Running Head: THE UTILITY OF VISION 1 The Utility ...

7 downloads 0 Views 2MB Size Report
1. The Utility of Vision During Action: Multiple Visual-‐Motor Processes? ..... more on accuracy than on speed (e.g., Elliott et al., 1991: Experiment 1; Westwood,.
Running  Head:  THE  UTILITY  OF  VISION  

1      

  The  Utility  of  Vision  During  Action:  Multiple  Visual-­‐Motor  Processes?         Luc  Tremblay1,  Steve  Hansen2,  Andrew  Kennedy1,  &  Darian  Cheng1   1Faculty  of  Kinesiology  and  Physical  Education,  University  of  Toronto   2Schulich  School  of  Education,  Nipissing  University  

    AUTHOR  NOTES   This  research  was  supported  by  the  Natural  Sciences  and  Engineering  Research   Council  of  Canada  as  well  as  the  Canada  Foundation  for  Innovation  and  the  Ontario   Research  Fund.   Darian  Cheng  is  now  with  the  University  of  British  Columbia,  Okanagan  Campus.   Correspondence  for  this  article  should  be  sent  to  Luc  Tremblay,  55  Harbord  St.,   Toronto,  ON,  M5S  2W6,  CANADA.  Email:  [email protected].  Phone:  416-­‐946-­‐0200.   Fax:  416-­‐946-­‐5310.     KEY  WORDS:  vision,  online  control,  goal-­‐directed,  pointing

THE  UTILITY  OF  VISION  

2   Abstract  

Recently,  Elliott  et  al.  (2010)  asserted  that  the  current  control  phase  of  a  movement  could   be  segregated  in  multiple  processes,  including  impulse  and  limb-­‐target  regulation  processes.   This  study  aimed  to  provide  further  empirical  evidence  and  determine  some  of  the   constraints  that  govern  these  visual-­‐motor  processes.  In  two  experiments,  vision  was   presented  or  withdrawn  when  limb  velocity  was  above  or  below  selected  velocity  criteria.   We  observed  that  vision  provided  between  0.8  and  0.9  m/s  significantly  improved  impulse   regulation  processes  while  vision  provided  up  to  1.1  m/s  significantly  increased  limb-­‐target   regulation  processes.  These  results  lend  support  to  Elliott  et  al.  (2010)  and  provide   evidence  that  impulse  regulation  and  limb-­‐target  regulation  can  take  place  at  different   velocities  during  a  movement.  

THE  UTILITY  OF  VISION  

3  

  The  Utility  of  Vision  During  Action:  Multiple  Visual-­‐Motor  Processes?     Visual  feedback  is  an  extremely  valuable  source  of  sensory  information  for  the   control  of  goal-­‐directed  actions.  Goal-­‐directed  movements  can  be  adjusted  in  order  to   improve  endpoint  accuracy  and  consistency  when  vision  is  available  (Woodworth,  1899).   These  online  corrections  are  believed  to  occur  during  the  latter  stages  of  movement  (i.e.,   during  the  current  control  phase)  that  follows  an  initial  pre-­‐programmed  phase  of  the   movement  (i.e.,  the  initial  impulse;  Woodworth,  1899;  see  Elliott,  Helsen,  &  Chua,  2001  for  a   review).  However,  the  particular  mechanisms  and  underlying  processes  of  visual  feedback   utilization  remain  unclear.   Beggs  and  Howarth  (1970;  1972)  forwarded  one  of  the  first  theoretical  positions   about  visual  information  usage  during  a  goal-­‐directed  movement.  Some  of  the  chronometric   approaches  in  psychology  enticed  Beggs  and  Howarth  (1970;  1972)  to  suggest  that  a  single   amendment  could  be  made  during  a  rapid  aiming  movement  within  a  delay  equivalent  to   one  reaction  time.  Due  to  the  limits  of  visual-­‐motor  processing,  humans  could  only  use  the   visual  information  that  was  available  at  one  reaction  time  prior  to  the  observed  correction.   It  was  suggested  that  a  single  correction  could  be  implemented  before  the  end  of  a  rapid   movement  because  the  investigated  movements  were  relatively  short  (e.g.,  400  ms)  and   that  reaction  times  were  thought  to  be  not  much  shorter  (i.e.,  then  estimated  at   approximately  250  ms).  Since  Beggs  &  Howarth  initial  investigations  (1970;  1972),  other  

THE  UTILITY  OF  VISION  

4  

researchers  have  shown  that  more  than  one  correction  can  occur  during  a  rapid  aiming   movement  (e.g.,  Elliott  et  al.,  2004;  Meyer  et  al.,  1988).   Meyer  and  colleagues  (1988)  employed  elaborate  kinematic  analyses  to  assess  the   efficiency  of  goal-­‐directed  movements  and  their  underlying  limb  trajectory  amendments.   Using  a  wrist  rotation  movement  that  controlled  the  displacement  of  a  cursor  towards  a   target  on  the  screen,  Meyer  et  al.  (1988)  computed  the  number  of  amendments  that   participants  executed.  For  instance,  a  correction  was  identified  if  the  cursor’s  acceleration   passed  from  negative  to  positive  after  reaching  its  maximum  velocity,  indicating  that  a   secondary  impulse  towards  the  target  had  been  implemented.  In  contrast  with  the   predictions  made  by  Beggs  and  Howarth  (1970;  1972),  Meyer  and  colleagues  (1988)  often   observed  two  or  more  online  limb  trajectory  amendments  during  a  single  movement.  Their   observations  indicated  that  visual  information  might  be  used  on  multiple  occasions  during   a  rapid  movement.   At  the  other  end  of  the  spectrum  of  online  control  models,  Elliott  et  al.  (1991)   proposed  that  visual  information  is  used  continuously  during  visually  guided  actions.  They   observed  that  discrete  trajectory  amendments  occur  in  the  absence  of  vision  (see  also   Woodworth,  1899),  but  that  these  amendments  do  not  contribute  to  endpoint  error   reduction  to  the  same  extent  as  when  vision  is  available  throughout  the  movement.  Based   on  this  observation,  Elliott  et  al.,  (1991)  went  on  to  propose  that  the  visual  system  is   constantly  updating  the  motor  system  in  a  pseudo-­‐continuous  fashion.  Therefore,  there  are   many  overlapping  trajectory  amendments  that  occur  during  each  movement  that  help  to  

THE  UTILITY  OF  VISION  

5  

reduce  endpoint  errors.  Moreover,  these  overlapping  limb  trajectory  corrections  may  go   undetected  at  the  kinematic  level.     More  recently,  Elliott  et  al.  (2010)  reviewed  the  existing  literature  and  forwarded  a   multiple-­‐process  model  of  online  control  of  discrete  goal-­‐directed  actions.  One  set  of  online   control  processes  relates  to  comparing  the  expected  and  actual  sensory  consequences  of   the  primary  movement  impulse.  Specifically,  as  the  initial  limb  impulse  ends,  comparisons   between  the  expected  and  actual  position  of  the  limb  may  be  made  to  regulate  the  initial   limb  impulse  early  in  the  movement.  The  secondary  set  of  online  control  processes  occurs   later  in  the  movement  and  compares  the  relative  positions  of  the  limb  and  target.   Specifically,  a  comparison  of  limb  and  target  position  after  the  initial  impulse  can  be  made   to  home  in  onto  the  target  and  perhaps  correct  errors  arising  from  the  previous  impulse   regulation  processes.  These  processes  can  be  referred  to  as  impulse  and  limb-­‐target   regulation  processes,  respectively.  In  line  with  the  pseudo-­‐continuous  control  principle   (Elliott  et  al.,  1991),  these  processes  are  thought  to  overlap  significantly  during  a  limb   trajectory  (Elliott  et  al.,  2010).  It  is  also  understood  that  online  trajectory  amendments  take   place  more  often  when  required  (see  Khan  et  al.,  2006).   The  purpose  of  the  current  study  was  to  gain  a  better  understanding  of  when   impulse  regulation  and  limb-­‐target  regulation  processes  take  place  during  the  trajectory  of   a  reaching  movement.  According  to  the  model  forwarded  by  Elliott  et  al.  (2010),  impulse   regulation  starts  early  in  the  trajectory  (i.e.,  as  early  as  movement  onset),  while  limb-­‐target   regulation  starts  after  peak  limb  acceleration  (see  Figure  3  of  Elliott  et  al.,  2010).  In  order  to   determine  when  vision  is  used  for  impulse  regulation  and  limb-­‐target  regulation,  we  

THE  UTILITY  OF  VISION  

6  

manipulated  the  presence  of  vision  of  the  entire  visual  field  based  on  the  real-­‐time   characteristics  of  the  limb  while  participants  made  goal-­‐directed  reaches  with  their  index   finger  (see  also  Hansen  et  al.,  2008).  Assuming  that  impulse  and  limb-­‐target  regulation  are   made  based  on  some  kinematic  characteristics  of  the  trajectory  (see  Elliott  et  al.,  2010),  we   anticipated  that  using  real-­‐time  kinematics  to  implement  sensory  manipulations  would   allow  us  to  parse  out  the  influence  of  the  separate  online  regulation  processes.  Specifically,   if  impulse  regulation  takes  place  as  planned  in  the  presence  of  vision,  individuals  should   alter  their  limb  trajectory  based  on  early  visual  feedback  (i.e.,  possibly  before  peak   acceleration)  thereby  influencing  the  variability  in  the  movement  endpoint  distribution  (i.e.,   consistency  or  variable  error).  Because  the  impulse-­‐regulation  processes  are  made  based   on  early  limb  position  (cf.  target  position),  early  trajectory  amendments  associated  with   impulse-­‐regulation  could  yield  greater  influences  on  the  precision  (i.e.,  variable  error)  than   the  bias  or  accuracy  (i.e.,  constant  error)  of  endpoint  distributions.  That  is,  impulse   regulation  could  have  a  greater  influence  on  the  variance  across  endpoints  than  on  the  bias   between  endpoint  and  target  because  these  amendments  are  solely  based  on  limb  position.   Conversely,  any  limb-­‐target  regulation  that  occurs  after  peak  acceleration  should  facilitate   the  implementation  of  online  trajectory  corrections  that  minimize  endpoint  bias  (i.e.,   accuracy  or  constant  error).  Because  these  adjustments  are  made  based  on  the  position  of   the  limb  relative  to  the  target,  it  was  anticipated  that  trajectory  amendments  associated   with  limb-­‐target  regulation  processes  should  have  a  greater  influence  on  the  accuracy  of   endpoint  distributions  (i.e.,  constant  error).  In  a  nutshell,  if  varying  real-­‐time  movement-­‐ dependent  manipulation  criteria  can  induce  separate  influences  on  variable  and  constant  

THE  UTILITY  OF  VISION  

7  

errors  at  movement  endpoint,  then  we  would  find  empirical  support  for  the  concept  of   separate  impulse  and  limb-­‐target  regulation  processes.   Experiment  1   In  this  experiment,  visual  feedback  was  provided  while  the  finger  travelled  above  or   below  0.8  m/s  (i.e.,  VHigh  and  VLow,  respectively).  This  criterion  was  selected  following   multiple  pilot  experiments  because:  1)  0.8  m/s  is  typically  first  reached  between  peak   acceleration  and  peak  velocity  and  2)  using  this  criterion  throughout  the  trajectory  yields   approximately  the  same  amount  of  time  with  vision  above  and  below  the  criterion.  More   importantly,  a  limb  velocity  criterion  was  employed  instead  of  position  or  time   manipulations  (e.g.,  Carlton,  1981;  Chua  &  Elliott,  1993)  in  order  to  minimize  alterations  of   normal  reaching  movements.  Two  control  conditions  were  also  used  (i.e.,  normal  vision  [V]   and  no-­‐vision  [NV]).   If  the  visual  feedback  gathered  in  the  earliest  stages  of  the  trajectory  is  primarily   used  for  impulse  control  processes  then  withdrawing  visual  feedback  below  0.8  m/s   (VHigh)  should  significantly  increase  variable  error  as  compared  to  normal  vision   conditions  (V).  As  well,  if  the  visual  feedback  gathered  closer  to  peak  limb  velocity  is   primarily  used  for  limb-­‐target  regulation,  then  withdrawing  visual  feedback  above  0.8  m/s   (VLow)  should  significantly  increase  constant  error  compared  to  trials  with  vision  (V).   Likewise,  the  limb-­‐target  regulation  processes,  as  evidence  through  online  trajectory   amendment  measures,  should  also  be  significantly  decreased  in  the  VLow  compared  to  the   V  condition.  Such  limb-­‐target  regulation  processes  were  assessed  using  correlational   methods.  

THE  UTILITY  OF  VISION  

8  

In  order  to  identify  online  corrections  within  the  context  of  the  pseudo-­‐continuous   model  (Elliott  et  al.,  1991),  researchers  have  used  correlation  analyses  contrasting  the  limb   position  at  different  proportions  of  the  total  movement  time  and  the  limb  position  at   movement  end  (Heath,  2005;  Elliott  et  al.,  1991;  Messier  &  Kalaska,  1999:  see  also  Khan  et   al.,  2002;  2006  for  an  alternate  method).  The  premise  of  this  analysis  is  that  the  limb’s   position  at  various  proportions  of  the  overall  movement  duration  can  predict  the  limb   position  at  movement  end  if  the  movements  are  relatively  stereotyped  (i.e.,  the  actions  are   pre-­‐planned).  In  the  absence  of  online  corrections  or  deviations  in  the  trajectory,  a   movement  should  unfold  as  planned.  Therefore,  the  limb  positions  reached  at  various   movement  time  proportions  should  predict  movement  endpoint.  Alternatively,  lower   correlation  coefficients  mean  that  movements  are  less  stereotyped  for  one  trial  to  the  next   (i.e.,  online  trajectory  amendments  occurred).  When  independently  manipulating  the  vision   of  the  target  and  vision  of  the  limb,  Heath  (2005)  observed  that  variations  in  the  correlation   coefficients  are  significant  only  when  vision  of  the  limb  was  manipulated  and  suggested   that  vision  of  the  limb  is  the  key  visual  information  for  online  control  of  limb  trajectories.   Thus,  in  addition  to  the  above  predictions  about  constant  and  variable  error,  we  also   expected  our  visual  feedback  manipulations  to  influence  evidence  of  online  trajectory   amendments.  As  in  Heath  (2005),  we  expected  that  R2  values  calculated  using  limb  position   at  various  movement  time  proportions  and  movement  end  would  increase  across   movement  time  proportions  and  be  higher  in  NV  compared  to  V.  As  mentioned  above,   considering  that  limb-­‐target  regulation  processes  take  place  later  in  the  trajectory  than  

THE  UTILITY  OF  VISION  

9  

impulse-­‐regulation  processes,  we  anticipated  that  the  VLow,  but  not  the  VHigh,  condition   would  yield  higher  R2  values  (i.e.,  fewer  online  trajectory  amendments)  compared  to  V.   Methods   Eight  (8)  self-­‐declared  right-­‐handed  individuals  (20-­‐36  years  old:  3  female,  5  male)   from  the  University  of  Toronto  community  participated.  This  research  was  conducted   according  to  the  1964  Declaration  of  Helsinki.   The  participants  sat  on  an  adjustable  seat  at  a  73.5  cm  high  desk.  On  the  edge  of  the   desk  was  a  25  cm  by  50  cm  custom  aiming  board  equipped  with  a  translucent  polymer   surface.  The  target  was  marked  by  a  green  light  emitting  diode  (LED)  7  mm  in  diameter,   which  was  located  under  the  aiming  surface.  Thus,  the  target  could  only  be  seen  when  lit   and  could  not  generate  tactile  terminal  feedback.  The  home  position  was  a  1  cm  black  piece   of  tape  located  15  cm  from  the  edge  of  the  aiming  board.  The  home  to  target  distance  was   30  cm  and  both  locations  were  aligned  with  the  midline  of  the  participant.   Each  participant  completed  100  trials  in  total.  First,  they  completed  20   familiarization  trials  with  vision  to  get  accustomed  to  the  movement  time  bandwidth  (350-­‐ 450  ms).  Specifically,  participants  were  asked  to  be  as  accurate  as  possible  while   maintaining  their  movement  time  within  the  prescribed  bandwidth.  These  instructions   were  also  re-­‐iterated  for  the  80  experimental  trials  that  included  20  trials  from  each  of  four   experimental  conditions.  In  two  control  conditions,  vision  was  available  (vision:  V)  or   occluded  (no-­‐vision:  NV)  throughout  the  trajectory.  In  two  other  conditions,  vision  was   either  provided  when  the  limb  was  traveling  above  (VHigh)  or  below  the  0.8  m/s  velocity   criterion  (VLow;  see  Figure  1).  Presentation  order  of  the  trials  was  pseudo-­‐random  and  the  

THE  UTILITY  OF  VISION  

10  

same  condition  was  not  presented  for  more  than  3  consecutive  trials.  No  feedback  about   movement  endpoint  accuracy  was  provided  during  either  phase  of  the  experiment  and   participants  were  instructed  to  prioritize  endpoint  accuracy  while  maintaining  their   movement  time  within  the  prescribed  bandwidth.   Vision  was  available  prior  to  movement  initiation  in  each  condition.  At  the  beginning   of  each  trial,  the  experimenter  provided  a  “ready”  signal.  Shortly  after,  the  target   illuminated,  indicating  to  the  participants  that  they  should  start  their  movement.  Vision  was   always  removed  at  the  end  of  the  movement  (i.e.,  when  the  limb  velocity  fell  below  0.03   m/s  for  2  subsequent  samples)  in  order  to  minimize  learning  effects  associated  with   terminal  feedback.  An  800  Hz  tone  lasting  500  ms  indicated  the  end  of  the  trial  and  acted  as   a  signal  for  participants  to  return  to  the  home  position.  A  minimum  delay  of  5  s  was  used   between  the  trials  in  order  to  reduce  the  influence  of  the  preceding  trial  (see  Cheng  et  al.,   2008).   An  Optotrak  Certus  (Northern  Digital  Inc.)  recorded  the  location  of  an  infrared  light   emitting  diode  (IRED)  for  1  s  at  500  Hz.  The  IRED  was  located  on  the  distal  end  of  the  right   index  finger  of  the  participant.  A  pair  of  liquid  crystal  goggles  was  employed  to  manipulate   visual  feedback  (Milgram,  1987).  A  custom  MatLab  program  (The  Mathworks  Inc.)  gathered   the  Optotrak  data,  calculated  limb  velocity,  and  triggered  the  liquid-­‐crystal  goggles  through   a  National  Instruments  data  acquisition  board  (PCI-­‐6024E).  Movement  onset  and  offset  was   detected  when  the  limb  velocity  rose  above  or  fell  below  0.03  m/s  for  2  subsequent  samples.   In  the  VHigh  and  VLow  conditions,  vision  was  manipulated  when  the  limb  velocity  rose   above  or  fell  below  0.8  m/s  for  two  subsequent  samples.  The  delay  between  the  first  sample  

THE  UTILITY  OF  VISION  

11  

with  a  limb  velocity  above  or  below  0.8  m/s  and  the  change  in  the  state  of  the  goggles  was   less  than  10  ms  and  therefore  the  manipulations  were  considered  to  occur  in  real-­‐time.   The  main  dependent  variables  were  movement  endpoint  accuracy  (i.e.,  constant   error:  CE)  and  consistency  (i.e.,  variable  error:  VE)  in  the  primary  and  secondary  movement   axes.  Note  that  positive  CE’s  indicate  an  overshoot  and  a  rightward  bias  in  the  primary  and   secondary  movement  axes,  respectively.  We  also  calculated  movement  time  (MT),  the  time   taken  to  reach  peak  limb  velocity  (TTPV),  and  the  time  between  peak  velocity  and   movement  end  (i.e.,  time  after  peak  velocity;  TAPV).  All  of  these  variables  were  submitted   to  separate  one-­‐way  ANOVAs  contrasting  the  4  Vision  Conditions  (V,  NV,  VHigh,  VLow).   Alpha  was  set  at  .05  for  all  analyses  and  Tukey  HSD  post-­‐hoc  analyses  were  used  to   decompose  the  significant  effects.   In  addition,  correlation  coefficients  between  the  finger’s  position  at  consecutive  25%   of  the  movement  time  and  the  finger’s  position  at  the  movement  endpoint  (i.e.,  100%)  were   calculated.  As  stated  above,  lower  correlation  coefficients  are  associated  with  online   trajectory  amendments  and  higher  coefficients  are  associated  with  pre-­‐planning  (e.g.,  Heath,   2005).  Coefficients  were  then  squared  to  obtain  a  normal  distribution.  The  associated   ANOVA  contrasted  the  R2  for  the  4  Vision  Conditions  (V,  NV,  VHigh,  and  VLow)  across  3   Movement  Time  Proportion  (25%,  50%,  and  75%).  Alpha  was  set  at  .05  for  these  analyses.   A  Tukey  HSD  procedure  was  used  where  necessary.   Results   The  analysis  of  MT  revealed  a  significant  main  effect,  F  (3,  21)  =  5.81,  p  <  .01.  Longer   MTs  were  observed  in  the  VHigh  condition  (425  ms,  SD  24)  than  in  all  other  conditions,  ps  

THE  UTILITY  OF  VISION  

12  

<  .05  (NV:  404  ms,  SD  24;  VLow:  405  ms,  SD  26;  V:  406  ms,  SD  28).  Notably,  this  difference   was  reflected  in  TAPV,  F  (3,  21)  =  4.26,  p  <  .05.  Specifically,  there  was  a  longer  TAPV  in  the   VHigh  (256  ms,  SD  25)  than  in  the  V  condition  (235  ms,  SD  22),  which  was  not  different   from  the  other  conditions  (NV:  237  ms,  SD  22;  VLow:  238  ms,  SD  22).  In  contrast,  the   analysis  of  TTPV  did  not  reach  significance  (p  >  .2).   Analyses  of  the  primary  movement  axis  endpoint  accuracy  (CE),  F(3,  21)  =  3.47,   p<  .01,  and  consistency  (VE),  F  (3,  21)  =  9.66,  p  <  .001,  revealed  significant  main  effects  for   Vision.  Participants  executed  shorter  reaching  amplitudes  (i.e.,  smaller  CE  or  less   overshoot)  in  the  VLow  and  NV  conditions  as  compared  to  the  VHigh  condition.  The   comparison  between  V  and  NV  yielded  a  p-­‐value  of  0.055  (Figure  2A).  The  analysis  of  VE   revealed  comparable  associations  for  the  NV-­‐VLow  and  V-­‐VHigh  conditions,  ps  <  .05  (Figure   2B).  In  other  words,  there  were  no  differences  between  V  and  VHigh  in  terms  of  consistency   and  accuracy.  Also,  the  V  and  VHigh  conditions  resulted  in  more  consistent  movement   endpoint  distributions  than  in  both  the  NV  and  VLow  conditions,  which  were  not  different   from  each  other.   In  terms  of  the  secondary  axis,  the  CE  analysis  did  not  yield  significant  differences,  F   (3,  21)  =  1.80,  p  <  .18,  although  the  pattern  of  differences  was  qualitatively  comparable  to   the  primary  axis  results  (see  Figure  2C).  The  VE  analyses  on  the  secondary  axis  yielded  a   significant  effect  for  Vision  Conditions,  F  (3,  21)  =  30.52,  p  <  .001,  as  was  the  case  for  the  CE   and  VE  results  in  the  primary  axis.  Specifically,  VE  in  the  secondary  axis  was  larger  in  both   the  NV  and  VLow  conditions  than  in  both  the  V  and  VHigh  conditions  (ps  <  .05).  Contrasts  

THE  UTILITY  OF  VISION  

13  

between  the  NV  and  VLow  as  well  as  between  the  V  and  VHigh  conditions  did  not  reveal   reliable  differences  (Figure  2D).   For  the  trajectory  analyses,  there  was  only  a  main  effect  for  the  movement   proportion,  F  (2,  14)  =  67.19,  p  <  .0011.  Decomposing  the  main  effect  revealed  increases  in   R2  values  across  all  movement  time  proportions  (25%:  0.09,  SD  0.09;  50%:  0.22,  SD  0.08;   75%:  0.63,  SD  0.04).   Discussion   Unexpectedly,  the  movement  endpoint  accuracy  and  consistency  were  comparable   in  the  V  and  VHigh  conditions.  While  the  consistency  (i.e.,  VE  in  the  primary  and  secondary   movement  axes)  was  significantly  better  in  both  the  V  and  VHigh  condition  than  in  both  the   NV  and  VLow  conditions,  a  larger  target  overshoot  was  observed  in  both  the  V  and  VHigh   than  in  both  the  NV  and  VLow  conditions  (i.e.,  CE  in  the  primary  axis).  This  pattern  of   results  can  be  associated  with  the  emphasis  that  participants  placed  on  endpoint  accuracy.   Indeed,  humans  tend  to  overshoot  the  target  in  V  compared  to  NV  conditions  when  asked  to   focus  more  on  accuracy  than  on  speed  (e.g.,  Elliott  et  al.,  1991:  Experiment  1;  Westwood,   Heath,  &  Roy,  2003).  Nevertheless,  endpoint  accuracy  and  consistency  were  comparable   between  the  V  and  VHigh  conditions.  These  conditions  were  significantly  different  from   both  the  NV  and  VLow  conditions.  The  comparable  levels  of  consistency  and  accuracy   between  the  V  and  Vhigh  conditions  and  also  between  the  NV  and  VLow  conditions  might  

                                                                                                                1  Note  that  a  simple  t-­‐test  conducted  between  VHigh  and  VLow  R2  values  at  75%  of  MT  did   yield  a  significant  difference  (p  <  .05).  

THE  UTILITY  OF  VISION  

14  

indicate  that  both  impulse  regulation  and  limb-­‐target  regulation  take  place  at  limb   velocities  above  0.8  m/s.   Support  for  the  utility  of  vision  when  the  limb  travelled  above  0.8  m/s  also  comes   from  the  overall  movement  time  analysis.  Specifically,  participants  took  an  extra  20  ms  in   the  VHigh  condition  compared  to  all  other  conditions.  This  movement  time  difference  was   reflected  in  the  time  taken  to  reach  peak  limb  velocity.  Thus,  even  in  the  absence  of  vision   early  during  the  limb  trajectories,  participants  were  able  to  engage  in  both  impulse  and   limb-­‐target  regulation  processes  in  the  VHigh  condition.  We  purport  that  the  utility  of   vision  was  most  relevant  between  0.8  m/s  and  peak  limb  velocity  (i.e.,  in  the  VHigh   condition).   As  for  evidence  of  online  trajectory  amendments,  R2  values  did  not  significantly   differ  across  conditions  but  increased  across  movement  proportions  as  expected.  We  did   not  observe  the  expected  significant  differences  between  the  vision  conditions.  It  is  possible   that  not  knowing  the  visual  feedback  condition  before  each  trial,  as  was  the  case  in  Heath   (2005),  influenced  movement  planning  and  online  control  strategies  (see  Elliott  et  al.,  2004;   Hansen,  2010;  Zelaznik  et  al.,  1983).  In  other  words,  the  equal  levels  of  uncertainty   regarding  the  visual  condition  may  have  led  to  similar  levels  of  trajectory  amendments.     In  this  experiment,  visual  feedback  was  introduced  or  withdrawn  at  high  limb   velocities.  When  vision  was  introduced  at  0.8  m/s  (i.e.,  VHigh),  visual-­‐motor  processes   required  more  time  to  reach  peak  limb  velocity  (i.e.,  20  ms)  and  yielded  comparable   endpoint  consistency  and  accuracy  as  a  normal  vision  condition  (i.e.,  V).  While  visual   perturbation  protocols  can  elicit  online  trajectory  amendments  throughout  most  of  the  

THE  UTILITY  OF  VISION  

15  

trajectory  (e.g.,  Bard  et  al.,  1985;  Bootsma  &  Van  Wieringen,  1990;  Brenner  &  Smeets,  2003;   Carlton,  1992;  Proteau  &  Masson,  1997;  Proteau  et  al.,  2009;  Sarlegna  et  al.,  2004;  Saunders   &  Knill,  2005),  our  results  suggest  that  visual  samples  provided  above  0.8  m/s  can  be  used   to  complete  both  impulse  and  limb-­‐target  regulation  processes.  Also,  a  significant   proportion  of  these  processes  are  likely  to  take  place  before  peak  limb  velocity.  However,  it   is  still  unclear  how  much  overlap  exists  between  these  impulse  and  limb-­‐target  regulation   processes.     Experiment  2   In  the  second  experiment,  we  sought  to  determine  to  extent  of  overlap  for  the  use  of   vision  for  impulse  and  limb-­‐target  regulation  when  visual  feedback  is  available  at  higher   limb  velocities  than  the  0.8  m/s  threshold  tested  in  Experiment  1.  Specifically,  we  aimed  to   assess  if  the  central  nervous  system  can  use  visual  information  for  both  visual-­‐motor   processes  when  vision  is  provided  closer  to  peak  limb  velocity.  To  answer  this  research   question,  we  manipulated  the  criteria  at  which  vision  was  provided.  The  participants   completed  trials  in  twelve  different  vision  conditions.  As  in  Experiment  1,  manipulating   vision  as  a  function  of  limb  velocity  was  employed  for  the  methodological  advantages  it   offers  over  temporal  or  spatial  manipulations  (see  above).  Vision  was  either  provided  when   the  limb  travelled  above  (VHigh)  or  below  (VLow)  one  of  the  six  velocity  criteria  (0.03  m/s   [i.e.,  the  usual  vision  (V)  and  no-­‐vision  (NV)  conditions),  0.8  m/s,  0.9  m/s,  1  m/s,  1.1  m/s,  &   1.2  m/s).  If  the  impulse  regulation  processes  take  place  prior  to  limb-­‐target  regulation   processes,  then  increasing  the  velocity  cutoff  for  the  VHigh  conditions  should  first  have  an  

THE  UTILITY  OF  VISION  

16  

influence  on  movement  consistency  (i.e.,  variable  error  associated  with  impulse  regulation)   before  influencing  movement  accuracy  (i.e.,  constant  error  associated  with  limb-­‐target   regulation).  Likewise,  online  trajectory  amendments,  as  evidenced  by  the  correlation   analyses,  should  decrease  with  vision  available  with  the  higher  velocity  cutoffs.   Methods   Eleven  (11)  self-­‐declared  right-­‐handed  persons  (8  male  and  3  female)  from  the   University  of  Toronto  Community  participated  in  the  study.  Their  mean  age  was  22.8  +/-­‐   2.4  years.  This  research  was  conducted  according  to  the  1964  Declaration  of  Helsinki.   The  experimental  setup,  data  collection  and  typical  trial  procedures  were  the  same   as  in  Experiment  1  with  only  one  exception.  The  movement  time  bandwidth  was  increased   from  350-­‐450  ms  to  400-­‐500  ms.   The  experimental  session  included  20  familiarization  trials  and  160  experimental   trials,  for  a  total  of  180  trials.  The  familiarization  trials  were  completed  with  vision  and   enabled  participants  to  get  accustomed  to  the  movement  time  bandwidth.  Subsequently,   the  participants  completed  20  trials  in  V  and  NV  and  12  trials  in  each  of  the  other  ten   experimental  conditions  in  the  experimental  phase.  The  trial  order  was  pseudo-­‐randomized   with  the  limitation  of  not  running  the  same  condition  more  than  3  times  in  a  row.  As  in   Experiment  1,  no  endpoint  feedback  was  provided  and  participants  were  asked  to  be  as   accurate  as  possible  while  not  exceeding  the  movement  time  bandwidth.   The  main  dependent  variables  were  the  same  as  in  Experiment  1  (i.e.,  MT,  CE,  VE,   TTPV,  TAPV,  and  R2  values).  All  dependent  variables  were  submitted  to  a  2  Vision  (VHigh,   VLow)  by  6  Velocity  Criteria  (0.03  m/s,  0.8  m/s,  0.9  m/s,  1.0  m/s,  1.1  m/s,  1.2  m/s)  analysis  

THE  UTILITY  OF  VISION  

17  

of  variance  (ANOVA)  with  repeated  measures  on  both  factors.  R2  values  were  calculated   between  the  limb  position  for  consecutive  25%  of  the  movement  time  and  the  limb  position   at  the  movement  endpoint  (i.e.,  100%).  The  R2  values  were  submitted  to  a  2  Vision  (VHigh,   VLow)  by  6  Velocity  Criteria  (0.03  m/s,  0.8  m/s,  0.9  m/s,  1.0  m/s,  1.1  m/s,  1.2  m/s)  by  3   Movement  Time  Proportions  (25%,  50%,  75%)  ANOVA  with  repeated  measures  on  all   factors.  Alpha  was  set  at  .05  for  all  analyses  and  a  Tukey  HSD  post-­‐hoc  analysis  was  used   where  necessary.     Results   Analyses  of  MT  revealed  significant  main  effects  for  Vision,  F  (1,  10)  =  16.16,  p  <  .01,   Velocity  Criteria,  F  (5,  50)  =  4.52,  p  <  .01,  and  a  significant  interaction  between  Vision  and   Velocity  Criteria,  F  (5,  50)  =  6.88,  p  <  .01.  For  the  1.0  and  1.1  m/s  Velocity  Criteria,   movement  durations  were  longer  in  the  VHigh  compared  to  the  VLow  conditions  (see  Table   1).  These  MT  differences  were  reflected  in  the  time  taken  after  peak  limb  velocity  (TAPV),   which  also  revealed  main  effects  for  Vision,  F  (1,  10)  =  31.10,  p  <  .001  and  Velocity  Criteria,   F  (5,  50)  =  3.05,  p  <  .05,  as  well  as  a  significant  interaction  between  Vision  and  Velocity   Criteria,  F  (5,  50)  =  4.43,  p  <  .01.  Post-­‐hoc  analyses  revealed  that  TAPV  was  longer  in  the   VHigh  than  VLow  condition  at  the  0.9  m/s,  1.0  m/s,  and  1.1  m/s  velocity  criterion  (see   Table  1).  A  main  effect  for  Vision,  F  (1,  10)  =  13.33,  p  <  .01,  was  observed  for  time  taken  to   reach  peak  velocity  (TTPV).  TTPV  was  significantly  longer  in  the  VLow  than  the  in  VHigh   conditions  (see  Table  1).  

THE  UTILITY  OF  VISION  

18  

The  analysis  of  endpoint  accuracy  in  the  primary  movement  axis  (i.e.,  CE)  revealed  a   significant  main  effect  for  Vision,  F  (1,  10)  =  7.81,  p  <  .05.  Shorter  reaching  amplitudes  (i.e.,   smaller  CE  or  less  overshoot)  were  observed  in  the  VLow  condition  compared  to  the  VHigh   condition  (see  Figure  3A  and  Table  1).  The  analyses  of  endpoint  consistency  (i.e.,  VE)  in  the   primary  movement  axis  revealed  a  main  effect  for  Vision,  F  (1,  10)  =  5.53,  p  <  .05,  and  a   significant  interaction  between  Vision  and  Velocity  Criteria,  F  (5,  50)  =  5.77,  p  <  .01.  Post-­‐ hoc  analyses  indicated  that  the  VHigh  condition  yielded  a  smaller  amount  of  error  than  the   VLow  condition  with  the  0.03  m/s  and  0.8  m/s  velocity  criteria  (see  Table  1).  In  addition,   the  VLow  with  the  0.03  m/s  velocity  criteria  (i.e.,  no-­‐vision)  yielded  more  endpoint   variability  than  the  VHigh  conditions  with  the  0.03,  0.8,  and  0.9  m/s  velocity  criteria  (see   Figure  3B  and  Table  1).   The  analyses  for  CE  and  VE  on  the  secondary  movement  axis  did  not  yield  any   significant  effects  or  interactions  (see  Table  1).  Note  that  for  VE  on  the  secondary   movement  axis,  the  Vision  by  Velocity  Criteria  interaction  approached  conventional  levels   of  significance  (p  =  0.059).   For  the  trajectory  analyses,  the  comparison  of  the  R2  values  at  25%,  50%  and  75%  of   the  movement  time  revealed  a  significant  main  effect  for  Movement  Proportion,  F  (3,  30)  =   232.73,  p  <  .001,  and  significant  interactions  between  Vision  and  Movement  Proportion,  F   (2,  20)  =  7.64,  p  <  .01,  and  between  Vision  and  Velocity  Criteria,  F  (5,  50)  =  5.18,  p  <  .01.  As   expected,  correlation  coefficients  increased  as  the  movement  proportion  increased  (i.e.,   from  25%  to  50%  and  from  50%  to  75%  of  MT).  The  interaction  between  Vision  and   Proportion  arose  because  higher  R2  values  were  observed  in  VHigh  compared  to  VLow  

THE  UTILITY  OF  VISION  

19  

conditions  at  25%  of  MT.  Lastly,  post-­‐hoc  analyses  of  the  Vision  by  Velocity  Criterion   interaction  only  revealed  higher  correlation  coefficients  for  the  VHigh  compared  to  the   VLow  condition  at  the  1.2  m/s  criterion  (see  Figure  4).2     Discussion   Differences  between  the  VHigh  and  VLow  conditions  were  found  in  the  accuracy  (i.e.,   CE)  and  consistency  (i.e.  VE)  of  the  movement  endpoints.  Movements  were  more  consistent   (i.e.,  lower  VE),  but  were  less  accurate  (i.e.,  larger  target  overshoot)  in  the  VHigh  compared   to  the  VLow  conditions.  The  current  CE  results  are  consistent  with  those  of  Experiment  1.   Again,  accuracy  effects  can  be  explained  by  the  emphasis  placed  on  endpoint  accuracy   instead  of  speed  (Elliott  et  al.,  1991;  Westwood  et  al.,  2003).  Further,  endpoint  consistency   was  better  in  the  VHigh  than  in  the  VLow  conditions  with  the  0.03  and  0.8  m/s  criteria.  We   suggest  that  vision  early  in  a  movement  may  be  providing  the  most  important  information   for  impulse  regulation.  This  result  corroborates  the  findings  of  Hansen  et  al.  (2005)  where   individuals  choose  to  see  early  in  the  movement  when  provided  the  opportunity  to  self-­‐ control  the  acquisition  of  vision  (see  also  Hansen  2010).  In  addition,  this  finding  provides   evidence  that  there  is  a  critical  period  early  in  limb  trajectory  where  visual  information  is   most  valuable  for  the  efficient  engagement  of  the  underlying  visual-­‐motor  processes.  

                                                                                                                2  More  liberal  contrasts  performed  using  paired  t-­‐tests  suggest  that  the  Vision  and  Velocity   Criteria  interaction  can  also  be  explained  by  lower  R2  values  in  VHigh  than  VLow  at  the  0.03   m/s  velocity  criterion  (p  =  .02)  but  higher  R2  values  for  VHigh  compared  to  VLow  at  the  1.1   and  1.2  m/s  velocity  criteria  (ps  =  0.05  &  0.003,  respectively).  

THE  UTILITY  OF  VISION  

20  

The  analyses  also  revealed  that  MT  was  longer  in  the  VHigh  compared  to  the  VLow   conditions  with  the  1.0  and  1.1  m/s  criteria.  As  such,  there  was  a  temporal  cost  when  vision   was  provided  above  the  1.0  m/s  velocity  criteria.  These  longer  movement  durations  were   observed  along  with  longer  TAPV  in  the  VHigh  compared  to  the  VLow  conditions  with  the   0.9  m/s,  1.0  m/s,  and  1.1  m/s  velocity  criteria.  These  results  indicate  that  providing  vision   when  the  limb  is  travelling  at  a  high  limb  velocities  results  in  a  lengthening  of  the  time  to   complete  the  movement  and  this  temporal  costs  could  well  be  due  to  the  time  required  for   the  implementation  of  sensorimotor  processes.  In  the  1.2  m/s  conditions,  there  was   perhaps  not  enough  time  between  vision  onset  and  peak  velocity  for  visual  information  to   be  processed  and  employed  during  the  trajectory.   As  proposed  by  Elliott  et  al.  (2010),  impulse  regulation  processes  are  initiated   earlier  in  the  trajectory  compared  to  limb-­‐target  regulation  processes.  In  this  second   experiment,  VHigh  yielded  lower  variable  error  values  than  VLow  for  both  the  0.03  and  0.8   m/s  criteria  conditions  but  not  in  the  0.9  m/s  criterion  conditions  (see  Figure  3B).  In   contrast,  our  measures  of  online  trajectory  amendments  remained  comparable  across   Velocity  Criteria  conditions,  up  to  1.1  m/s3.  As  well,  providing  vision  above  1.2  m/s  yielded   comparable  R2  values  than  in  the  NV  condition  (see  Figure  4).  Altogether,  variable  error  can   be  associated  with  impulse  regulation  processes  and  the  presence  of  online  trajectory   amendments,  as  revealed  through  the  R2  analyses,  can  be  associated  with  limb-­‐target   regulation  processes.  It  is  indeed  possible  that  variable  error  emerges  from  the  early                                                                                                                   3  While  R2  values  were  higher  in  VHigh  compared  to  VLow  conditions  at  25%  of  MT,  such   result  should  be  taken  with  caution  because  the  associated  MTs  were  also  different.  

THE  UTILITY  OF  VISION  

21  

monitoring  of  the  limb  impulse  leading  to  optimized  endpoint  variability  (i.e.,  regardless  of   target  position)  while  online  trajectory  amendments,  as  measured  through  R2  values,  reflect   later  amendments  based  on  the  contrast  between  actual  limb  position  and  desired   movement  endpoint.  It  is  understood  that  associating  variable  error  with  impulse   regulation  and  R2  values  with  limb-­‐target  regulation  remain  largely  speculative  at  this  point.   Indeed,  because  our  liquid  crystal  goggles  manipulated  the  entire  visual  field,  it  is  not   known  which  type  of  visual  information  was  actually  used  at  the  various  limb  velocities.  It   would  be  most  relevant  to  conduct  further  experimentations  with  these  velocity  criteria   while  independently  manipulating  vision  of  the  limb  and  target  (e.g.,  Heath,  2005;  Sarlegna   et  al.,  2003).  Nevertheless,  we  still  demonstrate  that  the  visual  information  necessary  for   accurate  corrections  and  the  initiation  of  these  corrections  are  primarily  gathered  at   different  times,  positions,  or  limb  velocities.  These  findings  are  consistent  with  the   theoretical  underpinnings  of  the  multiple-­‐processes  model  of  goal-­‐directed  action  (Elliott  et   al.,  2010).   General  Discussion  &  Conclusion   Our  results  demonstrate  that  vision  provided  when  the  limb  travels  below  up  to  1.1   m/s  (or  corresponding  times,  or  position  during  a  trajectory)  is  crucial  for  the  execution  of   online  correction  processes.  However,  the  efficiency  of  those  corrections  seems  to  be   determined  by  whether  individuals  were  also  provided  with  vision  when  the  limb  traveled   between  0.8  and  0.9  m/s.  The  implication  is  that  the  visual  information  gathered  as  the  limb   travels  at  moderate  velocities  (0.8-­‐0.9  m/s)  is  employed  to  create  and  optimize  movement   corrections  that  are  then  confirmed,  refined,  and  initiated  based  on  visual  information  

THE  UTILITY  OF  VISION  

22  

gathered  at  higher  limb  velocities  (i.e.,  up  to  1.1  m/s).  At  least  within  the  context  of  the   current  experiment,  we  propose  that  the  impulse  and  limb-­‐target  regulation  processes  may   be  optimized  using  vision  from  different  limb  velocity  ranges.   While  there  is  ample  evidence  that  the  central  nervous  system  can  efficiently  use   visual  information  throughout  most  of  the  limb  trajectory  (Elliott  et  al.,  1991),  sub-­‐ processes  of  online  control  appear  to  be  optimal  at  specific  times,  positions,  or  limb   velocities  during  a  goal-­‐directed  action.  It  is  important  to  note  that  these  effects  were   observed  under  random  visual  manipulations  (i.e.,  participants  could  not  anticipate  the   upcoming  vision  condition),  which  is  a  limitation  to  this  study.  Specifically,  not  knowing   which  vision  condition  will  be  presented  can  induce  fewer  online  control  processes   compared  to  when  it  is  know  (e.g.,  Elliott  et  al.,  2004;  Hansen  et  al.,  2006;  Zelaznik  et  al.,   1983).  In  contrast,  presenting  vision  conditions  in  a  blocked  fashion  would  have  likely  led   to  altered  trajectory  profiles  between  experimental  conditions  (e.g.,  blocking  VHigh  and   VLow  conditions).  As  shown  by  Carlton  (1981:  Experiment  1),  providing  visual  feedback  for   the  last  25%  or  7%  of  the  amplitude  induces  longer  movement  times  compared  to   providing  vision  over  the  entire  trajectory.  As  such,  the  randomized  condition  presentation   may  have  limited  the  extent  to  which  visual  feedback  was  used  but  a  blocked  presentation   would  have  altered  the  normal  reaching  patterns.  Nevertheless,  the  present  study  supports   and  builds  upon  the  multiple-­‐process  model  of  online  control  (Elliott  et  al.,  2010).  At  the   very  least,  it  appears  that  the  basic  concept  of  pseudo-­‐continuous  control  of  goal-­‐directed   action  (Elliott  et  al.,  1991)  is  less  supported  than  before,  while  concepts  of  discrete  and   iterative  online  control  models  (e.g.,  Begss  &  Horwarth,  1972;  Meyer  et  al.,  1988)  present  

THE  UTILITY  OF  VISION   some  fundamental  concepts  that  may  need  to  be  revisited.

23  

THE  UTILITY  OF  VISION  

24  

  References   Bard,  C.,  Hay,  L.,  &  Fleury,  M.  (1985).  Role  of  peripheral  vision  in  the  directional  control  of   rapid  aiming  movements.  Canadian  Journal  of  Psychology,  39,  151-­‐161.   Beggs,  W.  D.  A.,  &  Howarth,  C.  I.  (1970).  Movement  control  in  a  repetitive  motor  task.  Nature,   225,  752-­‐753.   Beggs,  W.  D.  A.,  &  Howarth,  C.  I.  (1972).  The  accuracy  of  aiming  at  a  target:  Some  further   evidence  for  a  theory  of  intermittent  control.  Acta  Psychologica,  36,  171-­‐177.     Bootsma,  R.  J.,  &  Van  Wieringen,  P.  C.  W.  (1990).  Timing  an  attacking  forehand  drive  in  table   tennis.  Journal  of  Experimental  Psychology:  Human  Perception  and  Performance,  16,   21-­‐29.   Brenner,  E.,  &  Smeets,  J.  B.  J.  (2003).  Fast  corrections  of  movements  with  a  computer  mouse.   Spatial  Vision,  16,  365-­‐376.   Carlton,  L.  G.  (1981).  Processing  visual  feedback  information  for  movement  control.    Journal   of  Experimental  Psychology:  Human  Perception  and  Performance,  7,  1019-­‐1030.   Carlton,  L.  G.  (1992).  Visual  processing  time  and  the  control  of  movement.  In  L.  Proteau  &  D.   Elliott  (Eds.),  Visual  and  motor  control  (pp.  3-­‐31).  Amsterdam;  Elsevier.   Cheng,  D.  T.,  Luis,  M.,  &  Tremblay,  L.  (2008).  Randomizing  visual  feedback  in  manual   aiming:  Reminiscence  of  the  previous  trial  condition  and  prior  knowledge  of   feedback  availability.  Experimental  Brain  Research,  189,  403-­‐410.  doi:   10.1007/s00221-­‐008-­‐1436-­‐3  

THE  UTILITY  OF  VISION  

25  

Chua,  R.,  &  Elliott,  D.  (1993).  Visual  regulation  of  manual  aiming.  Human  Movement  Science,   12,  365-­‐401.   Elliott,  D.,  Carson,  R.  G.,  Goodman,  D.,  &  Chua,  R.  (1991).  Discrete  vs.  continuous  visual   control  of  manual  aiming.  Human  Movement  Science,  10,  393-­‐418.   Elliott,  D.,  Hansen,  S.,  Mendoza,  J.,  &  Tremblay,  L.  (2004).  Learning  to  optimize  speed,   accuracy,  and  energy  expenditure:  A  framework  for  understanding  speed-­‐accuracy   relations.  Journal  of  Motor  Behavior,  36,  339-­‐351.   Elliott,  D.,  Hansen,  S.,  Grierson,  L.  E.  M.,  Lyons,  J.,  Bennett,  S.  J.,  &  Hayes,  S.  J.  (2010).  Goal-­‐ directed  aiming:  Two  components  but  multiple  processes.  Psychological  Bulletin,  136,   1023-­‐44.   Elliott,  D.,  Helsen,  W.  F.,  &  Chua,  R.  (2001).  A  centurylater:  Woodworth's  (1899)  two-­‐ component  model  of  goal-­‐directed  aiming.  Psychology  Bulletin,  127,  342-­‐357.     Hansen,  S.  (2010).  Determining  the  temporal  limits  of  a  visual  sample  for  visual  regulation.   Journal  of  Motor  Behavior,  42,  107-­‐110.   Hansen,  S.,  Cullen,  J.  D.,  &  Elliott,  D.  (2005).  Self-­‐selected  visual  information  during  discrete   manual  aiming.  Journal  of  Motor  Behavior,  37,  343-­‐347.   Hansen,  S.,  Glazebrook,  C.,  Anson,  J.G.,  Weeks,  D.J.,  &  Elliott,  D.  (2006).  The  influence  of   advance  information  about  target  location  and  visual  feedback  on  movement   planning  and  execution.  Canadian  Journal  of  Experimental  Psychology,  60,  200-­‐208.   Hansen,  S.,  Tremblay,  L.,  &  Elliott,  D.  (2008).  Real-­‐time  manipulation  of  visual  displacement   during  manual  aiming.  Human  Movement  Science,  27,  1-­‐11.  

THE  UTILITY  OF  VISION  

26  

Heath,  M.  (2005).  Role  of  limb  and  target  vision  in  the  online  control  of  memory-­‐guided   reaches.  Motor  Control,  9,  281-­‐309.   Heath,  M.,  Hodges,  N.  J.,  Chua,  R.,  &  Elliott,  D.  (1998).  On-­‐line  control  of  rapid  aiming   movements:  Unexpected  target  perturbations  and  movement  kinematics.  Canadian   Journal  of  Experimental  Psychology,  52,  163-­‐173.   Heath,  M.,  Westwood,  D.  A.,  &  Binsted,  G.  (2004).  The  control  of  memory-­‐guided  reaching   movements  in  peripersonal  space.  Motor  Control,  8,  76-­‐106.   Khan,  M.  A.,  Elliott,  D.,  Coull,  J.,  Chua,  R.,  &  Lyons,  J.  L.  (2002).  Optimal  control  strategies   under  different  feedback  schedules:  Kinematic  evidence.  Journal  of  Motor  Behavior,   34,  45-­‐57.   Khan,  M.  A.,  Franks,  I.  M.,  Elliott,  D.,  Lawrence,  G.  P.,  Chua,  R.,  Bernier,  P.  M.,  Hansen,  S.,  &   Weeks,  D.  J.  (2006).  Inferring  offline  and  online  processing  of  visual  feedback  in   target-­‐directed  movements  from  kinematic  data.  Neuroscience  and  Biobehavioral   Reviews,  30,  1106-­‐1121.   Messier,  J.,  &  Kalaska,  J.  F.  (1999).  Camparison  of  variability  of  initial  kinematics  and   endpoints  of  reaching  movements.  Experimental  Brain  Research,  125,  139-­‐152.   Meyer,  D.  E.,  Abrams,  R.  A.  Kornblum,  S.,  Wright,  C.  E.,  &  Smith,  J.  E.  K.  (1988).  Optimality  in   human  performance:  Ideal  control  of  rapid  aimed  movements.  Psychological  Review,   95,  340-­‐370.   Milgram,  P.  (1987).  A  spectacle-­‐mounted  liquid-­‐crystal  tachistoscope.    Behavior  Research   Methods,  Instruments,  and  Computers,  19,  449-­‐456.  

THE  UTILITY  OF  VISION  

27  

Proteau,  L.,  &  Masson,  G.  (1997).  Visual  perception  modifies  goal-­‐directed  movement   control:  Supporting  evidence  from  a  visual  perturbation  paradigm.  The  Quarterly   Journal  of  Experimental  Psychology,  50A,  726-­‐741.   Proteau,  L.,  Roujoula,  A.,  &  Messier,  J.  (2009).  Evidence  for  continuous  processing  of  visual   information  in  a  manual  video-­‐aiming  task.  Journal  of  Motor  Behavior,  41,  219-­‐231.   Sarlegna,  F.,  Blouin,  J.,  Bresciani,  J.-­‐P.,  Bourdin,  C.,  Vercher,  J.-­‐L.,  &  Gauthier,  G.  M.  (2003).   Target  and  hand  position  information  in  the  online  control  of  goal-­‐directed  arm   movements.  Experimental  Brain  Research,  151,  524-­‐535.   Sarlegna,  F.  R.,  Blouin,  J.,  Vercher,  J.-­‐L.,  Bresciani,  J.-­‐P.,  Bourdin,  C.,  &  Gauthier,  G.  M.  (2004).   Online  control  of  the  direction  of  rapid  reaching  movements.  Experimental  Brain   Research,  157,  468-­‐471.   Saunders,  J.  A.,  &  Knill,  D.  C.  (2005).  Humans  use  continuous  visual  feedback  from  the  hand   to  control  both  the  direction  and  distance  of  pointing  movements.  Experimental   Brain  Research,  162,  458-­‐473.   Westwood,  D.  A.,  Heath,  M.,  &  Roy,  E.  A.  (2003).  No  evidence  for  accurate  visual-­‐motor   memory:  systematic  and  variable  error  in  memory-­‐guided  reaching.  Journal  of  Motor   Behavior,  35,  127-­‐133.   Woodworth,  R.  S.  (1899).  The  accuracy  of  voluntary  movement.  Psychological  Review,  3,  1-­‐ 119.   Zelaznik,  H.  N.,  Hawkins,  B.,  &  Kisselburgh,  L.  (1983).  Rapid  visual  feedback  processing  in   single-­‐aiming  movements.  Journal  of  Motor  Behavior,  15,  217-­‐236.

THE  UTILITY  OF  VISION  

28  

Table  1   Means  and  between-­‐participant  standard  deviations  for  movement  time  (MT:  ms),  time  to   peak  velocity  (TtoPV:  ms),  time  after  peak  velocity  (TaPV:  ms),  constant  (CE:  mm)  and   variable  (VE:  mm)  error  in  the  primary  (prim)  and  secondary  (sec)  movement  directions  as  a   function  of  visual  condition,  for  each  velocity  criteria  

 

THE  UTILITY  OF  VISION  

29  

  Figure  1.  Average  velocity  profile  for  all  vision  conditions.  Dashed  line   represents  the  velocity  cutoff  and  the  error  bars  represent  the  average  between-­‐ subject  standard  deviation.  

THE  UTILITY  OF  VISION  

30  

  Figure  2.  Constant  error  (A)  and  variable  error  (B)  in  the  primary  axis  of  the   movement  as  well  as  constant  error  (C)  and  variable  error  (D)  in  the  secondary  axis  of  the   movement  in  Experiment  1.  The  error  bars  reflect  the  standard  deviation.  

THE  UTILITY  OF  VISION  

31    

  Figure  3.  Constant  error  (A)  and  variable  error  (B)  in  the  primary  axis  of  the   movement  in  Experiment  2.  The  error  bars  reflect  the  standard  deviation.

THE  UTILITY  OF  VISION  

32  

  Figure  4.  Square  correlation  coefficient  between  limb  positions  in  the  trajectory  and   limb  position  at  movement  end  as  a  function  of  the  velocity  criteria.  The  error  bars  reflect   the  standard  deviation.