Department of Biology. Dalhousie University. Halifax, NS, CANADA. ESA Montreal, 2005. Ian Jonsen (Dalhousie University) http://ram.biology.dal.ca/â¼jonsen/.
Robust Hierarchical Bayes State-Space Models for Animal Movment Ian D. Jonsen Department of Biology Dalhousie University Halifax, NS, CANADA ESA Montreal, 2005
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
1 / 23
Collaborators & Funding
The Sloan Foundation
Ransom Myers Joanna Mills Flemming Mike James Chris Field
Ian Jonsen (Dalhousie University)
Census of Marine Life Future of Marine Animal Populations
NSERC
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
2 / 23
Argos Satellite Telemetry Data
Polar orbiting satellites Doppler shift in frequency used to estimate location Requires at least 2 uplinks 6 location quality classes more uplinks = ↑ quality of location extreme values occur
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
3 / 23
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
4 / 23
Argos Satellite Telemetry Data Getting more out of the data
Infer true locations from noisy data Account for error w/out loss of information Infer behaviour, test hypotheses
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
5 / 23
Argos Satellite Telemetry Data Getting more out of the data
Infer true locations from noisy data Account for error w/out loss of information Infer behaviour, test hypotheses
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
6 / 23
State-Space Models
Process model true location xt+1 = f (true location xt , parameters, process variabiliy)
Observation model observed location yt = h(true location xt , observation error)
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
7 / 23
State-Space Models
Process model true location xt+1 = f (true location xt , parameters, process variabiliy)
Observation model observed location yt = h(true location xt , observation error)
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
7 / 23
Likelihood of 1st location
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
8 / 23
Apply process model
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
9 / 23
Observe location w uncertainty
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
10 / 23
Integrate over predicted & observed densities (Bayes Rule)
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
11 / 23
State estimate at t = 1 is prior for next iteration
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
12 / 23
Data Filtering & Parameter Estimation Jonsen et al. in press. Ecology
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
13 / 23
Navigation Ability: Estimating the “Circle of Confusion” Flemming et al. in review. Environmetrics
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
14 / 23
Leatherback Turtle Migration
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
15 / 23
Examining Diel Migration Behaviour in Leatherbacks
xt = xt−1 + αd + η
Process
A one-dimensional random walk with drift model Focus only on southward movement
yt = xt +t
Ian Jonsen (Dalhousie University)
Observation
αd = migration rate at day or night
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
16 / 23
Hierarchical Bayes State-Space Model µα1 ∼ N(0, 104 )
σα1 ∼ U(0, 1)
Hyper-priors
µα1
σα1
Hyper-parameters
2 π(α1 ) ∼ N(µα1 , σα ) 1
α1,1
...
Prior
α1,14
ft (xt,1 |xt−1,1 , α1,1 , α2,1 , σ1 )
ht (yt,i,1 |xt,1 , τt,i , νt,i )
yt,1
Ian Jonsen (Dalhousie University)
Parameters
...
...
Process sampling densities
...
Observation sampling densities
...
Data
...
http://ram.biology.dal.ca/∼jonsen/
...
ft (xt,14 |xt−1,14 , α1,14 , α2,14 , σ14 )
ht (yt,i,14 |xt,14 , τt,i , νt,i )
yt,14
ESA Montreal, 2005
17 / 23
Hierarchical Bayes State-Space Model µα1 ∼ N(0, 104 )
σα1 ∼ U(0, 1)
µα2 ∼ N(0, 104 )
σα2 ∼ U(0, 1)
µσ ∼ U(0, 1)
σσ ∼ U(0, 1)
µα1
σα1
µα2
σα2
µσ
σσ
2 π(α1 ) ∼ N(µα1 , σα ) 1
α1,1
...
α1,14
2 π(α2 ) ∼ N(µα2 , σα ) 2
α2,1
...
α2,14
2 π(σ) ∼ N(µσ , σσ )I(0, )
σ1
...
σ14
ft (xt,1 |xt−1,1 , α1,1 , α2,1 , σ1 )
...
ft (xt,14 |xt−1,14 , α1,14 , α2,14 , σ14 )
ht (yt,i,1 |xt,1 , τt,i , νt,i )
...
ht (yt,i,14 |xt,14 , τt,i , νt,i )
yt,1
...
yt,14
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
Ian Jonsen (Dalhousie University)
18 / 23
HB SSM Model Results Diel Variation in Migration Rate
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
19 / 23
Summary
Hierarchical state-space models optimal way to infer underlying behaviour from error-prone, complex data Models can be fit to other types of sequential movement data (GPS, Archival tags) Got Data??, http://ram.biology.dal.ca/∼jonsen/
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
20 / 23
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
21 / 23
dt = γT(θ)dt−1 + N(0, Σ2t )
2 yt,i = (1 − ji )xt−1 + ji xt + t(0, τt,i , νt,i )
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
22 / 23
Likelihood Surface Plots: Argos errors are Non-Gaussian Robust methods needed
Ian Jonsen (Dalhousie University)
http://ram.biology.dal.ca/∼jonsen/
ESA Montreal, 2005
23 / 23