Research Article Fractional Solutions of Bessel ...

2 downloads 0 Views 602KB Size Report
Hindawi Publishing Corporation. The Scientific World Journal. Volume 2013, Article ID 685695, 8 pages http://dx.doi.org/10.1155/2013/685695. Research Article.
Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 685695, 8 pages http://dx.doi.org/10.1155/2013/685695

Research Article Fractional Solutions of Bessel Equation with 𝑁-Method Erdal Bas, Resat Yilmazer, and Etibar Panakhov Department of Mathematics, Firat University, 23119 Elazig, Turkey Correspondence should be addressed to Erdal Bas; [email protected] Received 30 April 2013; Accepted 16 July 2013 Academic Editors: R. M. Guedes, Z. Mukandavire, and R. Wangkeeree Copyright Β© 2013 Erdal Bas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper deals with the design fractional solution of Bessel equation. We obtain explicit solutions of the equation with the help of fractional calculus techniques. Using the 𝑁-fractional calculus operator 𝑁] method, we derive the fractional solutions of the equation.

1. Introduction, Definitions, and Preliminaries Fractional calculus has an important place in the field of math. Firstly, L’Hospital and Leibniz were interested in the topic in 1695, [1]. Fractional calculus is an area of applied mathematics that deals with derivatives and integrals of arbitrary orders and their applications in science, engineering, mathematics, economics, and other fields. The seeds of fractional derivatives were planted over 300 years ago. Since then many efficient mathematicians of their times, such as N. H. Abel, M. Caputo, L. Euler, J. Fourier, A. K. Grunwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren, P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, and B. Riemann, have contributed to this field; all these references can be seen in [1–5]. The mathematics involved appeared very different applications of this field. Fractional calculus has been applied to almost every field of science. They are viscoelasticity, electrical engineering, electrochemistry, biology, biophysics and bioengineering, signal and image processing, mechanics, mechatronics, physics, and control theory. During the last decade, Samko et al. [4], Nishimoto [6–12], and Podlubny [3] have been helpful in introducing the field to engineering, science, economics and finance, and pure and applied field. Furthermore, there were many studies in this field [5, 13–16]. Various scientists have studied that concept. The progress in this field continues [2–4, 6–12, 17– 20]. 𝑁-Fractional calculus is a very interesting method because this method is applied to singular equation. Note that fractional solutions can be obtained for kinds of singular

equation via this method [6–12, 17]. In this paper, our aim is to apply the same way for singular Sturm-Liouville equation with Bessel potential and find fractional solutions of this equation. Furthermore, we give some applications and their graphs of fractional solutions of the equation. Now, consider the following the Bessel equation:

π‘₯

𝑝2 𝑑2 𝑧 𝑑𝑧 + + [πœ†π‘₯ βˆ’ ] 𝑧 = 0, 𝑑π‘₯2 𝑑π‘₯ π‘₯

0 < π‘₯ ≀ 1,

(1)

where πœ† and 𝑝 are real numbers. By means of the substitution 𝑦 = √π‘₯𝑧 (1) reduces to the form 𝑝2 βˆ’ 1/4 𝑑2 𝑦 + (πœ† βˆ’ ) 𝑦 = 0. 2 𝑑π‘₯ π‘₯2

(2)

Bessel equation for having the analogous singularity is given in [21]. The differintegration operators and their generalizations [6–11, 17, 18] have been used to solve some classes of differential equations and fractional differential equations. Two of the most commonly encountered tools in the theory and applications of fractional calculus are provided by the Riemann-Liouville operator π‘…π‘§πœ (𝜐 ∈ C) and the Weyl operator π‘Šπ‘§πœ (𝜐 ∈ C), which are defined by [17, 19].

2

The Scientific World Journal Lemma 2 (linearity property). If the functions 𝑓(𝑧) and 𝑔(𝑧) are single-valued and analytic in some domain Ξ© βŠ† C, then

Consider π‘…π‘§πœ 𝑓 (𝑧) 𝑧 1 { ∫ (𝑧 βˆ’ 𝑑)πœβˆ’1 𝑓 (𝑑) 𝑑𝑑 { { { Ξ“ (𝜐) 0 ={ { { { 𝑑𝑛 𝜐+𝑛 𝑅 𝑓 (𝑧) { 𝑑𝑧𝑛 𝑧

(Re (𝜐) > 0) ,

(3)

(βˆ’π‘› < Re (𝜐) ≀ 0; 𝑛 ∈ N) ,

(Re (𝜐) > 0) ,

(4)

(π‘“πœŽ (𝑧))] = π‘“πœŽ+] (𝑧) = (𝑓] (𝑧))𝜎

provided that the defining integrals in (3) and (4) exist, N being the set of positive integers. Definition 1 (cf. [6–10, 12, 20]). Let 𝐢 = {πΆβˆ’ , 𝐢+ } ,

(5)

where πΆβˆ’ is a curve along the cut joining two points 𝑧 and βˆ’βˆž+𝑖 Im(𝑧), 𝐢+ is a curve along the cut joining two points 𝑧 and ∞+𝑖 Im(𝑧), π·βˆ’ is a domain surrounded by πΆβˆ’ , and 𝐷+ is a domain surrounded by 𝐢+ . (Here 𝐷 contains the points over the curve 𝐢.) 𝐷),

Moreover, let 𝑓 = 𝑓(𝑧) be a regular function in 𝐷 (𝑧 ∈ 𝑓] (𝑧) = (𝑓 (𝑧))] =

βˆ’

(] ∈ R \ Z ; Z = {. . . , βˆ’3, βˆ’2, βˆ’1}) ,

(6)

] β†’ βˆ’π‘›

0 ≀ arg (𝑑 βˆ’ 𝑧) ≀ 2πœ‹ for 𝐢+ .

𝑑𝑑 Ξ“ (] + 1) ) ∫ ]+1 2πœ‹π‘– 𝐢 (𝑑 βˆ’ 𝑧)

(] βˆ‰ Zβˆ’ )

(8)

with 𝑁

βˆ’π‘›

= lim 𝑁 ] β†’ βˆ’π‘›

]

+

∞

] (𝑓 (𝑧) β‹… 𝑔 (𝑧))] = βˆ‘ ( ) 𝑓]βˆ’π‘› (𝑧) β‹… 𝑔𝑛 (𝑧) 𝑛 𝑛=0

(𝑛 ∈ Z ) .

(12)

(] ∈ R; 𝑧 ∈ Ξ©) , where 𝑔𝑛 (𝑧) is the ordinary derivative of 𝑔(𝑧) of order 𝑛 (𝑛 ∈ N0 := N βˆͺ {0}), being tacitly assumed (for simplicity) that 𝑔(𝑧) is the polynomial part (if any) of the product 𝑓(𝑧)𝑔(𝑧).

(π‘’πœ†π‘§ )] = πœ†] π‘’πœ†π‘§

(πœ† =ΜΈ 0; ] ∈ R; 𝑧 ∈ C) .

(13)

(πœ† =ΜΈ 0; ] ∈ R; 𝑧 ∈ C) .

(14)

Property 3. For a constant πœ†, (7)

Then 𝑓] (𝑧) (] > 0) is said to be the fractional derivative of 𝑓(𝑧) of order ] and 𝑓] (𝑧) (] < 0) is said to be the fractional integral of 𝑓(𝑧) of order βˆ’], provided (in each case) that |𝑓] (𝑧)| < ∞ (] ∈ R). Finally, let the fractional calculus operator (Nishimoto’s operator) 𝑁] be defined by (cf. [6–10]) 𝑁] = (

Lemma 4 (generalized Leibniz rule). If the functions 𝑓(𝑧) and 𝑔(𝑧) are single-valued and analytic in some domain Ξ© βŠ† C, then

(π‘’βˆ’πœ†π‘§ )] = π‘’βˆ’π‘–πœ‹] πœ†] π‘’βˆ’πœ†π‘§

where 𝑑 =ΜΈ 𝑧, βˆ’πœ‹ ≀ arg (𝑑 βˆ’ 𝑧) ≀ πœ‹ for πΆβˆ’ ,

(11)

Property 2. For a constant πœ†,

(𝑛 ∈ Z+ ) ,

π‘“βˆ’π‘› (𝑧) = lim 𝑓] (𝑧)

(π‘“πœŽ (𝑧) =ΜΈ 0; 𝑓] (𝑧) =ΜΈ 0; 𝜎, ] ∈ R; 𝑧 ∈ Ξ©) .

Property 1. For a constant πœ†,

𝑓 (𝑑) 𝑑𝑑 Ξ“ (] + 1) ∫ ]+1 2πœ‹π‘– 𝐢 (𝑑 βˆ’ 𝑧) βˆ’

(10)

Lemma 3 (index law). If the function 𝑓(𝑧) is single-valued and analytic in some domain Ξ© βŠ† C, then

(βˆ’π‘› < Re (𝜐) ≀ 0; 𝑛 ∈ N)

𝐷 = {π·βˆ’ , 𝐷+ } ,

(] ∈ R; 𝑧 ∈ Ξ©) for any constants β„Ž1 and β„Ž2 .

π‘Šπ‘§πœ 𝑓 (𝑧) ∞ 1 { ∫ (𝑑 βˆ’ 𝑧)πœβˆ’1 𝑓 (𝑑) 𝑑𝑑 { { { Ξ“ (𝜐) 𝑧 ={ { 𝑛 { {𝑑 π‘Šπœ+𝑛 𝑓 (𝑧) { 𝑑𝑧𝑛 𝑧

(β„Ž1 𝑓 (𝑧) + β„Ž2 𝑔 (𝑧))] = β„Ž1 𝑓] (𝑧) + β„Ž2 𝑔] (𝑧)

(9)

We find it to be worthwhile to recall here the following useful lemmas and properties associated with the fractional differintegration which was defined earlier (cf. e.g., [6–10, 12]).

Ξ“ (] βˆ’ πœ†) πœ†βˆ’] 𝑧 Ξ“ (βˆ’πœ†) 󡄨󡄨 Ξ“ (] βˆ’ πœ†) 󡄨󡄨 󡄨󡄨 󡄨 (] ∈ R; 𝑧 ∈ C; 󡄨󡄨󡄨 󡄨 < ∞) . 󡄨󡄨 Ξ“ (βˆ’πœ†) 󡄨󡄨󡄨

(π‘§πœ† )] = π‘’βˆ’π‘–πœ‹]

(15)

Now, let apply 𝑁-fractional method to nonhomogeneous Bessel equation.

2. The 𝑁] -Method Applied to Bessel Equation Theorem 5. Let 𝑦 ∈ {𝑦 : 0 =ΜΈ |𝑦] | < ∞; ] ∈ R} and 𝑓 ∈ {𝑓 : 0 =ΜΈ |𝑓] | < ∞; ] ∈ R}. We consider the nonhomogeneous Bessel equation: 𝐿 [𝑦, π‘₯, πœ†, 𝑝] = 𝑦2 + 𝑦 [πœ† βˆ’

𝑝2 βˆ’ 1/4 ]=𝑓 π‘₯2

(0 < π‘₯ ≀ 1) , (16)

The Scientific World Journal

3 Here, we choose πœ‚ such that

and it has particular solutions of the forms βˆšπœ†π‘₯

π‘¦πš€ = π‘₯𝑝+1/2 π‘’βˆ’π‘–

πœ‚2 βˆ’ πœ‚ + βˆšπœ†π‘₯

Γ— {[(𝑓π‘₯1/2βˆ’π‘ 𝑒𝑖 Γ— 𝑒2𝑖

)

βˆ’π‘βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘βˆ’1/2

π‘₯

π‘’βˆ’2𝑖

}

π‘βˆ’1/2

βˆšπœ†π‘₯ π‘βˆ’1/2

π‘₯

]

βˆ’1

(17)

πœ‚=

1/2βˆ’π‘ βˆ’π‘–βˆšπœ†π‘₯

𝑒

)

2π‘–βˆšπœ†π‘₯ π‘βˆ’1/2

βˆ’π‘βˆ’1/2

βˆ’2π‘–βˆšπœ†π‘₯ βˆ’π‘βˆ’1/2

×𝑒

π‘₯

}

𝑒

π‘βˆ’1/2

π‘₯

]

βˆ’1

(18)

,

βˆšπœ†π‘₯

)

βˆšπœ†π‘₯ π‘βˆ’1/2

π‘₯

π‘βˆ’1/2

}

π‘’βˆ’2𝑖

βˆ’π‘βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘βˆ’1/2

π‘₯

]

(27)

πœ“2 π‘₯ + πœ“1 (2𝑝 + 1) + πœ“πœ†π‘₯ = 𝑓π‘₯(1/2)βˆ’π‘ .

(28)

πœ™ = πœ™ (π‘₯) .

βˆ’1

(19)

,

(π‘’πœ‡π‘₯ πœ™)2 π‘₯ + (π‘’πœ‡π‘₯ πœ™)1 (2𝑝 + 1) + π‘’πœ‡π‘₯ πœ™πœ†π‘₯ = 𝑓π‘₯(1/2)βˆ’π‘ .

(π‘’πœ‡π‘₯ πœ™)1 = π‘’πœ‡π‘₯ (πœ‡πœ™ + πœ™1 ) , βˆšπœ†π‘₯

)

βˆšπœ†π‘₯ π‘βˆ’1/2

π‘₯

π‘βˆ’1/2

}

𝑒2𝑖

βˆ’π‘βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘βˆ’1/2

π‘₯

]

(π‘’πœ‡π‘₯ πœ™)2 = π‘’πœ‡π‘₯ (πœ‡2 πœ™ + 2πœ‡πœ™1 + πœ™2 ) , βˆ’1

(20)

,

where 𝑦2 = 𝑑 𝑦/𝑑π‘₯ , 𝑦 = 𝑦 (𝑧) (𝑧 ∈ C), 𝑓 = 𝑓(𝑧) (an arbitrary given function), and 𝑝, πœ† are given constants. Remark 6. The cases 𝑝 = 0 of (19) and (20) coincide with those (17) and (18). Proof. Set πœ“ = πœ“ (π‘₯) .

(21)

Thus 𝑦1 = πœ‚π‘₯πœ‚βˆ’1 πœ“ + π‘₯πœ‚ πœ“1 , 𝑦2 = πœ‚ (πœ‚ βˆ’ 1) π‘₯πœ‚βˆ’2 πœ“ + 2πœ‚π‘₯πœ‚βˆ’1 πœ“1 + π‘₯πœ‚ πœ“2 .

(22)

𝑝2 βˆ’ 1/4 ] = 𝑓. π‘₯2

With some rearrangement of the terms in (23), we have πœ“2 π‘₯ + πœ“1 2πœ‚ + πœ“ [π‘₯βˆ’1 (πœ‚2 βˆ’ πœ‚ +

πœ‡2 + πœ† = 0.

(33)

πœ‡ = Β±βˆšπœ†π‘–.

(34)

That is,

(I) (i): For instance, taking πœ‡ = βˆ’βˆšπœ†π‘–, we have πœ™,

πœ™2 π‘₯ + πœ™1 [βˆ’βˆšπœ†π‘–2π‘₯ + 2𝑝 + 1] (23)

1 βˆ’ 𝑝2 ) + πœ†π‘₯] = 𝑓π‘₯1βˆ’πœ‚ . 4 (24)

(32)

Choose πœ‡ such that

βˆšπœ†π‘–π‘₯

πœ“2 π‘₯πœ‚ + πœ“1 2πœ‚π‘₯πœ‚βˆ’1 + πœ“πœ‚ (πœ‚ βˆ’ 1) π‘₯πœ‚βˆ’2 + π‘₯πœ‚ πœ“ [πœ† βˆ’

+ πœ™ (2π‘πœ‡ + πœ‡ + π‘₯ (πœ‡2 + πœ†)) = 𝑓π‘₯(1/2)βˆ’π‘ π‘’βˆ’πœ‡π‘₯ .

πœ“ = π‘’βˆ’

Putting (21) and (22) in (16), we obtained

(31)

and substituting from (29) and (31) in (30), we can express (30) as πœ™2 π‘₯ + πœ™1 (2πœ‡π‘₯ + 2𝑝 + 1)

2

𝑦 = π‘₯πœ‚ πœ“,

(30)

At this point, differentiating π‘’πœ‡π‘₯ πœ™ two times,

βˆšπœ†π‘₯

Γ— {[(𝑓π‘₯1/2+𝑝 π‘’βˆ’π‘–

(29)

Rewrite (28) in the form

π‘¦πš€V = π‘₯βˆ’π‘+1/2 𝑒𝑖

Γ— π‘’βˆ’2𝑖

𝑦 = π‘₯𝑝+(1/2) πœ“,

πœ“ = π‘’πœ‡π‘₯ πœ™,

Γ— {[(𝑓π‘₯1/2+𝑝 𝑒𝑖

2

(26)

Set

βˆšπœ†π‘₯

Γ— 𝑒2𝑖

1 Β± 𝑝. 2

(I) Let πœ‚ = 𝑝 + (1/2). From (21) and (24), we have

βˆšπœ†π‘₯

π‘¦πš€πš€πš€ = π‘₯βˆ’π‘+1/2 π‘’βˆ’π‘–

(25)

That is,

,

π‘¦πš€πš€ = π‘₯𝑝+1/2 𝑒𝑖

Γ— {[(𝑓π‘₯

1 βˆ’ 𝑝2 = 0. 4

+ πœ™ [βˆ’π‘– (2𝑝 + 1) βˆšπœ†] = 𝑓π‘₯(1/2)βˆ’π‘ π‘’βˆ’πœ‡π‘₯

(35)

(36)

from (29) and (32). Applying the operator 𝑁] to both members of (36), we find the following equality: [πœ™2 π‘₯]] + {πœ™1 [βˆ’βˆšπœ†π‘–2π‘₯ + 2𝑝 + 1]}] + {πœ™ [βˆ’π‘– (2𝑝 + 1) βˆšπœ†]}] = [𝑓π‘₯(1/2)βˆ’π‘ π‘’βˆ’πœ‡π‘₯ ]] .

(37)

4

The Scientific World Journal Applying the operator 𝑁] to both members of (47), we have

Using (3)–(12), we have [πœ™2 π‘₯]] = π‘₯πœ™2+] + ]πœ™1+] , {πœ™1 [βˆ’βˆšπœ†π‘–2π‘₯ + 2𝑝 + 1]}]

(38)

πœ™2+] π‘₯ + πœ™1+] [2βˆšπœ†π‘–π‘₯ + 2𝑝 + 1 + ]] + πœ™] [βˆšπœ†π‘– (2𝑝 + 1) 𝑖] = (𝑓π‘₯(1/2)βˆ’π‘ π‘’βˆ’π‘–

= πœ™1+] [βˆ’βˆšπœ†π‘–2π‘₯ + 2𝑝 + 1] βˆ’ βˆšπœ†π‘–2]πœ™] . Making use of the relations (38), rewrite (37) in the following form:

βˆšπœ†π‘₯

βˆ’ πœ™] [βˆšπœ†π‘–2] + 𝑖 (2𝑝 + 1) βˆšπœ†] = [𝑓π‘₯(1/2)βˆ’π‘ 𝑒𝑖

].

(39)

]

]

(40)

(41)

×𝑒

πœ™βˆ’π‘+1/2 = πœ” = πœ” (π‘₯) ,

(42)

we obtain the following equality from (41): 1 πœ”1 + πœ” [π‘₯βˆ’1 (𝑝 + ) βˆ’ 2βˆšπœ†π‘–] 2 ]

βˆ’π‘βˆ’1/2

(43)

π‘₯βˆ’1 .

This is an ordinary differential equation of the first order which has a particular solution, πœ” = [[𝑓π‘₯

(1/2)βˆ’π‘ βˆ’π‘–βˆšπœ†π‘₯

𝑒

βˆšπœ†π‘₯

)

𝑒

]

βˆ’π‘βˆ’1/2

2βˆšπœ†π‘–π‘₯ βˆ’π‘βˆ’1/2

×𝑒

π‘₯

βˆ’1 βˆ’2βˆšπœ†π‘–π‘₯ 𝑝+1/2

π‘₯ 𝑒

π‘₯

]

βˆ’1

π‘₯

π‘₯βˆ’1 𝑒2

(45)

satisfies (41). Therefore, (17) satisfies (16) because we have (27), (35), (44), and (45). (I) (ii): In the case when πœ‡ = βˆšπœ†π‘–, we have βˆšπœ†π‘–π‘₯

πœ™,

(46)

πœ™2 π‘₯ + πœ™1 [2βˆšπœ†π‘–π‘₯ + 2𝑝 + 1] + πœ™ [(2𝑝 + 1) βˆšπœ†π‘–] = 𝑓π‘₯(1/2)βˆ’π‘ π‘’βˆ’π‘–

βˆšπœ†π‘₯

π‘₯

𝑑π‘₯]

βˆ’1

(52)

Thus, we have (18) from (52), (50), (46), and (27). (II) Let πœ‚ = βˆ’π‘ + (1/2). With the help of the similar method in (I), replacing 𝑝 by βˆ’π‘ in (I) (i) and (I) (ii), we have other solutions (19) and (20) different from (17) and (18), respectively, if 𝑝 =ΜΈ 0.

3. The Operator 𝑁] -Method to a Homogeneous Bessel Equation π‘œ

𝐿 [𝑦, π‘₯, 𝑝] = 𝑦2 + 𝑦 [πœ† βˆ’

πœ“=𝑒

π‘₯

.

(44)

Making use of the reverse process to obtain π‘¦πš€ , we finally obtain the solution (17) from (44), (42), (35), and (27). Inversely, (44) satisfies (43); then

from (29) and (32).

βˆ’π‘βˆ’1/2

Theorem 7. If 𝑦 ∈ β„˜, just as in Theorem 5, then the homogeneous Bessel equation

.

πœ™ = πœ”π‘βˆ’1/2

)

(51)

βˆ’1

βˆšπœ†π‘–π‘₯ 𝑝+1/2

βˆ’π‘βˆ’1/2

βˆ’2βˆšπœ†π‘–π‘₯ βˆ’π‘βˆ’1/2

(1/2)βˆ’π‘ π‘–βˆšπœ†π‘₯

(50)

from (48). A particular solution of (51) is given by πœ— = [(𝑓π‘₯1/2βˆ’π‘ π‘’βˆ’π‘–

from (39). Next, writing

βˆšπœ†π‘₯

(49)

1 πœ—1 + πœ— [2βˆšπœ†π‘– + (𝑝 + ) π‘₯βˆ’1 ] 2 = (𝑓π‘₯

1 βˆ’ 2βˆšπœ†π‘–π‘₯] 2

βˆ’π‘βˆ’1/2

= [𝑓π‘₯(1/2)βˆ’π‘ 𝑒𝑖

1 2

πœ™βˆ’π‘+1/2 = πœ— = πœ— (π‘₯) ,

We then have

βˆšπœ†π‘₯

]

we then obtain

1 ] = βˆ’π‘ βˆ’ . 2

= [𝑓π‘₯(1/2)βˆ’π‘ 𝑒𝑖

(48)

and replacing

Choose ] such that

πœ™βˆ’π‘+3/2 π‘₯ + πœ™βˆ’π‘+1/2 [𝑝 +

).

Choosing ] such that ] = βˆ’π‘ βˆ’

πœ™2+] π‘₯ + πœ™1+] [βˆ’βˆšπœ†π‘–2π‘₯ + 2𝑝 + 1 + ]]

βˆšπœ†π‘₯

(47)

𝑝2 βˆ’ 1/4 ] = 0, π‘₯2

(53)

(0 < π‘₯ ≀ 1) , has solutions of the forms π‘¦πš€ = π‘˜π‘₯𝑝+1/2 π‘’βˆ’π‘–

βˆšπœ†π‘₯

βˆšπœ†π‘₯

π‘¦πš€πš€ = π‘˜π‘₯𝑝+1/2 𝑒𝑖

π‘¦πš€πš€πš€ = π‘˜π‘₯βˆ’π‘+1/2 π‘’βˆ’π‘– π‘¦πš€V = π‘˜π‘₯βˆ’π‘+1/2 𝑒𝑖

{𝑒2𝑖

βˆšπœ†π‘₯ βˆ’π‘βˆ’1/2

{π‘’βˆ’2𝑖

βˆšπœ†π‘₯

βˆšπœ†π‘₯

π‘₯

}

βˆšπœ†π‘₯ βˆ’π‘βˆ’1/2

π‘₯

{𝑒2𝑖

{π‘’βˆ’2𝑖

βˆšπœ†π‘₯ π‘βˆ’1/2

π‘βˆ’1/2

}

π‘₯

}

βˆšπœ†π‘₯ π‘βˆ’1/2

}

π‘₯

for 𝑝 =ΜΈ 0, where π‘˜ is an arbitrary constant.

,

(54)

,

(55)

π‘βˆ’1/2

,

(56)

,

(57)

βˆ’π‘βˆ’1/2

βˆ’π‘βˆ’1/2

The Scientific World Journal

5

Remark 8. In the case when 𝑝 = 0, (56) and (57) coincide with (54) and (55). Proof. When 𝑓 = 0 in Section 2, we have

0.4

0.6

0.8

1.0

βˆ’0.5

1 πœ”1 + πœ” [(𝑝 + ) π‘₯βˆ’1 βˆ’ 2βˆšπœ†π‘–] = 0, 2

(58)

1 πœ—1 + πœ— [(𝑝 + ) π‘₯βˆ’1 + 2βˆšπœ†π‘–] = 0, 2

(59)

βˆ’1.0

for πœ‡ = βˆ’π‘–βˆšπœ† and πœ‡ = π‘–βˆšπœ†, instead of (43) and (51). Therefore, we get (54) for (58) and (55) for (59). And, for πœ‚ = βˆ’π‘ + (1/2), replacing 𝑝 by βˆ’π‘ in (58) and (59), we have (56) and (57). π‘œ

0.2

βˆ’1.5

Figure 1: Rey.

π‘œ

Theorem 9. Let 𝑦 ∈ β„˜ and 𝑓 ∈ β„˜ just as in Theorem 5. Then the nonhomogeneous modified Sturm-Liouville equation (16) is satisfied by the fractional differintegrated functions 𝑦 = π‘¦πš€ + π‘¦πš€ .

(60)

0.8 0.6

Proof. It is clear by Theorems 5 and 7.

0.4

Application 1. If we substitute 𝑝 = 0, πœ† = 1/4, and 𝑓 = 𝑖π‘₯βˆ’1/2 π‘’βˆ’(𝑖/2)π‘₯ in (16), then we obtain the following equation:

0.2

1 1 𝑦2 + 𝑦 ( + 2 ) = 𝑖π‘₯βˆ’1/2 π‘’βˆ’(𝑖/2)π‘₯ , 4 4π‘₯

(61)

0.2

0.4

0.6

0.8

1.0

Figure 2: Imy.

and its solution is 𝑦 = π‘₯1/2 𝑒(βˆ’π‘–/2)π‘₯ {[(𝑖π‘₯βˆ’1/2 π‘’βˆ’(𝑖/2)π‘₯ π‘₯1/2 𝑒(𝑖/2)π‘₯ )βˆ’1/2 Γ— π‘’βˆ’π‘–π‘₯ π‘₯βˆ’1/2 ]βˆ’1 𝑒𝑖π‘₯ π‘₯βˆ’1/2 }

βˆ’1/2

.

(62)

By performing the necessary operations in (62), we get 𝑦 = π‘₯1/2 𝑒(βˆ’π‘–/2)π‘₯ {[

2π‘–βˆšπ‘₯ βˆ’π‘–π‘₯ βˆ’1/2 𝑒 π‘₯ ] 𝑒𝑖π‘₯ π‘₯βˆ’1/2 } , βˆšπœ‹ βˆ’1 βˆ’1/2

(63)

π‘₯ 𝑖 1 2π‘–βˆšπ‘₯ , 𝑑𝑑 = ∫ βˆšπœ‹ Ξ“ (1/2) 0 √π‘₯ βˆ’ 𝑑

𝑦=π‘₯

1/2 (βˆ’π‘–/2)π‘₯

𝑒

2π‘₯βˆ’1/2 ) , (βˆ’ βˆšπœ‹ βˆ’1/2

𝑦 = βˆ’2π‘₯1/2 π‘’βˆ’(𝑖/2)π‘₯ .

(64)

(65) (66)

Now, let us show that the last equality is the solution of (61): 1 1 𝑦2 = π‘’βˆ’(𝑖/2)π‘₯ [ π‘₯1/2 + π‘₯βˆ’3/2 + 𝑖π‘₯βˆ’1/2 ] . 2 2

𝑦2 βˆ’

3 𝑦=0 4π‘₯2

(0 < π‘₯ ≀ 1) ,

𝑦 = π‘˜π‘₯βˆ’1/2 {π‘₯1/2 }βˆ’3/2 .

and using the definitions of Riemann Liouville operator again, we obtain the following solution: π‘₯ 2π‘‘βˆ’1/2 1 2π‘₯βˆ’1/2 ) =βˆ’ 𝑑𝑑 = βˆ’2, (βˆ’ ∫ βˆšπœ‹ βˆ’1/2 Ξ“ (1/2) 0 βˆšπœ‹βˆšπ‘₯ βˆ’ 𝑑

Application 2. If we substitute 𝑝 = βˆ’1 and πœ† = 0 in (53), then we obtain the following equation: (68)

and its solution is

where Riemann Liouville operator is [𝑖]βˆ’1/2 =

Obviously, if (66) and (67) are put in (61), it is satisfied. The graph of the solution of (61) is given in Figures 1 and 2.

(67)

(69)

We prove that π‘¦πš€ is the solution of (67). With the help of Riemann Liouville operator, [π‘₯βˆ’1/2 ]βˆ’1/2 =

π‘₯ βˆšπœ‹π‘₯2 𝑑1/2 1 𝑑𝑑 = , ∫ Ξ“ (3/2) 0 √π‘₯ βˆ’ 𝑑 4

𝑦=

π‘˜π‘₯3/2 βˆšπœ‹ . 4

(70) (71)

Now, let us show that the last equality is the solution of (67), 𝑦2 =

3π‘˜π‘₯βˆ’1/2 βˆšπœ‹ . 16

(72)

Obviously, if (71) and (72) are put into (68), it is satisfied. The graph of the solution of (68) is given in Figure 3.

6

The Scientific World Journal 𝑦(𝚀𝚀𝚀) = π‘₯βˆ’π‘π‘–+1/2 π‘’βˆ’π‘–

2.0

βˆšπœ†π‘₯ βˆšπœ†π‘₯

Γ— {[(𝑓π‘₯1/2+𝑝𝑖 𝑒𝑖

)

π‘π‘–βˆ’1/2

1.5

Γ— 𝑒2𝑖

1.0

βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

π‘₯

}

π‘’βˆ’2𝑖

βˆ’π‘π‘–βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

π‘₯

]

βˆ’1

,

βˆšπœ†π‘₯

𝑦(𝚀V) = π‘₯βˆ’π‘π‘–+1/2 𝑒𝑖

0.5

Γ— {[(𝑓π‘₯1/2+𝑝𝑖 π‘’βˆ’π‘– 0.2

0.4

0.6

0.8

1.0

βˆšπœ†π‘₯

)

βˆ’2π‘–βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

×𝑒

π‘₯

π‘π‘–βˆ’1/2

𝑒2𝑖

}

βˆ’π‘π‘–βˆ’1/2

Figure 3

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

π‘₯

]

βˆ’1

. (76)

(ii) In the same way, for the solutions for (75), substituting the relations (21), and (22) into (75), we have

4. Two Further Cases of Modified Bessel Equation Theorem 10. In the similar way as in the previous sections, we can solve the following nonhomogeneous modified Bessel equation:

πœ™2 π‘₯ + πœ™1 2] + πœ™ [(]2 βˆ’ ] + Choose ] as follows: ]2 βˆ’ ] +

(1/4) + 𝑝2 ] = 𝑓, 𝑦2 + 𝑦 [πœ† + π‘₯2

(73)

(1/4) + 𝑝2 ] = 𝑓, 𝑦2 + 𝑦 [βˆ’πœ† + π‘₯2

(74)

(75)

(i) Therefore, the solutions for (74) are given by replacing 𝑝 by 𝑖𝑝 in (17), (18), (19), and (20) as follows:

(𝚀𝚀)

𝑦

=π‘₯

𝑦 = π‘₯𝑝𝑖+(1/2) πœ™,

1/2βˆ’π‘π‘– π‘–βˆšπœ†π‘₯

𝑒

)

βˆ’2π‘–βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

βˆ’π‘π‘–βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

.

(81)

Next, set (29); then (81) is rewritten in the form

Substituting the relations (29) and (31) into (82), we have πœ“2 π‘₯ + πœ“1 (2πœ‡π‘₯ + 2𝑝𝑖 + 1) + πœ“ [(πœ‡2 βˆ’ πœ†) π‘₯ + (2𝑝𝑖 + 1) πœ‡] = 𝑓π‘₯(1/2)βˆ’π‘–π‘ π‘’βˆ’πœ‡π‘₯ .

π‘₯

}

𝑒

π‘π‘–βˆ’1/2

π‘₯

]

βˆ’1

(83)

πœ‡2 βˆ’ πœ† = 0.

(84)

πœ‡ = Β±βˆšπœ†.

(85)

That is,

,

(ii. 1) In the case when πœ‡ = βˆ’βˆšπœ†, we have

𝑝𝑖+1/2 π‘–βˆšπœ†π‘₯

𝑒

βˆšπœ†π‘₯

πœ™ = π‘’βˆ’

1/2βˆ’π‘π‘– βˆ’π‘–βˆšπœ†π‘₯

Γ— π‘’βˆ’2𝑖

(80) (1/2)βˆ’π‘π‘–

Choose πœ‡ as follows:

βˆšπœ†π‘₯

Γ— {[(𝑓π‘₯

(79)

(π‘’πœ‡π‘₯ πœ“)2 π‘₯ + (π‘’πœ‡π‘₯ πœ“)1 (2𝑖𝑝 + 1) βˆ’ π‘’πœ‡π‘₯ πœ“πœ†π‘₯ = 𝑓π‘₯(1/2)βˆ’π‘π‘– . (82)

2

Γ— 𝑒2𝑖

1 Β± 𝑝𝑖. 2

πœ™2 π‘₯ + πœ™1 (2𝑝𝑖 + 1) βˆ’ πœ™πœ†π‘₯ = 𝑓π‘₯

(1/4) βˆ’ (𝑖𝑝) 𝑦2 + 𝑦 [βˆ’πœ† + ] = 𝑓. π‘₯2

Γ— {[(𝑓π‘₯

(78)

Let ] = 𝑝𝑖 + (1/2). From (21) and (77), we have

2

(1/4) βˆ’ (𝑖𝑝) ] = 𝑓, 𝑦2 + 𝑦 [πœ† + π‘₯2

𝑦(𝚀) = π‘₯𝑝𝑖+1/2 π‘’βˆ’π‘–

1 + 𝑝2 = 0. 4

That is ]=

which are obtained by replacing 𝑝 by 𝑖𝑝 (βˆ’πœ† instead of πœ†) in (16); that is,

1 2 βˆ’ (𝑝𝑖) ) π‘₯βˆ’1 βˆ’ πœ†π‘₯] = 𝑓π‘₯1βˆ’] . 4 (77)

𝑒

)

βˆ’π‘π‘–βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

π‘₯

2π‘–βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

}

𝑒

π‘π‘–βˆ’1/2

π‘₯

,

]

βˆ’1

πœ“,

(86)

πœ“2 π‘₯ + πœ“1 (βˆ’2βˆšπœ†π‘₯ + 2𝑝𝑖 + 1) βˆšπœ†π‘₯

βˆ’ πœ“ [βˆšπœ† (2𝑝𝑖 + 1)] = 𝑓π‘₯(1/2)βˆ’π‘π‘– 𝑒 from (29) and (83).

(87)

The Scientific World Journal

7

Applying the operator 𝑁] to both members of (87), we then obtain (πœ“2 π‘₯)] + [πœ“1 (βˆ’2βˆšπœ†π‘₯ + 2𝑝𝑖 + 1)]] βˆšπœ†π‘₯

+ {πœ“ [βˆ’βˆšπœ† (2𝑝𝑖 + 1)]}] = (𝑓π‘₯(1/2)βˆ’π‘π‘– 𝑒

).

(88)

]

Using (4), (10), and (11), we have

βˆšπœ†π‘₯

+ πœ“] [βˆ’βˆšπœ† (2𝑝𝑖 + 1 + 2V)] = (𝑓π‘₯(1/2)βˆ’π‘π‘– 𝑒

).

(89)

]

Choose ] such that (90)

We then have

from (91). This is an ordinary differential equation of the first order which has a particular solution

2βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

×𝑒

π‘₯

βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

π‘₯

]

βˆ’1

(94)

.

We finally obtain the solution βˆšπœ†π‘₯

𝑦(𝚀) = π‘₯𝑝𝑖+1/2 π‘’βˆ’

βˆšπœ†π‘₯

Γ— {[(𝑓π‘₯1/2βˆ’π‘π‘– 𝑒 βˆšπœ†π‘₯

Γ— 𝑒2

)

βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

βˆ’π‘π‘–βˆ’1/2

π‘₯βˆ’π‘π‘–βˆ’1/2 }

π‘’βˆ’2

π‘π‘–βˆ’1/2

π‘₯

]

βˆ’1

(95)

.

from (94), (92), (86) and (80). (ii. 2) Similarly, in the case when πœ‡ = βˆšπœ†, we obtain βˆšπœ†π‘₯

𝑦(𝚀𝚀) = π‘Ÿπ‘π‘–+1/2 𝑒

βˆšπœ†π‘₯

Γ— {[(𝑓π‘₯1/2βˆ’π‘π‘– π‘’βˆ’

)

βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

βˆ’π‘π‘–βˆ’1/2

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

Γ— π‘’βˆ’2

π‘₯

}

𝑒2

π‘π‘–βˆ’1/2

.

π‘₯

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

π‘₯

(𝑒2𝑖

(π‘’βˆ’2𝑖

βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

π‘₯

βˆšπœ†π‘₯ π‘π‘–βˆ’1/2

π‘₯

π‘π‘–βˆ’1/2

)

)

)

,

π‘π‘–βˆ’1/2

, (97)

βˆ’π‘π‘–βˆ’1/2

βˆ’π‘π‘–βˆ’1/2

,

,

(92)

1 √ 𝑒1 + 𝑒 [βˆ’2βˆšπœ† + (𝑝𝑖 + ) π‘₯βˆ’1 ] = (𝑓π‘₯(1/2)βˆ’π‘π‘– 𝑒 πœ†π‘₯ ) π‘₯βˆ’1 βˆ’π‘π‘–βˆ’1/2 2 (93)

π‘’βˆ’2

)

The 𝑁-fractional calculus operator 𝑁] -method is applied to the nonhomogeneous and homogeneous Bessel equation. Explicit fractional solutions of Bessel equations are obtained. Furthermore, similar solutions were obtained for the modified same equation by using the method.

we obtain

βˆ’π‘π‘–βˆ’1/2

βˆšπœ†π‘₯

π‘₯

5. Conclusion

βˆ’π‘π‘–βˆ’1/2

πœ“1/2βˆ’π‘π‘– = 𝑒 = 𝑒 (π‘₯) ,

)

(π‘’βˆ’2𝑖

βˆšπœ†π‘₯

𝑦(𝚀V) = 𝛼π‘₯βˆ’π‘π‘–+1/2 𝑒𝑖

βˆšπœ†π‘₯ βˆ’π‘π‘–βˆ’1/2

(91)

)

from (89). Next, writing

βˆšπœ†π‘₯

βˆšπœ†π‘₯

𝑦(𝚀𝚀) = 𝛼π‘₯𝑝𝑖+1/2 𝑒𝑖

(𝑒2𝑖

for 𝑝 =ΜΈ 0, where 𝛼 is an arbitrary constant.

1 πœ“2βˆ’π‘π‘–βˆ’1/2 π‘₯ + πœ“1βˆ’π‘π‘–βˆ’1/2 [βˆ’2βˆšπœ†π‘₯ + 𝑝𝑖 + ] 2

𝑒 = [(𝑓π‘₯(1/2)βˆ’π‘π‘– 𝑒

βˆšπœ†π‘₯

𝑦(𝚀𝚀𝚀) = 𝛼π‘₯βˆ’π‘π‘–+1/2 π‘’βˆ’π‘–

1 ] = βˆ’π‘π‘– βˆ’ . 2

βˆšπœ†π‘₯

Theorem 11. In the homogeneous case for (74) with 𝑓 = 0, using the solutions (54), (55), (56), and (57) and replacing 𝑝 by 𝑝𝑖, we obtain 𝑦(𝚀) = 𝛼π‘₯𝑝𝑖+1/2 π‘’βˆ’π‘–

πœ“2+] π‘₯ + πœ“1+] (βˆ’2βˆšπœ†π‘₯ + 2𝑝𝑖 + 1 + ])

= (𝑓π‘₯(1/2)βˆ’π‘π‘– 𝑒

Let ] = βˆ’π‘–π‘ + (1/2). In the same way as in the procedure in (ii), replacing 𝑖𝑝 by –𝑖𝑝 (ii. 1) and (ii. 2), we can obtain 𝑦(𝚀𝚀𝚀) and 𝑦(𝚀V) .

]

βˆ’1

(96)

Acknowledgment The authors sincerely thank the reviewers for their valuable suggestions and useful comments.

References [1] L. Adam, Fractional Calculus: History, Definitions and Applications For the Engineer, 2004. [2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, The Netherlands, 2006. [3] I. Podlubny, Fractional Differential Equations: An Introduction To Fractional Derivatives, Fractional Differential Equations, Methods of Their Solution and Some of Their Applications, Mathematics in Science and Enginering, vol. 198, Academic Press, New York, NY, USA, 1999. [4] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications Translated From the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications, β€œNauka i Tekhnika”, Minsk, (1987), Gordon and Breach Science Publishers, Reading, UK, 1993. [5] K. B. Oldham and J. Spanier, The Fractional Calculus, Akademic Press, New York, NY, USA, 1974. [6] K. Nishimoto, Fractional Calculus, vol. I, Descartes Press, Koriyama, Japan, 1984. [7] K. Nishimoto, Fractional Calculus, vol. II, Descartes Press, Koriyama, Japan, 1987. [8] K. Nishimoto, Fractional Calculus, vol. III, Descartes Press, Koriyama, Japan, 1989.

8 [9] K. Nishimoto, Fractional Calculus, vol. IV, Descartes Press, Koriyama, Japan, 1991. [10] K. Nishimoto, Fractional Calculus, vol. V, Descartes Press, Koriyama, Japan, 1996. [11] K. Nishimoto and S. S. de Romero, β€œπ‘-fractional calculus operator 𝑁] method to nonhomogeneous and homogeneous Whittaker Equations,” Journal of Fractional Calculus, vol. 9, pp. 17–22, 1996. [12] K. Nishimoto, An Essence of Nishimoto’s Fractional Calculus (Calculus of the 21st Century): Integrations and Differentiations of Arbitrary Order, Descartes Press, Koriyama, Japan, 1991. [13] M. Coz and P. Rochus, β€œTranslation kernels for velocity dependent interactions,” Journal of Mathematical Physics, vol. 18, no. 11, pp. 2232–2240, 1976. [14] A. Erdely, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transform, vol. II, McGraw-Hill, New York, NY, USA, 1954. [15] A. Erdely, β€œAxially symmetric potentials and fractional integration,” Journal of the Society for Industrial and Applied Mathematics, vol. 13, pp. 216–228, 1965. [16] A. Weinstein, β€œGeneralized axially symmetric potential theory,” Bulletin of the American Mathematical Society, vol. 59, pp. 20– 38, 1953. [17] B. Ross, Fractional Calculus and Its Applications, Conference Proceedings held at the University of New Haven, June 1974, Springer, New York, NY, USA, 1975. [18] S. Salinas De Romero and H. M. Srivastava, β€œAn application of the 𝑁-fractional calculus operator method to a modified Whittaker equation,” Applied Mathematics and Computation, vol. 115, no. 1, pp. 11–21, 2000. [19] H. M. Srivastava and R. G. Buschman, Theory and Applications of Convolution Integral Equations, vol. 79 of Kluwer Series on Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. [20] H. M. Srivastava, S. Owa, and K. Nishimoto, β€œSome fractional differintegral equations,” Journal of Mathematical Analysis and Applications, vol. 106, no. 2, pp. 360–366, 1985. [21] H. Koyunbakan and E. S. Panakhov, β€œTransformation operator for singular Sturm-Liouville equations,” International Journal of Applied Mathematics, vol. 14, pp. 135–143, 2003.

The Scientific World Journal