Robust PID Controller for a Pneumatic Actuator - MATEC Web of ...

20 downloads 0 Views 202KB Size Report
In this paper the position control pneumatic actuator using a robust PID controller is presented. The ... valve linearized around an initial spool valve position.
MATEC Web of Conferences 41, 0 2 0 0 1 (2016 ) DOI: 10.1051/ m atecconf/ 2016 4 1 0 2 0 0 1  C Owned by the authors, published by EDP Sciences, 2016

     0LFKDHO*6NDUSHWLVD)RWLV1.RXPERXOLV*HRUJH3DQDJLRWDNLVDQG1LNRODRV'.RXYDNDV 1

Department of Automation Eng., Technological Educational Institute of Sterea Ellada, 34400 Psahna Evias, Chalkida, Greece

$EVWUDFW                 

                     

     !   "  #        $   %



 %         !!              ! !!& !     !"  !   '     ! !      !     

    $           



  (  

         

                    ) "    #   *  "& #   !   " +,-. /    #      !   

         ! "       +  01230142.   #     "             "         "      !                         "         "     !           !  

     !   "  # 0152& 0162    $   %



  # 0112 - &                   #             "   "   

      & 

    072& 0152   0162    !                 

      ! !     

Pb (t ) 

aRTK v Ps 2(V0  Ap y p (t ))

u(t )

aPb (t )Ap (V0  Ap y p (t ))

y p (t ) +4.

1 1 FL (t )  y p (t ) +5. M M M M  Pa (t )    Pb (t )       a  yp (t ) 

Ap

Pa (t ) 

Ap

Pb (t ) 

  b   " & y p (t )         & u(t )  !!  & FL (t )      & M      & Ap     &V0   !           & R       & a         & T    & K v   !!     Ps       yp

M

Pa

Pb

    "  "   "! !!             !!     + -  1.    '   "  

  

     #  052&062  aPa (t )Ap aRTK v Ps Pa (t )  u(t )  y (t ) +1. 2(Ap y p (t ) V0 ) (Ap y p (t ) V0 ) p

u

)LJXUH   



    " +1.3+5. # ! "3   



 

    

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits XQUHVWULFWHGXVH distribution, and reproduction in any medium, provided the original work is cited. Article available at http://www.matec-conferences.org or properly http://dx.doi.org/10.1051/matecconf/20164102001

)%=>  

 x(t )  f x (t ) g x (t ) u(t )

1 F (t )    M L

T  x (t )   ¡ Pa (t ) Pb (t ) y p (t ) y p (t ) ¯° & ¢ ±

  ¯ aPa (t )Ap ¡ ° ¡ (A y (t ) V ) y p (t ) ° ¡ ° 0 p p ¡ ° aPb (t )Ap ¡ ° f x (t )  ¡ y p (t ) ° ¡ (Ap y p (t ) V0 ) ° ¡ ° ¡ Ap ° Ap 1 ¡ P (t )  °  y t Pb (t )  ( ) a p ¡¢ M °± M M   aRTK v Ps ¯ ¡ ° ¡ 2(A y (t ) V ) ° 0 p p ¡ ° ¡ aRTK P ° v s ¡ ° g x (t )  ¡ ° A y t V 2( ( ) )  ¡ 0 ° p p ¡0 ° ¡¢ °±     " +6.         #      Pa,0 , Pb,0 , y p,0 , y p,0 , u0  " 

 



       %x(t )  A(q )%x (t ) B(q )%u(t ) DFL (t ) +?. %yh (t )  C %x (t )    %Pa (t ) ¯ ¡ ° ¡ %P (t ) ° b ¡ ° %x (t )  ¡ °  % y ( t ) ¡ p ° ¡ %y (t ) ° ¡¢ p °±    !     "&     %Pa (t )  Pa (t )  Pa,0 & %Pb (t )  Pb (t )  Pb,0 &

aAp (2y p,0Ap Pa 0  Ru0q 4PsTb ) ¯ ° ° q1 Ap y p,0 2(V0 Ap y p,0 )2 ° ° aAp Pb,0 aAp (2y p,0Ap Pb,0  Rq 4u0PsTb ) ° ° ° & q1  Ap y p,0 2(V0  Ap y p,0 )2 ° ° q2 °  0 ° q3 ° ° 1 0 °±   aRq 4PsTb ¯ ¡ °   0 ¯ ¡ 2(q A y ) ° ¡ ° 1 p p ,0 ¡ ° ¡ 0 °° ¡ aRq P T ° ¡ 4 s b ° B(q )  ¡¡ ° , D  ¡¡ 1 °° ,  2 2 A y q ¡ p p,0 1 ° ¡M ° ¡ ° ¡ ° 0 ¡ ° ¡ 0 ° ¡ ° ¢ ± 0 ¡¢ °± C   ¡ 0 0 0 1 ¯°  ¢ ± !  q   ¡ q1 q2 q 3 q 4 ¯°   ¡V0 f M Kv ¯° ‰ _  ¢ ± ¢ ±    "! !!

!       !&!   !  

   & !    !!  !    _         "    !      "      1    '   

  !            4 

aAp Pa,0

 

7DEOH@ B$" 

$"    

@ B

Ap 

  %

0, 005m 2 

 

R

    

287 J / Kg * K 

%u(t )  u(t )  u0         

Ps 

$ " 

4 * 105 Pa

 !      !     #      Pa,0 , Pb,0 , y p,0 , y p,0 , u 0 

Tb 

%  

293,15K

a

$    

1.4 

"    ay p,0Ap ¡ 0 ¡ q Ay ¡ 1 p p,0 ¡ ay p,0Ap ¡ 0 ¡  A(q )  ¡ q1  Ap y p,0  ¡ ¡ Ap Ap ¡  ¡ M M ¡ 0 0 ¡¢

 7DEOH   ='   /

  B        6\PERO 'HILQLWLRQ 0LQ 1RP 9DOXHV 9DOXHV     ! 2.5*104 4 V0  1.5*10   (m 3 ) 

%y p (t )  y p (t )  y p,0 &

%y p (t )  y p (t )  y p,0 

o



 D   0D[ 9DOXHV

4*104 

f

B  

   N sec ­¬ žž ­ Ÿž m ­­®

50 

60 

80 

M

E ) (Kg ) 

0.1 

1

2

02001-p.2

MCEEA ’15

B!

   Kg žž žŸ sec* V

Kv 

3.2 * 103 ¬­  ­­  ­®

3.4 * 103  

         "+?. " + - 4. t

%u(t )  K pe(t ) Ki ¨ e(U )d U Kd 0

de(t ) +F. dt

 e(t )  rref (t )  %y p (t )    rref    '   +  .

         "     ¬ P P žž P  s , P  s , y  0, y  0, u ­­  0­ b,0 p,0 p,0 žŸž a,0 ­® 2 2    pc (s, q, K i , K p , Kd )  +G. s 4 f3 (q )s 3 f2 (q, Kd )s 2 f1 (q, K p )s f0 (q, Ki )  f3 (q ) 

q2 q3

&

f2 (q, K D ) 

f1(q, K p )  f0 (q, Ki ) 

aAp Ps (Ap RKd q 4Tb ) q 3q1

aRAp K pq 4PsTb

q 3q1

% "

                 "   +G.  

 !       K p H5& Ki HH? & K d H? 

&

q 3q1 aRAp Kiq 4PsTb



&

 3.1.2 Simulation results



D

   !   1   4&        &  '        HH1    '    HH103t2&                &    

        - 53G  

FL (t ) rref (t )

u(t )

e(t )

KI



x p (t ) K D

v p (t )

y p (t )

¨ d dt

KP



)LJXUH / 

3.1.1 Finite step algorithm              

  

            011230152 )LJXUH %    

02001-p.3





MATEC Web of Conferences

wlocily m/ff::,c

References

0.025

0.02Jl

2 0.015

0.010

3

2

4

6

8

10

Figure 4. Actuator velocity

4

iresoure Pa (Pas ) 2J))800

2J))400

5

2J))2J))

2J))(J))

6 2

4

6

8

10

Figure 5. Actuator differential pressure chamber A

7

8 2J))(J))

199800

9 199600 199400

IO 2

4

6

8

10

Figure 6. Actuator differential pressure chamber B

Acknowledge This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learningn of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARCHIMEDES IIL Investing in knowledge society through the European Social Fund. (ARCHIMEDES IIISTRENGHTENING RESEARCH GROUPS IN TECHNOLOGICAL EDUCATION, NSRF 2007-2013).

11

12

Conclusion The problem of controlling the position of a pneumatic actuator has been studied using a robust arbitrary tracking controller. The performance of the controller to external disturbance and uncertainties has been tested to the nonlinear model of the actuator. The present results can easily be applied to real time environment with appropriate sensor and DSP cards.

13

14

02001-p.4

H. E. Merrit (1966). Hydraulic Control Systems, John Wiley and Sons, Inc.,USA. R. L. Woods and Kent L. Lawrence, Modeling and Simulation of Dynamical Systems, Prentice Hall, New Jersey. S. Laghrouche, M. Smaoui, X. Brun and F. Plestan, Robust second order sliding mode controller for electropneumatic actuator, Proceeding of the 2004 American Control Conference Boston, Massachusetts June 30 - July 2, 2004 Samsul Bahari Mohd Noor, Hazem L Ali* and Mohammad Hamiruce Marhaban, Design of combined robust controller for a pneumatic servo actuator system with uncertainty, Scientific Research and Essays Vol. 6(4), pp. 949-965, 18 February, 2011. P. R. Moore, I. Pu, and R. Harrison, Progression of servo pneumatics towards advanced applications, In Fluid Power Circuit, Component and System Design (Edge, K. and Burrows, C., eds). Research Studies Press, 1993, 347-365. R. B. Van Varseveld, and G. M. Bone, Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Trans. Mechatronics, 1997, 2, 195-204. J. Wang, J. Pu, P.R. Moore, and Z. Zhang, Modeling study and servo-control of air motor systems. Int. J. Control, 1998, 71, 459-476. J. Wang, J. Pu, and P. R Moore, A practicable control strategy for servo pneumatic actuator systems. Control Eng. Pract., 1999, 7, 1483-1488 LG. French, The robust control of a modem electropneumatic actuator, International Conference on Control, 1988. 88. F. N. Koumboulis, M. G. Skarpetis and M. P. Tzamtzi, "Robust PI Controllers for Command Following with Application to an Electropneumatic Actuator", 14th IEEE Mediterranean Conference on Control and Automation (MED'06), June 28-30, 2006, Universit:l Politecnica delle Marche, Ancona, Italy. M. G. Skarpetis, F. N. Koumboulis, and A. S. Ntellis, Robust Control of Pneumatic Clutch Actuators using Simulated Annealing Techniques, 21st Mediterranean Conference on Control and Automation, June 25-28, 2013, Platanias-Chania, Crete, Greece. M. G. Skarpetis, F. N. Koumboulis and A.S. Ntellis, "Robust Arbitrary Reference Command Tracking with Application to Hydraulic Actuators", 9th Conference on Informatics in Control, Automation and Robotics, Rome Italy, 28-31, July 2012. K. Wei, and R. Barmish, "Making a polynomial Hurwitz invariant by choice of feedback gain", Int J. Contr., Vol 50, pp 1025-1038,1989. F.N. Koumboulis, and M.G. Skarpetis, "Robust Triangular Decoupling with Application to 4WS Cars", IEEE Transactions on Automatic Control, vol. 45, pp. 344-352, 2000.