forms modulo G of nontrivial compositions among elements of G includes the set G1 which consists of the elements: (,d,t)
G1
(,d,t)
G2
= e+r,d e,t + e1,d e1+r,t
(1 ≤ ≤ r; 1 ≤ d, t ≤ n; d = t),
= e,d e+r,t − e1,d e1+r,t
(1 < ≤ r; 1 ≤ d, t ≤ n; d = t),
(,d)
= e,d e+r,d − e,1 e+r,1 + e1,1 e1+r,1 − e1,d e1+r,d
(1 < ≤ r; 1 < d ≤ n),
(,d)
= e+r,d e,d − e+r,1 e,1 + e1,d e1+r,d − e1,1 e1+r,1
(1 ≤ ≤ r; 1 < d ≤ n),
G3 G4
(,d,i) G5 (i,d,k,t) G6
= e,d ei,d − e,1 ei,1 = ei,d ek,t
(1 ≤ , i ≤ m; = i ± r; 1 < d ≤ n),
(1 ≤ i, k ≤ m; i = k ± r; 1 ≤ d, t ≤ n; d = t).
Proof. We consider the composition: (i,d,1,d)
S1 = R5
(1+r,d,1,d,,t)
e,t − ei,d R9,4
(1 < i ≤ m; 1 ≤ < 1 + r; 1 ≤ d, t ≤ n; d = t). 1750093-6
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system
We eliminate from S1 all occurrences of the leading monomials of G: S1 = −e1,d e1+r,d ei,d e,t + ei,d e,t + ei,d e,t e1,d e1+r,d ≡G −e1,d (e,t ei,d e1+r,d − δi,+r e1+r,t ) + ei,d e,t + e1,d e,t ei,d e1+r,d = δi,+r e1,d e1+r,t + ei,d e,t , (1 + r,d,,t)
using R5 with
(,d,t) G1 .
(1 + r,d,i,d,,t)
, R9,2
(i,d,,t,1,d)
and R9,1
. For i = + r, the result coincides
For i = + r, the normal form of S1 is (1 < i ≤ m; 1 ≤ < 1 + r; i = + r; 1 ≤ d, t ≤ n; d = t).
ei,d e,t
(1)
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
We consider the composition: (s,d,1,1)
S2 = R6
(s+r,1,1+r,q)
e1+r,q − es,d R1
(1 < s ≤ r; 1 ≤ d, q ≤ n).
We eliminate from S2 all occurrences of the leading monomials of G: S2 = −e1,1 es+r,1 es,d e1+r,q − e1,d e1+r,q + es,d e1+r,q e1,1 es+r,1 + es,d es+r,q ≡G −e1,1 [δd,q (δd,1 + δd,1 )e1+r,q es,d es+r,1 + δd,q (e1+r,d es,d es+r,1 − e1+r,1 )] − e1,d e1+r,q + [δd,q (δq,1 + δq,1 )e1,1 e1+r,q es,d + δd,q (e1,1 e1+r,d es,d − es,1 )] × es+r,1 + es,d es+r,q = δd,q e1,1 e1+r,1 − e1,d e1+r,q − δd,q es,1 es+r,1 + es,d es+r,q , using
(s+r,1,s,d,1+r,q)
R9,1
(s,d,1+r,1,1,1) R9,3
and
(s+r,1,s,1,1+r,q)
,
(s,d,1,1) R5 .
R9,4
(k,j,1,1)
,
(s,d,1+r,q,1,1)
R9,1
,
Clearly, if d = q = 1 then S2 ≡G 0. For d = q (resp. d = (s,d,q)
q = 1), the result coincides with G2 S3 = R5
(s+r,1,d,1+r)
R2
,
(1+r,j,1,i)
ei,1 − ek,j R2
(s,d)
(resp. G3
). We consider the composition:
(1 < k ≤ m; 1 ≤ i < 1 + r; 1 ≤ j ≤ n).
We eliminate from S3 all occurrences of the leading monomials of G: S3 = −e1,1 e1+r,j ek,j ei,1 + ek,1 ei,1 + ek,j ei,1 e1,1 e1+r,j − ek,j ei,j ≡G −e1,1 (ei,1 ek,j e1+r,j − δk,i+r e1+r,1 ) + ek,1 ei,1 + (e1,1 ei,1 ek,j − δk,i+r e1,j )e1+r,j − ek,j ei,j = δk,i+r e1,1 e1+r,1 + ek,1 ei,1 − δk,i+r e1,j e1+r,j − ek,j ei,j , (1+r,j,i,1)
(1+r,j,k,j,i,1)
(i+r,j,1,1)
(k,j,i,1,1,1)
, R9,2 , R2 and R9,2 . Clearly, if j = 1 then using R5 S3 ≡G 0. For j = 1 and k = i + r the (monic) normal form of S3 coincides with (i,j) G4 . For j = 1 and k = i + r, the (monic) normal form of S3 is ek,j ei,j − ek,1 ei,1
(1 < k ≤ m; 1 ≤ i < 1 + r; k = i + r; 1 < j ≤ n). 1750093-7
(2)
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy
We consider the composition: (k,j,,1)
S4 = R5
(+r,j,1)
e+r,1 − ek,j R4
(1 ≤ < k ≤ m; ≤ r; 1 < j ≤ n).
We eliminate from S4 all occurrences of the leading monomials of G: S4 = −e,1 e+r,j ek,j e+r,1 + ek,1 e+r,1 + ek,j e+r,1 e,1 e+r,j − ek,j e+r,j ≡G −e,1 e+r,1 ek,j e+r,j + ek,1 e+r,1 + e,1 e+r,1 ek,j e+r,j − ek,j e+r,j = ek,1 e+r,1 − ek,j e+r,j , (+r,j,k,j,1)
using R10,2
(k,j,+r,1,,1)
and R9,3
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
ek,j e+r,j − ek,1 e+r,1
. Hence, the (monic) normal form of S4 is
(1 ≤ < k ≤ m; ≤ r; 1 < j ≤ n).
(3)
Setting + r = i in (3) gives ek,j ei,j − ek,1 ei,1
(i − r < k ≤ m; 1 + r ≤ i ≤ m; 1 < j ≤ n).
(4)
We consider the composition: (,1,j,k)
S5 = R6
(+r,j,k,j,1)
e+r,1 − e,1 R10,2
(1 ≤ k < ≤ r; 1 < j ≤ n).
We eliminate from S5 all occurrences of the leading monomials of G: S5 = −ek,j e+r,j e,1 e+r,1 − ek,1 e+r,1 + e,1 e+r,1 ek,j e+r,j ≡G −ek,j (e+r,1 e,1 e+r,j − e+r,j ) − ek,1 e+r,1 + ek,j e+r,1 e,1 e+r,j , (+r,j,1)
using R4
(,1,+r,1,k,j)
and R9,4
. Hence, the normal form of S5 is
ek,j e+r,j − ek,1 e+r,1
(1 ≤ k < ≤ r; 1 < j ≤ n).
(5)
Setting + r = i in (5) gives ek,j ei,j − ek,1 ei,1
(1 ≤ k < i − r; 1 + r < i ≤ m; 1 < j ≤ n).
(6)
We consider the composition: (1,j,1)
S6 = R8
(1+r,1,1,1,i,j)
ei,j − e1,j R9,4
(1 ≤ i < 1 + r; 1 < j ≤ n).
We eliminate from S6 all occurrences of the leading monomials of G: S6 = −e1,1 e1+r,1 e1,j ei,j − e1,j ei,j + e1,j ei,j e1,1 e1+r,1 ≡G −e1,1 (ei,j e1,j e1+r,1 − ei,1 ) − e1,j ei,j + e1,1 ei,j e1,j e1+r,1 = e1,1 ei,1 − e1,j ei,j , (1+r,1,j,i)
using R2
(1,j,i,j,1)
and R10,2
. Hence the (monic) normal form of S6 is
e1,j ei,j − e1,1 ei,1
(1 ≤ i < 1 + r; 1 < j ≤ n).
(7)
(1 ≤ k ≤ m; 1 ≤ i < 1 + r; k = i + r; 1 < j ≤ n).
(8)
Combining (2) and (7) gives ek,j ei,j − ek,1 ei,1
1750093-8
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system
Combining (4) and (6) gives ek,j ei,j − ek,1 ei,1
(1 ≤ k ≤ m; r + 1 ≤ i ≤ m; k = i − r; 1 < j ≤ n). (k,j,i)
Combining (8) and (9) gives all elements of the form G5 the next two compositions: (i,j,k,,s,j)
S7 = R9,1
(k,,s,j,t,j)
et,j − ei,j R9,2
(9)
. For r ≥ 2, we consider
(1 ≤ s < i ≤ m; 1 ≤ t < k ≤ m;
s = t ± r, k ± r; j = ; 1 ≤ j, ≤ n), (i,j,k,,s,j)
S8 = R9,1
(k,,s,j,t,j)
et,j − ei,j R9,3
(1 ≤ s < i ≤ m; 1 ≤ t < k ≤ m; s = k ± r;
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
s = t + r or t − r; j = ; 1 ≤ j, ≤ n). We eliminate from S7 and S8 all occurrences of the leading monomials of G. For S7 , we have S7 = −es,j ek, ei,j et,j + ei,j et,j es,j ek, ≡G −es,j et,j ei,j ek, + (δi,k−r − δi,k+r )es,j et, + es,j et,j ei,j ek, + (−δt,i−r + δt,i+r )es,j ek, = (δi,k−r − δi,k+r )es,j et, + (−δt,i−r + δt,i+r )es,j ek, , (k,,j,t)
(k,,j,t)
(k,,i,j,t,j)
(k,,i,j,t,j)
(i,j,j,s)
(i,j,j,s)
(i,j,t,j,s,j)
using R2 , R6 , R9,2 , R9,3 , R2 , R6 and R9,2 . We first observe that if i = k − r then t = i ± r, for if i = k − r and t = i − r (resp. t = i + r) then t = k − 2r = k − m ≤ 0 (resp. t = k). This contradicts our assumption that 1 ≤ t (resp. t < k). Similarly we can show that if i = k + r then t = i ± r. For i = k − r, i = k + r, t = i − r, or t = i + r, the (monic) normal forms of S7 are es,j et,
(1 ≤ s < r; 1 ≤ t < m; s = t − r; j = ),
(10)
es,j et,
(1 ≤ s < m; 1 ≤ t < r; s = t + r; j = ),
(11)
es,j ek,
(1 ≤ s < m; max{1, s − r + 1} < k ≤ m; s = k ± r; j = ),
es,j ek,
(1 ≤ s < (k − 1) − r; 2 + r < k ≤ m; s = k ± r; j = ),
or
(12) (13)
respectively. For S8 , we have S8 = −es,j ek, ei,j et,j + ei,j et,j es,j ek, ≡G −es,j et,j ei,j ek, + (δi,k−r − δi,k+r )es,j et, + es,j et,j ei,j ek, − (δt,s+r − δt,s−r )ei,j ek, = (δi,k−r − δi,k+r )es,j et, − (δt,s+r − δt,s−r )ei,j ek, , (k,,i,j,t,j)
(k,,j,t)
(k,,j,t)
(i,j,s,j)
(i,j,s,j)
using R9,2 , R2 , R6 , R5 and R1 . We observe that if i = k − r (resp. i = k + r) then t = s − r (resp. t = s + r), for if i = k − r (resp. i = k + r) and t = s − r (resp. t = s + r) then i ≤ r (resp. k ≤ r) and s > r (resp. 1750093-9
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy
t > r). This contradicts our assumption that i > s (k > t). Three cases need to be considered. Case 1: i = k − r and t = s + r, then S8 ≡G es,j es+r, − ek−r,j ek, , and hence S8 ≡{G (s,j,) ,G (k−r,j,) } e1,j e1+r, − e1,j e1+r, = 0. Case 2: i = k + r and 2 2 t = s − r, then S8 ≡G −es,j es−r, + ek+r,j ek, , and hence S8 ≡{G (s−r,j,) ,G (k,j,) } 1 1 e1,j e1+r, − e1,j e1+r, = 0. Case 3: i = k ± r. For t = s − r or t = s + r the (monic) normal forms of S8 are ei,j ek,
(1 + r < i ≤ m; 1 < k ≤ m; i = k ± r; j = ),
ei,j ek,
(1 < i ≤ m; 1 + r < k ≤ m; i = k ± r; j = ),
or
(14) (15)
respectively. Combining (11) and (15) gives the elements of the form J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
(i,j,k,)
G6
(1 < i < m; 1 ≤ k ≤ m; k = i ± r; k = r, 1 + r; j = ). (16)
= ei,j ek,
From (14), we have (m,j,k,)
G6
(1 < k ≤ m; k = r; j = ).
= em,j ek,
(17)
From (10) and (12), we have (1,j,k,)
G6
= e1,j ek,
(1 ≤ k ≤ m; k = 1 + r; j = ).
(18)
From (11) and (12), we have (1+r,j,k,)
G6
(1+r,j,2,)
G6
(r,j,k,)
G6
= e1+r,j ek,
(2 < k ≤ m; j = ),
(19)
= e1+r,j e2,
(2 < r; j = ),
(20)
(1 ≤ k ≤ m; j = ).
(21)
= er,j ek,
(i,j,k,)
= ei,j ek, Combining (17)–(21) with (16) gives all elements of the form G6 (1+r,j,2,) (m,j,1,) (1 ≤ i, k ≤ m, i = k ± r, j = ) except G6 (for r = 2) and G6 (for r ≥ 2). But these forms can be obtained from (1). Thus from the compositions S1 , (i,j,k,) (for r ≥ 2). To complete S7 and S8 , we obtain all elements of the form G6 the proof of the lemma, it remains to show that for r = 1, all elements of the (i,j,k,) are normal forms of nontrivial compositions among elements of G. form G6 For r = 1, we consider the following compositions (1,j,k)
S9 = R7
(2,j,j,1)
S10 = R2
(k < j; 1 ≤ k, j ≤ n),
(1,j,1,j,k)
(k < j; 1 ≤ k, j ≤ n),
e1,k − e2,j R10,2
(2,j,2,j,k)
S11 = R10,2
(2,j,1,j)
S12 = R5
(2,j,1,k,1,j)
e1,j − e1,j R9,1
(2,j,2,k,1,j)
e1,j − e2,j R9,1
(2,j,k)
e2,k − e2,j R3
(k < j; 1 ≤ k, j ≤ n),
(k < j; 1 ≤ k, j ≤ n).
For S9 , we have S9 = −e1,k e2,j e1,j e1,j + e1,k e1,j + e1,j e1,j e1,k e2,j ≡G −e1,k (e1,j e1,j e2,j − e1,j ) + e1,k e1,j + e1,k e1,j e1,j e2,j = 2e1,k e1,j , 1750093-10
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system (2,j,j,1)
using R2
(1,j,1,j,k)
and R10,2
. For S10 , we have
S10 = −e1,j e1,j e2,j e1,k + e1,j e1,k + e2,j e1,k e1,j e1,j ≡G −e1,j (e1,k e2,j e1,j − e1,k ) + e1,j e1,k + e1,j e1,k e2,j e1,j = 2e1,j e1,k , (1,j,k)
using R7
(2,j,1,k,1,j)
and R9,1
. For S11 , we have
S11 = −e2,k e2,j e2,j e1,j + e2,j e1,j e2,k e2,j ≡G −e2,k (e1,j e2,j e2,j − e2,j ) + (e2,k e1,j e2,j + e2,k )e2,j = 2e2,k e2,j , using
(2,j,1,j) R5
(2,j,k)
and R3
. For S12 , we have
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
S12 = −e1,j e2,j e2,j e2,k + e2,j e2,k + e2,j e2,k e1,j e2,j + e2,j e2,k ≡G −e1,j e2,k e2,j e2,j + e2,j e2,k + e1,j e2,k e2,j e2,j + e2,j e2,k = 2e2,j e2,k , (2,j,2,j,k)
(2,j,2,k,1,j)
using R10,2 and R9,1 . Combining the (monic) normal forms of S9 –S12 gives the required elements. This completes the proof. Lemma 3.9. The set of all normal forms modulo G∪G1 of nontrivial compositions among elements of G ∪ G1 includes the set G2 which consists of the elements: (k,,s)
G7
(1 ≤ k, , s ≤ m; k = ± r; = s ± r),
= ek,1 e,1 es,1
()
G8 = e1,1 e,1 e+r,1 − e21,1 e1+r,1 (,k)
G9
(k,)
G10
= e+r,1 e,1 ek,1 + e1,1 e1+r,1 ek,1
()
(t,)
( + r < k ≤ m; 1 ≤ ≤ r),
= ek,1 e,1 e+r,1 + e1,1 e1+r,1 ek,1 − ek,1
G11 = e1,1 e+r,1 e,1 + e21,1 e1+r,1 G12
(1 < ≤ r),
(1 < k < + r; 1 ≤ ≤ r),
(1 < ≤ r),
= et,1 e+r,1 e,1 − e1,1 e1+r,1 et,1 + et,1
(1 < t < ; 2 < ≤ r),
G13 = e1+r,1 e1,1 e1+r,1 + 2e1,1 e1+r,1 e1+r,1 − e1+r,1 , (,t) G14
= e,1 e+r,1 et,1 − e1,1 e1+r,1 et,1
( < t ≤ m; 1 < ≤ r).
Proof. We consider the compositions: (k,1,t,j)
T1 = G6
(,j)
T2 = G4
(,j,k,1)
ek,1 − e+r,j G6
(t,1,+r,j)
T3 = G6
(t,j,s)
es,j − ek,1 G5
(,j)
e,j − et,1 G4
(k = t ± r; t = s ± r; 1 ≤ k, t, s ≤ m; 1 < j ≤ n), ( = k ± r; 1 ≤ k ≤ m; 1 ≤ ≤ r; 1 < j ≤ n), (t = ; 1 ≤ t ≤ m; 1 ≤ ≤ r; 1 < j ≤ n). (k,t,s)
. We now eliminate from T2 Clearly, T1 = ek,1 et,1 es,1 , which coincides with G7 and T3 all occurrences of the leading monomials of G ∪ G1 . For T2 , we have T2 = −e+r,1 e,1 ek,1 + e1,j e1+r,j ek,1 − e1,1 e1+r,1 ek,1 ≡G1 −e+r,1 e,1 ek,1 + δk,1 e1,j e1+r,j e1,1 − e1,1 e1+r,1 ek,1 1750093-11
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy
≡G −(e+r,1 e,1 ek,1 + e1,1 e1+r,1 ek,1 ) + δk,1 (e1,1 e1+r,j e1,j − e1,1 ) ≡G∪G1 −[δk,1 (e1,1 e,1 e+r,1 − e1,1 ) + δk,1 e+r,1 e,1 ek,1 + e1,1 e1+r,1 ek,1 ] + δk,1 (e1,1 e1+r,1 e1,1 + e21,1 e1+r,1 − e1,1 ), (1+r,j,k,1)
(1,j,1)
(1,j)
(+r,1,1,1)
(1,1,1,j)
using G6 , R7 , G4 , R2 and G6 . For k = 1, the monic form () of the result coincides with G8 . For k = 1 and + r < k (resp. k < + r), the result (,k) (k,) (resp. G10 , because e+r,1 e,1 ek,1 ≡G ek,1 e,1 e+r,1 − ek,1 , coincides with G9 (+r,1,1,k) using R2 ). For T3 , we have T3 = et,1 e+r,1 e,1 − et,1 e1,j e1+r,j + et,1 e1,1 e1+r,1 J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
≡G1 et,1 e+r,1 e,1 − δt,1+r e1+r,1 e1,j e1+r,j + et,1 e1,1 e1+r,1 ≡G∪G1 ∪{G (t,1) ,G (1,t) } et,1 e+r,1 e,1 + δt,1+r e1,1 e1+r,1 e1+r,1 10
+
9
δt,1 e21,1 e1+r,1
+ δt,1 δt,r+1 (−e1,1 e1+r,1 et,1 + et,1 )
+ δt,1+r e1+r,1 e1,1 e1+r,1 , (t,1,1,j)
(1,1,j)
(1+r,j,1+r)
(22)
(t,1)
(t,1,1+r,1)
(1,t)
, G1 , G5 , G10 , R1 and G9 . Two cases need to using G6 () be considered. Case 1. t = 1: the result coincides with G11 . Case 2. t = 1: If t < then t = 1 + r (because ≤ r by the assumption) and the result coincides with (t,) (t,1,,1) gives G12 . If < t then eliminating from (22) the leading of R5 T3 ≡G e,1 e+r,1 et,1 − et,1 + δt,1+r (e1,1 e1+r,1 e1+r,1 + e1+r,1 e1,1 e1+r,1 ) + δt,r+1 (−e1,1 e1+r,1 et,1 + et,1 ).
(23)
Clearly, for (, t) = (1, 1 + r), the result coincides with G13 . For t = 1 + r and = 1, (,1+r) . For t = 1 + r and we eliminate from (23) the leading of G13 and obtain G14 (,t) = 1 (resp. = 1) the result coincides with G14 (resp. 0). Lemma 3.10. The set of all normal forms modulo G ∪ G1 ∪ G2 of nontrivial compositions among elements of G ∪ G1 ∪ G2 includes the set G3 which consists of the elements: ()
G15 = e21,1 e1+r,1 e,1 − e1,1 e,1
(1 < ≤ m; = 1 + r),
()
G16 = e,1 e+r,1 e,1 − 2e1,1 e1+r,1 e,1 + e,1
(1 < ≤ r),
()
G17 = e+r,1 e,1 e+r,1 + 2e1,1 e1+r,1 e+r,1 − e+r,1
(1 < ≤ r).
Proof. We consider the following compositions: (s,1,1,1)
P1 = R6
(,1,j)
P2 = G2
(,j)
P3 = G4
(s+r,1,)
e,1 − es,1 G7
(,j)
e,j − e,1 G4
(1 < ≤ r; 1 < j ≤ n),
(,j,1)
e+r,1 − e+r,j G2
(1 ≤ ≤ m; = 1 + r; 1 < s ≤ r),
(1 < ≤ r; 1 < j ≤ n).
1750093-12
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system
We eliminate from P1 , P2 and P3 all occurrences of the leading monomials of G ∪ G1 ∪ G2 , and we have P1 = −e1,1 es+r,1 es,1 e,1 − e1,1 e,1 ≡G2 e21,1 e1+r,1 e,1 − e1,1 e,1 , (s)
()
using G11 . For = 1, the result coincides with G15 . For = 1, the result can be (1,1,1) , so reduced further to 0, using the relations G20 (of the next lemma) and G7 we ignore this case. For P2 , we have P2 = −e1,1 e1+r,j e,j + e,1 e+r,1 e,1 − e,1 e1,j e1+r,j + e,1 e1,1 e1+r,1
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
≡G1 ∪G2 −e1,1 e1+r,1 e,1 + e,1 e+r,1 e,1 − e1,1 e1+r,1 e,1 + e,1 = e,1 e+r,1 e,1 − 2e1,1 e1+r,1 e,1 + e,1 , (1+r,j,)
using G5
(,1,1,j)
, G6
(,1)
()
and G10 . The result coincides with G16 . Finally,
P3 = −e+r,1 e,1 e+r,1 + e1,j e1+r,j e+r,1 − e1,1 e1+r,1 e+r,1 + e+r,j e1,j e1+r,1 ≡G1 −e+r,1 e,1 e+r,1 − e1,1 e1+r,1 e+r,1 + e+r,1 e1,1 e1+r,1 ≡G −e+r,1 e,1 e+r,1 − e1,1 e1+r,1 e+r,1 + e1+r,1 e1,1 e+r,1 + e+r,1 ≡G2 −e+r,1 e,1 e+r,1 − e1,1 e1+r,1 e+r,1 − e1,1 e1+r,1 e+r,1 + e+r,1 , (1+r,j,+r,1)
(+r,j,1)
using G6 , G5 () result coincides with G17 .
(+r,1,1+r,1)
, R1
(1,+r)
and G9
. The (monic) form of the
Lemma 3.11. The self-reduced form G of the set G ∪ elements: (,d,t)
G1
(,d,t)
G2
3 i=1
Gi consists of the
= e+r,d e,t + e1,d e1+r,t
(1 ≤ ≤ r; 1 ≤ d, t ≤ n; d = t),
= e,d e+r,t − e1,d e1+r,t
(1 < ≤ r; 1 ≤ d, t ≤ n; d = t),
(,d)
= e,d e+r,d − e,1 e+r,1 + e1,1 e1+r,1 − e1,d e1+r,d
(1 < ≤ r; 1 < d ≤ n),
G4
(,d)
= e+r,d e,d − e+r,1 e,1 + e1,d e1+r,d − e1,1 e1+r,1
(1 ≤ ≤ r; 1 < d ≤ n),
(,d,i)
= e,d ei,d − e,1 ei,1
G3
G5
(i,d,k,t)
G6
(k,,s)
G7
()
= ei,d ek,t
(1 ≤ , i ≤ m; = i ± r; 1 < d ≤ n),
(1 ≤ i, k ≤ m; i = k ± r; 1 ≤ d, t ≤ n; d = t),
= ek,1 e,1 es,1
(1 ≤ k, , s ≤ m; k = ± r; = s ± r),
G8 = e1,1 e,1 e+r,1 − e21,1 e1+r,1 (,k)
G9
(k,)
G10
(1 < ≤ r),
= e+r,1 e,1 ek,1 + e1,1 e1+r,1 ek,1
(1 < k ≤ m; 1 ≤ ≤ r; k = + r),
= ek,1 e,1 e+r,1 + e1,1 e1+r,1 ek,1 − ek,1 1750093-13
(1 < k ≤ m; 1 ≤ ≤ r; k = + r),
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
H. A. Elgendy ()
G11 = e1,1 e+r,1 e,1 + e21,1 e1+r,1 (t,)
G12
(1 < ≤ r),
= et,1 e+r,1 e,1 − e1,1 e1+r,1 et,1 + et,1
(1 < t ≤ m; 1 ≤ ≤ r; t = ),
()
G13 = e+r,1 e,1 e+r,1 + 2e1,1 e1+r,1 e+r,1 − e+r,1 (,t) G14
= e,1 e+r,1 et,1 − e1,1 e1+r,1 et,1
()
G15 = e21,1 e1+r,1 e,1 − e1,1 e,1
(1 < t ≤ m; 1 < ≤ r; t = ),
(1 < ≤ m; = 1 + r),
()
G16 = e,1 e+r,1 e,1 − 2e1,1 e1+r,1 e,1 + e,1 (i,d)
G17
= ei,1 e1,1 e1+r,d + e1,d e1+r,1 ei,1 − ei,d
(d)
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
G18 = e1,d e1+r,1 e1,1 + e21,1 e1+r,d − e1,d ()
G19 = e+r,1 e,1 e1,1 − e21,1 e1+r,1 + e1,1 G20 = e1,1 e1+r,1 e1,1 +
(1 ≤ ≤ r),
2e21,1 e1+r,1
(1 < ≤ r), (1 < i ≤ m; 1 < d ≤ n),
(1 < d ≤ n), (1 ≤ ≤ r),
− e1,1 ,
(s)
G21 = es,1 es+r,1 e1,1 + e21,1 e1+r,1 − e1,1
(1 < s ≤ r).
3 3 Proof. We eliminate from G ∪ i=1 Gi all occurrences of {LM(u) : u ∈ G ∪ i=1 3 Gi } as a subword of any element of G ∪ i=1 Gi . We note that any element g ∈ 3 3 () i=1 Gi is in normal form modulo G ∪ i=1 Gi \{g} and the relation G13 of the () present lemma is a combination of the relations G13 and G17 of Lemmas 3.9 and 3.10. So we only consider elements of G. For all r + 1 ≤ s < i ≤ m and 1 ≤ j, d ≤ n, we have (i,j,s,d)
R1
= ei,j es−r,j es,d − es,d es−r,j ei,j − ei,d ≡G1 δj,d [ei,d (es−r,1 es,1 + δd,1 (e1,d e1+r,d − e1,1 e1+r,1 )) − (es,1 es−r,1 + δd,1 (−e1,d e1+r,d + e1,1 e1+r,1 ))ei,d ] + δj,d (ei,j e1,j e1+r,d + e1,d e1+r,j ei,j ) − ei,d ,
(s−r,j,d)
(s−r,d,j)
(s−r,d)
(s−r,d)
using G2 , G1 , G3 and G4 (,i) and obtain s − r = in (24) and use G9 (i,1,s,1)
R1
(24)
. Case I. j = d: For d = 1, we set
= ei,1 e,1 e+r,1 − e+r,1 e,1 ei,1 − ei,1 ≡G2 ei,1 e,1 e+r,1 + e1,1 e1+r,1 ei,1 − ei,1 . (i,)
Combining the result with the set {G10 | 1 < i < + r, 1 ≤ ≤ r} ⊂ G2 gives the (i,) (i,d,s−r,1) (i,d,1,1) set {G10 | 1 < i ≤ m, 1 ≤ ≤ r, i = + r}. For d = 1, using G6 , G6 , (s−r,1,i,d) (1+r,1,i,d) and G6 gives G6 (i,d,s,d)
R1
≡G1 ei,d e1,d e1+r,d + e1,d e1+r,d ei,d − ei,d . 1750093-14
February 13, 2017 11:37 WSPC/S0219-4988
171-JAA
1750093
Anti-Jordan triple system (i,d,1)
(1+r,d,i)
Using G5
and G5
(i,d,s,d)
R1
, we get
≡G1 ei,1 e1,1 e1+r,d + e1,d e1+r,1 ei,1 − ei,d . (i,d)
(i,j,1)
The result coincides with G17 . Case II. j = d: Using G5 implies (i,j,s,d)
R1
(i,d)
(s,d,j,i)
J. Algebra Appl. 2017.16. Downloaded from www.worldscientific.com by WSPC on 07/18/17. For personal use only.
in (24)
≡G1 ei,1 e1,1 e1+r,d + e1,d e1+r,1 ei,1 − ei,d .
For d = 1 (resp. d = 1) the result coincides with G17 s ≤ m, r + 1 ≤ s and 1 ≤ j, d ≤ n, we have R2
(1+r,j,i)
and G5
(i,1)
(resp. G10 ). For all 1 ≤ i