Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2016, Article ID 4231050, 6 pages http://dx.doi.org/10.1155/2016/4231050
Research Article Asymptotic Behavior of Certain Integrodifferential Equations Said Grace1 and Elvan Akin2 1
Department of Engineering Mathematics, Cairo University, Orman, Giza 12221, Egypt Missouri University of Science Technology, 310 Rolla Building, Rolla, MO 65409-0020, USA
2
Correspondence should be addressed to Elvan Akin;
[email protected] Received 11 February 2016; Revised 13 May 2016; Accepted 5 June 2016 Academic Editor: Zhan Zhou Copyright Β© 2016 S. Grace and E. Akin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper deals with asymptotic behavior of nonoscillatory solutions of certain forced integrodifferential equations of the form: π‘ (π(π‘)π₯σΈ (π‘))σΈ = π(π‘) + β«π (π‘ β π )πΌβ1 π(π‘, π )π(π , π₯(π ))ππ , π > 1, 0 < πΌ < 1. From the obtained results, we derive a technique which can be applied to some related integrodifferential as well as integral equations.
1. Introduction In this paper, we consider the integrodifferential equation σΈ
(π (π‘) π₯σΈ (π‘)) = π (π‘) π‘
+ β« (π‘ β π )πΌβ1 π (π‘, π ) π (π , π₯ (π )) ππ ,
(1)
π
π > 1, 0 < πΌ < 1. In the sequel, we assume that (i) π, π β πΆ([π, β), R+ ); (ii) π β πΆ([π, β) Γ [π, β), R) and also there exists π β πΆ([π, β), R+ ) such that |π(π‘, π )| β€ π(π‘) for all π‘ β₯ π β₯ π; (iii) π β πΆ([π, β) Γ R, R) and also there exist β β πΆ([π, β), R+ ) and real numbers π, 0 < π β€ 1, and πΎ such that πΎβ1
0 β€ π₯π (π‘, π₯) β€ π‘
π+1
β (π‘) |π₯|
(2)
for π₯ =ΜΈ 0 and π‘ β₯ π. We only consider solutions of (1) which are continuable and nontrivial in any neighborhood of β. Such a solution is said to be oscillatory if there exists a sequence {π‘π } β [π, β), π‘π β β, such that π₯(π‘π ) = 0, and it is nonoscillatory otherwise.
In the last few decades, integral, integrodifferential, and fractional differential equations have gained considerable attention due to their applications in many engineering and scientific disciplines as the mathematical models for systems and processes in fields such as physics, mechanics, chemistry, aerodynamics, and the electrodynamics of complex media. For more details one can refer to [1β8]. Oscillation and asymptotic results for integral and integrodifferential equations are scarce; some results can be found in [5, 9β13]. It seems that there are no such results for integral equations of type (1). The main objective of this paper is to establish some new criteria on the oscillatory and the asymptotic behavior of all solutions of (1). From the obtained results, we derive a technique which can be applied to some related integrodifferential as well as integral equations.
2. Main Results To obtain our main results of this paper, we need the following two lemmas. Lemma 1 (see [5, 7]). Let π½, πΎ, and π be positive constants such that π(π½ β 1) + 1 > 0 and π(πΎ β 1) + 1 > 0. Then π‘
β« (π‘ β π )π(π½β1) π π(πΎβ1) ππ = π‘π π΅, π‘ β₯ 0,
(3)
0
1
where π΅ fl π΅[π(πΎ β 1) + 1, π(π½ β 1) + 1], π΅[π, π] = β«0 π πβ1 (1 β π )πβ1 ππ , π, π > 0, and π = π(π½ + πΎ β 2) + 1.
2
Discrete Dynamics in Nature and Society
Lemma 2 (see [14]). If π and π are nonnegative, then ππ β (1 β π) ππ β ππππβ1 β€ 0, 0 < π < 1,
(4)
Applying (4) of Lemma 2 to β(π )π₯π (π ) β π(π )π₯(π ) with π = β1/π π₯ and π = ((1/π)πββ1/π )1/(πβ1) we have β (π ) π₯π (π ) β π (π ) π₯ (π )
where equality holds if and only if π = π.
β€ (1 β π) ππ/(1βπ) ππ/(πβ1) (π ) β1/(1βπ) (π ) ,
In what follows, we let πΒ± (π‘) = π (π‘) Β± (1 β π) ππ/(1βπ) π (π‘) π‘
β
β« (π‘ β π )
πΌβ1 πΎβ1
π
π‘1
π/(πβ1)
π
1/(1βπ)
(π ) β
(π ) ππ
(5)
and hence we obtain
π
+ (1 β π) ππ/(1βπ) π (π‘) π‘
β
β« (π‘ β π )πΌβ1 π πΎβ1 ππ/(πβ1) (π ) β1/(1βπ) (π ) ππ + π (π‘)
β
π‘1
π ππ < β, π (π )
β
π
β« (π 2 π (π )) ππ < β. π‘1
(6) (7)
(14)
π‘1
Theorem 3. Let 0 < π < 1 and conditions (i)β(iii) hold and suppose that π > 1, π = π/(π β 1), πΌ > 0, πΎ = 2 β πΌ β 1/π, π(πΌ β 1) + 1 > 0, π(πΎ β 1) + 1 > 0, and
β«
π‘1
σΈ
(π (π‘) π₯σΈ (π‘)) β€ π (π‘) + π (π‘) β« (π‘ β π )πΌβ1 |πΉ (π )| ππ
and 0 < π < 1, π‘ β₯ π‘1 for some π‘1 β₯ π, where π β πΆ([π, β), R+ ). Now we give sufficient conditions under which any solution π₯ of (1) satisfies |π₯(π‘)| = π(π‘2 ) as π‘ β β.
π‘ and π (π‘) are bounded on [π, β) , π (π‘)
(13)
π‘
β
β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ π‘1
or π‘1
σΈ
πΌβ1
(π (π‘) π₯σΈ (π‘)) β€ π (π‘) β« (π‘1 β π ) π
|πΉ (π )| ππ + π+ (π‘)
π‘
+ π (π‘) β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ
(8)
π‘1
(15)
β€ πΆ1 + π+ (π‘)
If lim sup π‘ββ
lim inf π‘ββ
π’ 1 π‘ 1 β« πβ (π ) ππ ππ’ < β, β« 2 π‘ π‘1 π (π’) π‘0 π’ 1 π‘ 1 β« π+ (π ) ππ ππ’ > ββ β« 2 π‘ π‘1 π (π’) π‘0
π‘
+ π1 β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ ,
for any π‘1 β₯ π, then every nonoscillatory solution π₯(π‘) of (1) satisfies lim sup π‘ββ
|π₯ (π‘)| < β. π‘2
(10)
Proof. Let π₯ be a nonoscillatory solution of (1). We may assume that π₯(π‘) > 0 for π‘ β₯ π‘1 for some π‘1 β₯ π. We let πΉ(π‘) = π(π‘, π₯(π‘)). In view of (i)β(iii) we may then write π‘
σΈ
(π (π‘) π₯σΈ (π‘)) β€ π (π‘) + π (π‘) β« (π‘ β π )πΌβ1 π (π , π₯ (π )) ππ (11) π
π‘1
(π (π‘) π₯σΈ (π‘)) β€ π (π‘) + π (π‘) β« (π‘ β π )πΌβ1 |πΉ (π )| ππ π
π‘
π‘1
π‘
+ π (π‘) β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ . π‘1
π₯σΈ (π‘) β€
π (π‘1 ) π₯σΈ (π‘1 ) πΆ1 (π‘ β π‘1 ) + π (π‘) π (π‘) +
π‘ 1 β« π+ (π ) ππ π (π‘) π‘1
+
π1 π‘ π’ β« β« (π’ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ ππ’. π (π‘) π‘1 π‘1
π₯σΈ (π‘) β€
+ π (π‘) β
β« (π‘ β π )πΌβ1 π πΎβ1 [β (π ) π₯π (π ) β π (π ) π₯ (π )] ππ
where πΆ1 and π1 are the upper bounds of the functions π‘ π(π‘) β«π 1 (π‘1 β π )πΌβ1 |πΉ(π )|ππ and π(π‘), respectively. Integrating inequality (15) from π‘1 to π‘ we have
(16)
Interchanging the order of integration in the last integral, we have
and so σΈ
π‘1
(9)
(12)
π (π‘1 ) π₯σΈ (π‘1 ) πΆ1 (π‘ β π‘1 ) + π (π‘) π (π‘) +
π‘ 1 β« π+ (π ) ππ π (π‘) π‘1 π‘
+ π2 β« (π‘ β π )πΌ π πΎβ1 π (π ) π₯ (π ) ππ , π‘1
(17)
Discrete Dynamics in Nature and Society
3
where π2 is the upper bound of the function π1 /πΌπ(π‘). Integrating (17) from π‘1 to π‘ and interchanging the order of integration in the last integral we find π₯ (π‘) β€ π₯ (π‘1 ) + π (π‘1 ) π₯σΈ (π‘1 ) β«
π‘
π‘1
where π΅ = π΅[π(πΎβ1)+1, π(πΌβ1)+1], and π = π(πΌ+πΎβ2)+1 = 0 and so π‘
β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ
1 ππ π (π )
π‘1
π‘ π’ πΆ (π β π‘1 ) 1 +β« 1 ππ + β« β« π+ (π ) ππ ππ’ (18) π (π ) π‘1 π‘1 π (π’) π‘1
β€ π΅1/π (β« ππ (π ) π₯π (π ) ππ )
π‘
π‘ π + 2 β« (π‘ β π )πΌ+1 π (π ) π₯ (π ) ππ . πΌ + 1 π‘1
π‘
π‘1
Thus, inequality (20) becomes 1/π
1 ππ π (π )
π‘ π₯ (π‘) β€ πΆ + ππ΅1/π (β« ππ (π ) π₯π (π ) ππ ) 2 π‘ π‘1
π
(π₯ + π¦) β€ 2πβ1 (π₯π + π¦π ) ,
π‘
π‘ π’ πΆ (π β π‘1 ) 1 ππ + β« +β« 1 β« π+ (π ) ππ ππ’ (19) π (π ) π‘1 π‘1 π (π’) π‘1
π§π (π‘) (26)
If we denote π’(π‘) = π§π (π‘), that is, π§(π‘) = π’1/π (π‘), π = 2πβ1 (1 + πΆ)π , and π = 2πβ1 ππ π΅π/π , then π‘
π’ (π‘) β€ π + π β« π 2π ππ (π ) π’ (π ) ππ , π‘ β₯ π‘1 β₯ π.
(27)
The conclusion follows from Gronwallβs inequality and we conclude that
π‘
1 1 ππ [π₯ (π‘1 ) + π (π‘1 ) π₯σΈ (π‘1 ) β« π‘2 π (π ) π‘1 π‘
π‘ π’ πΆ (π β π‘1 ) 1 +β« 1 ππ + β« β« π+ (π ) ππ ππ’] π (π ) π‘1 π‘1 π (π’) π‘1
lim sup
(21)
and π = π2 /(πΌ+1). Applying Holderβs inequality and Lemma 1 we obtain
π‘ββ
π₯ (π‘) < β. π‘2
(28)
If π₯ is eventually negative, we can set π¦ = βπ₯ to see that π¦ satisfies (1) with π(π‘) being replaced by βπ(π‘) and π(π‘, π₯) by βπ(π‘, βπ¦). It follows in a similar manner that lim sup
π
(25)
we obtain from (24)
π‘1
where πΆ is the upper bound of the function
π‘1
(24)
π‘1
π‘ π₯ (π‘) β€ 1 + πΆ + π β« (π‘ β π )πΌβ1 π (π ) π₯ (π ) ππ , (20) 2 π‘ π‘1
β« (π‘ β π )
π₯, π¦ β₯ 0, π > 1,
β€ 2πβ1 ((1 + πΆ)π + ππ π΅π/π β« π 2π ππ (π ) π§π (π ) ππ ) .
or
πΌβ1 πΎβ1
.
π‘
π2 2 π‘ π‘ β« (π‘ β π )πΌβ1 π (π ) π₯ (π ) ππ πΌ + 1 π‘1
π‘
.
Using (24) and the elementary inequality
π₯ (π‘) β€ π₯ (π‘1 ) + π (π‘1 ) π₯σΈ (π‘1 ) β«
π§ (π‘) fl
π‘1
π§ (π‘) fl
Now, one can easily see that
+
(23)
1/π
π‘
π‘ββ
π (π ) π₯ (π ) ππ
βπ₯ (π‘) < β. π‘2
(29)
From (28) and (29) we get (10). This completes the proof. π‘
β€ (β« (π‘ β π )π(πΌβ1) π π(πΎβ1) ππ )
1/π
Next, by employing Theorem 3 we present the following oscillation result for (1).
π‘1
π‘
β
(β« ππ (π ) π₯π (π ) ππ )
1/π
π‘1
π‘
β€ (β« (π‘ β π ) 0
π(πΌβ1) π(πΎβ1)
π
π‘
β
(β« ππ (π ) π₯π (π ) ππ )
1/π
π‘1 π‘
β
(β« ππ (π ) π₯π (π ) ππ ) π‘1
(22)
1/π
ππ )
Theorem 4. Let 0 < π < 1 and conditions (i)β(iii), (6)β(9) hold and suppose that π > 1, π = π/(π β 1), πΌ > 0, πΎ = 2 β πΌ β 1/π, π(πΌ β 1) + 1 > 0, and π(πΎ β 1) + 1 > 0. If for every π, 0 < π < 1, lim sup [ππ‘2 + β«
β€ (π΅π‘π )
1/π
π‘1
π‘ββ
,
π’ 1 β« πβ (π ) ππ ππ’] = β, π (π’) π‘1
π’ 1 lim inf [ππ‘ + β« β« π+ (π ) ππ ππ’] = ββ π‘ββ π‘1 π (π’) π‘1 2
1/π
π‘
π‘
for all π‘1 β₯ π, then (1) is oscillatory.
(30)
4
Discrete Dynamics in Nature and Society
Proof. Let π₯ be a nonoscillatory solution of (1), say π₯(π‘) > 0, for π‘ β₯ π‘1 for some π‘1 β₯ 0. The proof when π₯ is eventually negative is similar. Proceeding as in the proof of Theorem 3 we arrive at (19). Therefore, π₯ (π‘) β€ π₯ (π‘1 ) + π (π‘1 ) π₯σΈ (π‘1 ) β«
β
π‘1
β
π‘1
πΆ1 (π β π‘1 ) ππ π (π )
π‘
π’
+β«
+β«
π‘1
β
π‘1
(31)
π₯ (π ) π ) ππ ) π 2
1/π
π’ 1 π₯ (π‘) β€ π1 + ππ‘2 + β« β« π+ (π ) ππ’, π‘1 π (π’) π‘1
.
π‘ββ
(32)
The following corollary is immediate. Corollary 5. Let 0 < π < 1 and conditions (i)β(iii), (6)β(9) hold for some π‘1 β₯ π. In addition, assume that
(33)
π‘ββ
π‘1
Theorem 7. Let π = 1 and the hypotheses of Theorems 3 and 4 hold with π(π‘) = β(π‘) and πΒ± = π(π‘). Then the conclusion of Theorems 3 and 4 holds, respectively. From the obtained results, we apply the employed technique to some related integrodifferential equations. Now, we consider the integrodifferential equation
We will give sufficient conditions under which any nonoscillatory solution π₯ of (37) satisfies |π₯(π‘)| = π(π‘) as π‘ β β.
β
β« π π ππ (π ) ππ < β, π‘1
π’
1 β« π (π ) ππ ππ’] = ββ, π (π’) π‘1
for all π‘1 > π, then (1) is oscillatory. The following example is illustrative.
(37)
Theorem 8. Let 0 < π < 1 and let condition (ii) hold and suppose that π > 1, π = π/(π β 1), 0 < πΌ < 1, and πΎ = 2 β πΌ β 1/π, π(πΌ β 1) + 1 > 0, and π(πΎ β 1) + 1 > 0,
If for every π, 0 < π < 1,
lim inf [ππ‘2 + β«
Now if π(π‘) = π‘πΏ ππ‘ sin π‘, πΏ β₯ 2, we see that all the hypotheses of Corollary 5 are satisfied and hence (1) is oscillatory. Similar reasoning to that in the sublinear case guarantees the following theorems for the integrodifferential equation (1) when π = 1.
π > 1, πΌ β (0, 1) .
β
β1/(1βπ) (π ) ππ ππ’ < β.
π‘
Condition (34) is also fulfilled. Thus, all conditions of Theorem 3 are satisfied and hence every nonoscillatory solution π₯ of (1) satisfies lim supπ‘ββ (|π₯(π‘)|/π‘2 ) < β.
π
π’ 1 π‘ 1 β« β« (π‘ β π )πΌβ1 π πΎβ1 ππ/(πβ1) (π ) π‘ββ π‘2 π‘ π (π’) π‘ 1 1
π’ 1 β« π (π ) ππ ππ’] = β, π (π’) π‘1
(36)
π‘
lim
π‘1
1 π‘ βπ’ π’ β« π β« (π’ β π )πΌβ1 π πΎβ1 β (π ) ππ ππ’ < β. π‘2 π‘1 π‘1
π₯σΈ (π‘) = π (π‘) + β« (π‘ β π )πΌβ1 π (π‘, π ) π (π , π₯ (π )) ππ ,
π’ 1 π‘ 1 lim sup 2 β« β« π (π ) ππ ππ’ > β, π‘1 π (π’) π‘1 π‘ββ π‘ π’ 1 π‘ 1 lim inf 2 β« β« π (π ) ππ ππ’ > ββ, π‘ββ π‘ π‘1 π (π’) π‘1
Let the functions π(π‘) and π(π‘) be as in (i) and (ii) with π(π‘) being a bounded function and let π(π‘) = ππ‘ , π(π‘) = π‘ππ‘ sinπ‘, and π(π‘, π₯) = π‘πΎβ1 β(π‘)π₯π , where 0 < π < 1, β β πΆ(R+ , R+ ) with β β(π‘) = π(π‘), β« π 2π βπ (π )ππ < β, and lim sup
where π1 and π are positive constants. Note that we make π < 1 possible by increasing the size of π‘1 . Finally, taking lim inf in (32) as π‘ β β as well as using (30) result is a contradiction with the fact that π₯ is eventually positive.
π‘ββ
(35)
π = π (πΌ + πΎ β 2) + 1 = 0.
π‘
π‘
1 β 1) + 1 2π
1 > 0, 2
=
Clearly, the conclusion of Theorem 3 holds. This together with (7) and (8) implies that the first, second, and fourth integrals on the above inequality are bounded and hence one can easily see that
lim sup [ππ‘2 + β«
π (πΌ β 1) + 1 = π (πΎ β 1) + 1 = π (1 β
1 ππ π (π )
1 β« π (π ) ππ ππ’ π (π’) π‘1 +
+ ππ‘2 (β« π 2π ππ (π ) (
Example 6. Let π > 1, 0 < πΌ = 1 β 1/2π < 1, πΌ = πΎ, and π = π/(π β 1). Clearly,
1 π‘ lim sup β« πβ (π ) ππ < β, π‘ββ π‘ π (34)
1 π‘ lim inf β« π+ (π ) ππ > ββ π‘ββ π‘ π
(38)
(39)
for any π‘1 β₯ π. If π₯ is a nonoscillatory solution of (37), then lim sup π‘ββ
|π₯ (π‘)| < β. π‘
(40)
Discrete Dynamics in Nature and Society
5
Proof. Let π₯ be a nonoscillatory solution of (37). We may assume that π₯(π‘) > 0 for π‘ β₯ π‘1 for some π‘1 β₯ π. We let πΉ(π‘) = π(π‘, π₯(π‘)). In view of (ii) we may then write
Let the functions π(π‘) = π‘ sin π‘ and π(π‘, π₯) = π‘πΎβ1 β(π‘)π₯π , where β 0 < π < 1, β β πΆ(R+ , R+ ) with β(π‘) = π(π‘), β« π π βπ (π )ππ < β, and
π₯σΈ (π‘) π‘1
β€ π (π‘) + β« (π‘ β π )
πΌβ1
π
1 π‘ lim sup β« (π‘ β π )πΌβ1 π πΎβ1 β (π ) ππ < β. π‘ββ π‘ π‘1
|πΉ (π )| ππ
π‘
+ β« (π‘ β π )πΌβ1 π πΎβ1 [β (π ) π₯π (π ) β π (π ) π₯ (π )] ππ
(41)
π‘1
Condition (39) is also fulfilled. Thus, all conditions of Theorem 8 are satisfied and hence every nonoscillatory solution π₯ of (37) satisfies lim supπ‘ββ (|π₯(π‘)|/π‘) < β.
π‘
Finally, we consider the integral equation
+ β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ . π‘1
π‘
π₯ (π‘) = π (π‘) + β« (π‘ β π )πΌβ1 π (π‘, π ) π (π , π₯ (π )) ππ ,
Proceeding as in the proof of Theorem 3, we obtain
π
π‘1
π
β
π
β« (π‘ β π )
πΌβ1 πΎβ1
π
π‘1
1/(1βπ)
β
β
π‘
π/(πβ1)
π
π‘
(π ) ππ + β« (π‘ β π )
πΌβ1 πΎβ1
π
π‘1
(π )
(42)
Now we give sufficient conditions for the boundedness of any nonoscillatory solution of (47). Theorem 10. Let 0 < π < 1 and let condition (ii) hold and suppose that π > 1, π = π/(π β 1), 0 < πΌ < 1, and πΎ = 2 β πΌ β 1/π, π(πΌ β 1) + 1 > 0, and π(πΎ β 1) + 1 > 0,
π (π ) π₯ (π ) ππ .
Integrating inequality (42) from π‘1 to π‘ and interchanging the order of integration one can easily obtain
β
β« ππ (π ) ππ < β, π‘1
π‘
π‘ββ
π‘1
π’
π‘1
π‘1
π‘
π‘1
π‘1
π
πΌβ1 πΎβ1
+ β« β« (π’ β π )
π
πΌβ1
+ β« β« (π‘1 β π )
π (π ) π₯ (π ) ππ ππ’
|πΉ (π )| ππ ππ’.
π‘
π‘ π‘ β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ πΌ π‘1 π‘1
π‘1
π
π‘ββ
Proof. Let π₯ be an eventually positive solution of (47). We may assume that π₯(π‘) > 0 for π‘ β₯ π‘1 for some π‘1 β₯ π. We let πΉ(π‘) = π(π‘, π₯(π‘)). In view of (ii) we may then write π₯ (π‘)
π‘1
π‘1
β€ β« (π‘ β π )πΌβ1 |πΉ (π )| ππ + π (π‘)
(44)
π
π‘
πΌβ1
+ β« β« (π‘1 β π )
+ β« (π‘ β π )πΌβ1 π πΎβ1 [β (π ) π₯π (π ) β π (π ) π₯ (π )] ππ
|πΉ (π )| ππ ππ’.
Example 9. Let π > 1, 0 < πΌ = 1 β 1/2π < 1, πΌ = πΎ, and π = π/(π β 1). Clearly, π (πΌ β 1) + 1 = π (πΎ β 1) + 1 = π (1 β 1 > 0, 2
π = π (πΌ + πΎ β 2) + 1 = 0.
(50)
π‘1 π‘
+ β« (π‘ β π )πΌβ1 π πΎβ1 π (π ) π₯ (π ) ππ
The rest of the proof is similar to that of Theorem 3 and hence is omitted.
=
(49)
where π(π‘) is defined as in (5) for any π‘1 β₯ π. If π₯ is a nonoscillatory solution of (47), then π₯ is bounded.
π₯ (π‘) β€ π₯ (π‘1 ) + β« π+ (π ) ππ
π‘
lim inf π+ (π‘) > ββ,
(43)
Interchanging the order of integration in second integral we have
+
(48)
lim sup πβ (π‘) < β,
π₯ (π‘) β€ π₯ (π‘1 ) + β« π+ (π ) ππ π‘
(47)
π > 1, πΌ β (0, 1) .
π₯σΈ (π‘) β€ β« (π‘ β π )πΌβ1 |πΉ (π )| ππ + π (π‘) + (1 β π) π/(1βπ)
(46)
1 β 1) + 1 2π
π‘1
or π‘
π₯ (π‘) β€ β« (π‘ β π )πΌβ1 |πΉ (π )| ππ + π+ (π‘) π
π‘
(45)
+ β« (π‘ β π ) π‘1
(51) πΌβ1 πΎβ1
π
π (π ) π₯ (π ) ππ .
The rest of the proof is similar to that of Theorem 3 and hence is omitted.
6
Discrete Dynamics in Nature and Society
Example 11. Let π > 1, 0 < πΌ = 1 β 1/2π < 1, πΌ = πΎ, and π = π/(π β 1). Clearly, π (πΌ β 1) + 1 = π (πΎ β 1) + 1 = π (1 β =
1 β 1) + 1 2π
1 > 0, 2
(52)
π = π (πΌ + πΎ β 2) + 1 = 0. Let the functions π(π‘) = sin π‘ and π(π‘, π₯) = π‘πΎβ1 β(π‘)π₯π , where β 0 < π < 1, β β πΆ(R+ , R+ ) with β(π‘) = π(π‘), β« βπ (π )ππ < β, and π‘
lim sup β« (π‘ β π )πΌβ1 π πΎβ1 β (π ) ππ < β. π‘ββ
π‘1
(53)
Condition (49) is also fulfilled. Thus, all conditions of Theorem 10 are satisfied and hence every nonoscillatory solution π₯ of (37) is bounded. Similar reasoning to that in the sublinear case guarantees the following theorems for the integrodifferential equations (37) and (47) when π = 1. Theorem 12. Let π = 1 and the hypotheses of Theorems 8 and 10 hold with π(π‘) = β(π‘). Then the conclusion of Theorems 8 and 10 holds. We may note that results similar to Theorem 4 can be obtained for (37) and (47). The details are left to the reader.
3. General Remarks (i) The results of this paper are presented in a form which is essentially new and it can also be employed to investigate the asymptotic and oscillatory behavior of certain integrodifferential equations of higher order πΌ β (π β 1, π), π β₯ 1. The details are left to the reader. (ii) It would be of interest to study (1) when π satisfies condition (iii) with π > 1.
Competing Interests The authors declare that they have no competing interests.
References [1] D. Bleanu, J. A. T. Machado, and A. C.-J. Luo, Fractional Dynamics and Control, Springer, New York, NY, USA, 2012. [2] V. Lakshmikantham, S. Leela, and J. Vaaundhara Dev, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009. [3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006. [4] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
[5] Q.-H. Ma, J. Pecaric, and J.-M. Zhang, βIntegral inequalities of systems andthe estimate for solutions of certain nonlinear two-dimensional fractional differential systems,β Computers & Mathematics with Applications, vol. 61, no. 11, pp. 3258β3267, 2011. [6] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. [7] A. P. Prudnikov, Z. A. Brychkov, and O. I. Marichev, βIntegral and series,β in Elementary Functions, vol. 1, Nauka, Moscow, Russia, 1981 (Russian). [8] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, NY, USA, 1993. [9] M. Bohner, S. Grace, and N. Sultana, βAsymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations,β Opuscula Mathematica, vol. 34, no. 1, pp. 5β14, 2014. [10] S. R. Grace and A. Zafer, βOscillatory behavior of integrodynamic and integral equations on time scales,β Applied Mathematics Letters, vol. 28, pp. 47β52, 2014. [11] S. R. Grace, J. R. Graef, and A. Zafer, βOscillation of integrodynamic equations on time scales,β Applied Mathematics Letters, vol. 26, no. 4, pp. 383β386, 2013. [12] S. R. Grace, J. R. Graef, S. Panigrahi, and E. Tunc, βOn the oscillatory behavior of Volterra integral equations on timescales,β Panamerican Mathematical Journal, vol. 23, no. 2, pp. 35β41, 2013. [13] S. R. Grace, R. P. Agarwal, P. J. Y. Wong, and A. Zafer, βOn the oscillation of fractional differential equations,β Fractional Calculus and Applied Analysis, vol. 15, no. 2, pp. 222β231, 2012. [14] G. H. Hardy, I. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, UK, 1959.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014