scleractinian corals from the cardenas formation ...

2 downloads 0 Views 3MB Size Report
Jul 21, 2005 - tian age for the Cardenas Formation (Ifrim et al., 2005). Lithol- .... mania, Middle to Upper Maastrichtian of Jamaica (Jerusalem. Inlier, Rio Minho ...... Versteinerungen aus der mexicanischen Jura- und Krei- de-Formation.
J. Paleont., 80(6), 2006, pp. 1033–1046 Copyright 䉷 2006, The Paleontological Society 0022-3360/06/0080-1033$03.00

SCLERACTINIAN CORALS FROM THE CARDENAS FORMATION (MAASTRICHTIAN), SAN LUIS POTOSI´, MEXICO ¨ TZ,2 ROSEMARIE C. BARON-SZABO,1 ARMIN SCHAFHAUSER,2 STEFAN GO 1

AND

WOLFGANG STINNESBECK2

Smithsonian Institution, Department of Invertebrate Zoology, MRC-163, W-329, PO Box 37012, Washington, DC 20013-7012, USA, and Research Institution Senckenberg, Senckenberganlage 25, 60325 Frankfurt/Main, Germany, ⬍[email protected]⬎ and ⬍[email protected]⬎ and 2 Geological Institute I, University of Karlsruhe, Kaiserstr. 12, D-76131 Karlsruhe, Germany, ⬍[email protected]⬎, ⬍[email protected]⬎, and ⬍[email protected]⬎ ABSTRACT—A detailed taxonomical description of scleractinian corals from the Maastrichtian of Mexico (Cardenas Formation) is given for the first time. The coral association comprises 16 taxa which belong to 9 families: Dictuophyllia conferticostata (Vaughan), Cladocora jamaicaensis Vaughan, Cladocora gracilis (d’Orbigny), Antiguastrea cellulosa (Duncan), Multicolumnastraea cyathiformis (Duncan), Placocoenia major Felix, Siderastrea vancouverensis Vaughan, Siderastrea adkinsi (Wells), Goniopora sp., Actinacis haueri Reuss, Actinacis parvistella Oppenheim, Actinhelia elegans (Goldfuss), Meandrophyllia oceani (de Fromentel), Dermosmiliopsis orbignyi Alloiteau, Trochoseris aperta Duncan, and Cyathoseris formosa d’Achiardi. The corals described herein were collected from mixed coral-rudist and coral-dominated assemblages in the Arroyo de la Atarjea, and one unnamed riverbed which lithologically correspond to the Arroyo de la Atarjea section, both of which belong to the upper member of the Cardenas Formation. On the genus level, 94% of the Mexican fauna corresponds to the Maastrichtian coral assemblages of Jamaica. Moreover, the Cardenas fauna shows close affinities to both Upper Cretaceous coral associations of central Europe and the Caribbean, as well as to Lower Tertiary faunas of Central America and the Caribbean. On the species level, 68.8% of the Cardenas corals are known from Lower Tertiary strata of Central America, the Caribbean, South America, Asia, European/Mediterranean region, and/or southeastern parts of the USA.

INTRODUCTION

D

CRETACEOUS times tropical reefs were predominantly built by corals and rudist bivalves. In the Lower Cretaceous corals prevailed as reef builders both in the Tethyan and Caribbean realms (Ho¨fling and Scott, 2002). During the Upper Cretaceous reef communities changed, and reefs were dominated by rudists (Skelton, 1978; Johnson et al., 2002). Nevertheless, coral diversity remained stable or even increased during the Upper Cretaceous (Scott, 1995; Johnson et al., 2002) and in many areas of the Tethyan and Caribbean realm corals and rudists coexisted successfully, building complex and diverse coral-rudist reefs (e.g., Kauffman and Sohl, 1973; Masse and Philip, 1981; Laviano, 1984; Scott et al., 1990; Ho¨fling, 1997; Sanders and Baron-Szabo, 1997; Sanders and Pons, 1999; Go¨tz, 2001; Mitchell, 2002). The spatial distribution of corals and rudists was mainly controlled by environmental factors such as seawater chemistry (Stanley and Hardie, 1998), sedimentation rates, water energy, and re-suspension rates (e.g., Scott et al., 1990; Gili et al., 1995; Skelton et al., 1997; Stanley and Hardie, 1998; Go¨tz, 2003). In Mexico, scleractinian corals have been described from the Jurassic and Lower Cretaceous for over a century (e.g., Felix, 1891; Wells, 1946; Reyeros de Castillo, 1983; Baron-Szabo and Gonza´lez-Leo´n, 2003), but remained almost unknown from Upper Cretaceous units (Filkorn, 2003b; Filkorn et al., 2005). The Maastrichtian coral fauna of the Cardenas Formation was first mentioned by Myers (1968), but in his pioneer work he illustrated just three coral taxa from the Tampsia floriformis Zone (?Epistreptophyllum sp., Trochoseris sp., and Synastrea sp.) and another three taxa from the Arctostrea aguilerae Zone (Leptoria sp., Cladocora sp., and ?Lithostrotionoides sp.). In addition, the facies analysis of the reef distribution in the Cardenas Formation, published by Schafhauser et al. (2003), included a first brief overview of the rather rich coral fauna in the Cardenas reefs. However, a detailed taxonomic analysis of the coral fauna from the Cardenas Formation has never been undertaken. The purpose of the present paper is to give the first detailed description of a scleractinian coral fauna of the Mexican Cardenas Formation, evaluate its significance, and put it into both a regional and a global context.

GEOLOGICAL SETTING AND LITHOLOGIES OF THE CARDENAS FORMATION

URING

The Upper Cretaceous Cardenas Formation is a mixed clastic/ carbonate sequence, and is best exposed north of the city of Cardenas in east-central Mexico (state San Luis Potosı´) (Fig. 1). Tectonically, the Cardenas Formation is part of the fold and thrust belt of the Sierra Madre Oriental. Myers (1968) analyzed three sections north of Cardenas and subdivided the Cardenas Formation into three lithologic members. The thickest and most complete section was reinvestigated by us in detail (Fig. 2) and is exposed in a riverbed called Arroyo de la Atarjea, which is located approximately 2 km north of Cardenas (Fig. 1). The section is 1,200 m thick, The total thickness of the section was underestimated by Myers (1968). The section encompasses all three members of the Cardenas Formation (sensu Myers, 1968) and the continental red beds of the Tabaco Formation, which conformably overlie the Cardenas Formation. Sphenodiscus pleurisepta (Conrad, 1857) in the lower and Exogyra costata Say, 1820 in the middle and upper members indicate a Maastrichtian age for the Cardenas Formation (Ifrim et al., 2005). Lithologies consist of marls, siltstones, and arenites, as well as sparse conglomerates. In addition, the upper and lower members are characterized by carbonate intervals, which bear rudist assemblages in the lower member and rudist-dominated, mixed coralrudist and coral-dominated assemblages in the upper member (Schafhauser et al., 2003). The corals described herein were collected from mixed coralrudist and coral-dominated assemblages, which are interpreted to represent stenohaline conditions in shallow water environments on the inner shelf (Schafhauser et al., 2003). The coral-rudist and coral-dominated assemblages are exposed in the Arroyo de la Atarjea, and one unnamed riverbed located approximately 1.2 km northeast of Cardenas, both of which lithologically correspond to the Arroyo de la Atarjea section (Fig. 1) and also belong to the upper member of the Cardenas Formation. MATERIAL AND METHODS

The corals described herein were collected from the Arroyo de la Atarjea and from one unnamed riverbed situated approximately 1.2 km northeast of Cardenas, which correspond lithologically to

1033

1034

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

FIGURE 1—Location of the city of Cardenas (San Luis Potosi, Mexico) and geologic map of the investigated area with location of the investigated sections; the corals described herein were collected from the upper member of the Cardenas Formation in the riverbed Arroyo de la Atarjea (1) and a nameless riverbed (2) north of Cardenas.

the Arroyo de la Atarjea section (Fig. 1). The material for this study consists of 70 specimens of scleractinian corals. All specimens are slightly to strongly recrystallized. Determination of the material was based, in large part, on the study of cross sections. Due to the problematic preservation, longitudinal thin sections could not be used for identification. The size of the specimens ranges between 2 and 10 cm, rarely reaching up to around 20 cm. Repository.⎯The specimens documented in the present paper are kept in the collections of the Instituto de Geologia, Universidad Nacional Auto´noma Mexico (UNAM), Mexico City, Mexico. SYSTEMATIC PALAEONTOLOGY

Abbreviations for the dimensions in the text are as follows: c-c: distance between centers of calices; c-c (series): distance between centers of adjacent calicinal series; c-c (wall-wall): width of calicinal series from wall to wall; d: corallite diameter (in corallites that are not circular it refers to the maximum calicular diameter, if not indicated otherwise); s/mm: density of septa; s: number of septa. Note that the synonymy lists below represent selected records that give the stratigraphical and geographical distribution of each taxon. Holotypes and original material (hypotypes) were studied if not indicated otherwise. The study of the types of all the nominal species discussed in the text, with only a few exceptions, resulted in changes in species groupings which therefore had a direct effect on the geographic and stratigraphic distributions of the scleractinian taxa. For most species a new distributional pattern resulted, which significantly differs from any previous model.

FIGURE 2—Section Arroyo de la Atarjea. The occurrence of Sphenodiscus pleurisepta and Exogyra costata Say, 1820 indicates a Maastrichtian age of the Cardenas Formation, whereas due to the absence of fossils, the age of the uppermost Cardenas Formation and the Tabaco Formation is unknown.

Family FAVIIDAE Gregory, 1900 Genus DICTUOPHYLLIA Blainville, 1830 Type species.⎯Meandrina reticulata Goldfuss, 1827, Maastrichtian of the Netherlands. DICTUOPHYLLIA

CONFERTICOSTATA

(Vaughan, 1899)

Figure 4.4, 4.9 Diploria crassolamellosa MILNE EDWARDS AND HAIME. DUNCAN IN DUNCAN AND WALL, 1865, p. 7, 12 (topotypes studied by one of the authors [RCBS]); VAUGHAN, 1899, p. 239, pl. 39, figs. 1–3. Diploria conferticostata var. columnaris VAUGHAN, 1899, p. 241, pl. 39, fig. 4. Leptoria conferticostata (VAUGHAN). VAUGHAN, 1919, p. 194; FELIX, 1925, p. 90 (taxon only listed).

BARON-SZABO ET AL.—MAASTRICHTIAN SCLERACTINIAN CORALS FROM MEXICO

1035

FIGURE 3—Distribution of scleractinian coral occurrences (reefal and nonreefal) during the Maastrichtian (modified from Kiessling and Baron-Szabo, 2004). Triangle: scleractinian coral occurrence; asterisk: location of Cardenas fauna; light grey: shelf areas; medium and dark grey: land masses. Dictuophyllia conferticostata (VAUGHAN). WELLS, 1934, p. 77; BERRYHILL, BRIGGS, AND GLOVER, 1960, p. 151 (not seen); BARON-SZABO, 2002, p. 27, pl. 9, fig. 2; FILKORN, 2003a, p. 32 (taxon only listed); BARON-SZABO, in press, p. 26, p. l3, fig. 11; FILKORN, AVENDAN˜OGIL, COUTIN˜O-JOSE´ M., AND VEGA-VERA, 2005 p. 123, fig. 2g (not seen). Meandroria patellaris (REUSS). LIAO AND XIA, 1994, p. 179, pl. 54, figs. 8, 9 (not seen). Leptoria (Dictuophyllia) conferticostata (VAUGHAN). MITCHELL, 2002, p. 6 ff., table 1 (topotypes studied by one of the authors [RCBS]).

Description.⎯Meandroid, massive to columnar colony; calicinal series directly united or separated by ambulacrae (0–2 mm); costosepta thin, arranged in two size orders, slightly alternating in length and thickness; columella lamellar, continuous; endothecal dissepiments thin, vesicular; wall septothecal. Material examined.⎯Sample nos.: UNAM, IGM 8673–8679. Measurements.⎯c-c (wall-wall): 0.8–1.5 mm; c-c (series): 0.8– 2.5 mm; s/mm: 9–13/ 2. Occurrence.⎯Campanian to Maastrichtian of Tibet (Gamba County, Houshan), Campanian to Maastrichtian and Eocene of Jamaica (Blue Mountain Series, Jerusalem Inlier, Rio Minho, Ducketts Land Settlement, Catadupa, Vaughnsfield, Marchmont Inlier, Logie Green; Baron-Szabo, in press), Maastrichtian of Mexico (Cardenas and Ocozocuautla Formations), Danian of Puerto Rico. Genus CLADOCORA Ehrenberg, 1834 Type species.⎯Madrepora flexuosa Pallas, 1766 (⫽Madrepora caespitosa Linnaeus, 1767; ⫽Caryophyllia caespitosa [Lamarck, 1816]), Recent, Mediterranean Sea. CLADOCORA

JAMAICAENSIS

Vaughan, 1899

non Cladocora jamaicaensis VAUGHAN. HACKEMESSER, 1936, p. 38, pl. 5, fig. 3 (topotypic material studied by one of the authors [RCBS]). ?Cladocora antarctica n. sp. FILKORN, 1994, p. 77, figs. 29, 30. non Procladocora jamaicaensis (VAUGHAN). LO¨SER, 2000, p. 52, pl. 3, figs. 1–5 (not seen).

Description.⎯Phaceloid to subdendroid colony; calices circular or elongated in outline; costosepta compact, developed in three to four cycles in six systems in adult corallites, irregularly alternating in length and thickness; six to twelve septa reach calicinal center; columella reduced trabecular or absent; wall septothecal; relicts of an epithecal wall present occasionally; endothecal dissepiments short, slightly arched in central region of corallite, long, vesicular in peripheral area. Material examined.⎯Sample nos.: UNAM, IGM 8680–8682. Measurements.⎯d: 4–6 mm, juvenile corallites around 2.5 mm; s: 34–48, around 26 in juvenile corallites. Occurrence.⎯Campanian to Maastrichtian and Eocene of Jamaica (Blue Mountain Series and Jerusalem Inlier; Baron-Szabo, in press), Maastrichtian of Mexico (Ocozocuautla and Cardenas Formations), Paleocene of Antarctica (Seymour Island) and Egypt, Upper Thanetian of Italy (Maiella Platform). Discussion.⎯In showing synapticulothecal developments and subcompact to sometimes porous septa, the specimens described as C. jamaicaensis from the Upper Cretaceous of Greece by Hackemesser (1936) and Procladocora jamaicaensis by Lo¨ser (2000) differ from the generic concept of Cladocora as defined by Baron-Szabo (2002, p. 33–34), and rather correspond to the genus Calamophylliopsis Alloiteau, 1952. CLADOCORA

GRACILIS

(d’Orbigny, 1850)

Figure 4.1

Figure 4.6

Cladocora jamaicaensis VAUGHAN, 1899, p. 234, pl. 36, figs. 5–7; WELLS, 1934, p. 72; FILKORN, 2003a, p. 32 (taxon only listed); BARONSZABO, 2005, p. 5, fig. 2a, 2b, 2d; in press, p. 34, pl. 6, fig. 1 (older synonyms cited therein).

Calamophyllia gracilis D’ORBIGNY, 1850, vol. 2, p. 204. Cladocora tenuis REUSS, 1854, p. 112, pl. 6, figs. 24, 25; FELIX, 1903, p. 265 (taxon only listed); BATALLER, 1937, p. 145 (not seen). Procladocora tenuis (REUSS). TURNSˇEK AND POLSˇAK, 1978, p. 151, 171,

1036

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

BARON-SZABO ET AL.—MAASTRICHTIAN SCLERACTINIAN CORALS FROM MEXICO pl. 9, figs. 1–9; TCHECHME´DJIEVA, 1995, p. 35, pl. 4, figs. 4, 5 (not seen). Cladocora cf. tenuis REUSS. SCHUSTER, 1996, p. 76, pl. 16, fig. 4 (not seen). Cladocora gracilis D’ORBIGNY. BARON-SZABO, 2002, p. 34, pl. 17, figs. 1–3; 2003, p. 122, pl. 5, fig. 9; pl. 9, figs. 3–5; 2005, p. 5, fig. 2a, 2b, 2d; in press, p. 34, pl. 4, figs. 4, 6 (older synonyms cited therein). Cladocora cf. gracilis (D’ORBIGNY). BARON-SZABO, CASADIO AND PARRAS, 2004, p. 79r.

Description.⎯Phaceloid to subdendroid colony; calices circular or elongated in outline; costosepta compact, developed in two to three cycles in six systems; axial and thecal skeletal elements as in the previously described Cladocora jamaicaensis. Material examined.⎯Sample nos.: UNAM, IGM 8683–8684. Measurements.⎯d: 2.8–4.5 mm, juvenile corallites as small as 1.5 mm; s: 16–38. Occurrence.⎯Upper Turonian of Bulgaria, Upper Turonian to Campanian of Austria (Gosau Group), Lower Coniacian and Upper Santonian of France, Upper Santonian of Spain, Santonian– Campanian of Slovenia and Croatia, Upper Campanian of Romania, Middle to Upper Maastrichtian of Jamaica (Jerusalem Inlier, Rio Minho, Ducketts Land Settlement; Baron-Szabo, in press), Maastrichtian of Mexico (Cardenas Formation) and Italy (Capo Passero), Danian of Argentina, Upper Paleocene of Egypt. Genus ANTIGUASTREA Vaughan, 1919 Type species.⎯Astrea cellulosa Duncan, 1863, Oligocene of Antigua. ANTIGUASTREA

CELLULOSA

(Duncan, 1863)

Figure 4.2 Astrea cellulosa DUNCAN, 1863, p. 378, pl. 86, figs. 2–5. Antiguastrea cellulosa (DUNCAN).VAUGHAN, 1919, p. 199, 204, 402, pl. 98, figs. 3, 4; pl. 99, figs. 1–3; pl. 100, figs. 1–4; pl. 101, fig. 2–2a; FELIX, 1925, pars 28, p. 73 (taxon only listed); BUDD, STEMANN, AND STEWART, 1992, p. 585, fig. 7.4–7.6; BUDD, STEMANN, AND JOHNSON, 1994, p. 958, 966, 975; BARON-SZABO, 2002, p. 32, pl. 14, fig. 1; in press, p. 29, pl. 4, fig. 2 a–b; pl. 5, fig. 1 (older synonyms cited therein).

Description.⎯Plocoid to subcerioid, massive colony; gemmation extracalicinal; corallites slightly projecting; costosepta compact, finely granulated laterally, in older corallites arranged in three complete cycles with the beginning of the fourth cycle in six systems; S1 reach the center of the calice; S of remaining cycles alternate in length and thickness; columella trabecular-sublamellar, weakly developed; wall septothecal-septoparathecal; endothecal dissepiments vesicular; exothecal dissepiments subtabulate to vesicular. Material examined.⎯Sample nos.: UNAM, IGM 8685–8689, 8741. Measurements.⎯d: 2–5 mm; juvenile corallites are smaller (around 1.5 mm); c-c: 2–6 mm; s: 20–44, in juvenile corallites the number of septa ranges between 14–18. Occurrence.⎯Maastrichtian of Mexico (Cardenas Formation), Middle-Upper Maastrichtian of Jamaica (Jerusalem Inlier, Logie Green; Baron-Szabo, in press), Paleocene of Austria (Baron-Szabo, in press), Eocene of Panama, Oligocene of Antigua, Costa

1037

Rica, Puerto Rico, and Mexico, Oligocene–Miocene of the southeastern USA, Lower-Middle Miocene of Anguilla (Anguilla Formation). Discussion.⎯In the syntypes of Antiguastrea cellulosa from the Oligocene of Antigua (BM[NH] R28626 and R28743) the corallite diameter ranges from 2 to 6 mm and the number of septa is around 20 in juvenile corallites and reaches 48 in adult ones. It should be noted that in the type material there are larger areas that have corallites only ranging from 2.5 to 4 mm, whereas in other areas of the same specimen corallites ranging from 3 to 6 mm occur. Regarding the dimensions of the skeletal elements, and the development of septa and the axial region, the Mexican specimens correspond well with the syntypes of Antiguastrea cellulosa. Family AGATHELIIDAE Beauvais and Beauvais, 1975 Genus MULTICOLUMNASTRAEA Vaughan, 1899 Type species.⎯Heliastraea cyathiformis DUNCAN IN DUNCAN WALL, 1865, Maastrichtian of Jamaica (Trout Hill).

AND

MULTICOLUMNASTRAEA CYATHIFORMIS (Duncan, 1865) Figure 4.3 Heliastraea cyathiformis DUNCAN IN DUNCAN AND WALL, 1865, p. 7, pl. 1, fig. 1a–b. Multicolumnastraea cyathiformis (DUNCAN). VAUGHAN, 1899, p. 236, pl. 37, fig. 5; pl. 38, fig. 1; BERRYHILL, BRIGGS, AND GLOVER, 1960, p. 151 (not seen); LIAO AND XIA, 1994, p. 177, pl. 53, figs. 5–8 (not seen); BARON-SZABO, 2002, p. 189, pl. 131, figs. 1–6; 2003, p. 18, pl. 3, fig. 7 (older synonyms cited therein); FILKORN, 2003a, p. 32 (taxon only listed); FILKORN, AVENDAN˜O-GIL, COUTIN˜O-JOSE´ M., AND VEGAVERA, 2005, p. 118, fig. 2b (not seen).

Description.⎯Colonial, columniform, plocoid; gemmation extracalicinal; corallites generally regularly disposed over surface of colony; costosepta nonconfluent, rarely subconfluent, compact, arranged in two to three cycles and six systems; slightly or strongly granulated laterally; inner ends claviform or terminate in auriculae; paliform lobes irregularly present; when corallites close together intercorallite areas crossed by costae; when more distant, costae merge into porous, reticulated coenosteum; columella made of few (one to four) isolated or joined papillae; wall septoparathecal, septothecal, or sometimes synapticulothecal; endothecal dissepiments thin, tabulate, or vesicular; exothecal dissepiments subtabulate. Material examined.⎯Sample nos.: UNAM, IGM 8690–8719. Measurements.⎯d (adult): 1.5–2.2 mm; d (juvenile): 1 mm; c-c: 1.5–2.8 mm, in regions of intensive budding, corallite distance may be smaller; s: 20–24, mainly 24. Occurrence.⎯Santonian of Austria (Gosau Group), Campanian to Maastrichtian and Eocene of Jamaica (Blue Mountain Series, Ducketts Land Settlement, Jerusalem Mountain Inlier, Maldon Inlier, Rio Minho, Westmoreland; Baron-Szabo, personal data), Campanian to Maastrichtian of Tibet; Campanian of northern Spain (Catalonia), Maastrichtian of Mexico (Cardenas and Ocozocuautla Formations); Danian of Puerto Rico.

← FIGURE 4—Scleractinian corals of the Cardenas Formation. 1, Cladocora jamaicaensis Vaughan, 1899; UNAM, IGM 8680; cross thin section; ⫻3. 2, Antiguastrea cellulosa (Duncan, 1863); sample UNAM, IGM 8741; cross thin section; ⫻10. 3, Multicolumnastraea cyathiformis (Duncan, 1865), sample UNAM, IGM 8713; cross thin section; ⫻4. 4, 9, Dictuophyllia conferticostata (Vaughan, 1899); sample UNAM, IGM 8679; cross thin section; 4, ⫻2.5; 9, ⫻6. 5, Meandrophyllia oceani (de Fromentel, 1877); sample UNAM, IGM 8739; cross thin section; ⫻4. 6, Cladocora gracilis d’Orbigny, 1850; sample UNAM, IGM 8683, cross thin section; ⫻3; 7, Siderastrea adkinsi (Wells, 1934); sample UNAM, IGM 8729; upper surface, polished; ⫻3.5. 8, Siderastrea vancouverensis Vaughan, 1923; sample UNAM, IGM 8728; cross thin section; ⫻2.5.

1038

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

BARON-SZABO ET AL.—MAASTRICHTIAN SCLERACTINIAN CORALS FROM MEXICO Family PLACOCOENIIDAE Alloiteau, 1952 Genus PLACOCOENIA d’Orbigny, 1849 Type species.⎯Astrea macrophthalma Goldfuss, 1826, Maastrichtian of the Netherlands (Maastricht). PLACOCOENIA MAJOR Felix, 1903 Figure 5.3, 5.6 Placocoenia major FELIX, 1903, p. 298, pl. 20, fig. 1, text-fig. 50; BARON-SZABO, 1999, p. 446, pl. 1, fig. 5; pl. 2, figs. 1, 3 (older synonyms cited therein); 2002, p. 38, pl. 21, figs. 3–5; in press, p. 40, pl. 8, fig. 5.

Description.⎯Massive, plocoid colony; gemmation extracalicinal; corallites circular to elliptical in outline; costosepta compact, nonconfluent, finely granulated laterally, arranged in six systems in juvenile or in eight systems in adult corallites; columella lamellar; endothecal and exothecal dissepiments vesicular to subtabulate; wall septoparathecal. Material examined.⎯Sample no.: UNAM, IGM 8722. Measurements.⎯d: 3.5–6 mm; d (lumen): 1.8–3 mm; c-c: 4– 7.5 mm; s: 20–34. Occurrence.⎯Aptian of Greece; Coniacian to Lower Santonian of southern France, Upper Turonian to Campanian of Austria (Gosau Group), Maastrichtian of Mexico (Cardenas Formation). Family SIDERASTREIDAE Vaughan and Wells, 1943 Genus SIDERASTREA Blainville, 1830 Type species.⎯Madrepora radians Pallas, 1766, Recent, West Indies. SIDERASTREA

VANCOUVERENSIS

Vaughan, 1923

Figure 4.8 Siderastrea vancouverensis VAUGHAN, 1923, p. 175, pl. 40, figs. 1, 2; FELIX, 1927, pars 35, p. 373 (taxon only listed).

Description.⎯Cerioid colony; corallites polygonal; budding extracalicinal; septa compact to subcompact, nonconfluent to confluent, arranged in four complete cycles with the beginning of the fifth cycle in six systems, granulated and pennulated laterally; columella trabecular, papillose; endothecal dissepiments vesicular, thin; synapticulae sparse, mainly restricted to the peripheral area of the corallite; wall synapticulothecal (to synapticuloparathecal), incomplete. Material examined.⎯Sample nos.: UNAM 8728 and ?8727 (poorly preserved specimen which could possibly be assigned to S. vancouverensis). Measurements.⎯d (max): 7–11 mm, juvenile corallites are 3– 5.5 mm; d (min): 6–8 mm; c-c: 4–10 mm; s: 48 to over 70. Occurrence.⎯Maastrichtian of Mexico (Cardenas Formation); ?Oligocene or ?Miocene of Canada (Vancouver Island). SIDERASTREA ADKINSI (Wells, 1934) Figure 4.7 Synastrea adkinsi WELLS, 1934, p. 87, pl. 3, figs. 14, 15; MITCHELL, 2002, p. 6 ff., table 1 (topotypes studied by one of the authors [RCBS]); BARON-SZABO, CASADIO, AND PARRAS, 2004, p. 79r. Synastrea cf. adkinsi WELLS. BERRYHILL, BRIGGS, AND GLOVER, 1960, p. 151.

1039

Siderastrea cf. scottica WELLS. BARON-SZABO, 2002, pl. 92, fig. 4.

Description.⎯Cerioid colony; budding extracalicinal; septa generally thin, compact, subcompact or porous, subconfluent or nonconfluent, sometimes directly uniting with neighboring corallites; arranged in four complete cycles, irregularly alternating in length and thickness; columella spongy-papillose; synapticulae numerous in vicinity of wall, forming an incomplete synapticulotheca; endothecal dissepiments thin and vesicular. Material examined.⎯Sample nos.: UNAM, IGM 8729–8731. Measurements.⎯d: 4–7 mm, juvenile corallites are smaller (2– 3.5 mm); c-c: 5–9 mm, in areas of more frequent budding the distance is around 3.5 mm; s: 44 up to about 70; in juvenile corallites number of septa is around 30; s/mm: 7–10/2. Occurrence.⎯Campanian to Maastrichtian of Jamaica (Catadupa beds); Maastrichtian of Mexico (Cardenas Formation); Danian of Argentina and Puerto Rico. Discussion.⎯In the original description of the type material of Synastrea adkinsi Wells (1934, p. 87) gives a distance between corallite centers of 5–6.5 mm, reports exclusively confluent septa, and notes the absence of corallite wall and dissepiments. However, re-examination of the type material (USNM I74483) revealed that it differs from the original description by 1) having a corallite distance of 4.5–8 mm (in areas of intense budding the distance is around 3.5 mm); 2) an incomplete corallite wall, formed by synapticulae; 3) the presence of endothecal dissepiments; and 4) the occurrence of mainly non- and subconfluent septa. Therefore, in referring to the characters 2–4, the assignment of the species Synastrea adkinsi Wells, 1934, to the genus Siderastrea is suggested. Family PORITIDAE Gray, 1842 Genus GONIOPORA Blainville, 1830 Type species.⎯Goniopora pedunculata Quoy and Gaimard in Blainville, 1830, Recent, New Guinea. GONIOPORA sp. Figure 5.5 cf. Goniopora cascadensis VAUGHAN. FROST p. 232, pl. 79, figs. 3–7 (not seen).

AND

LANGENHEIM, 1974,

Description.⎯Fragments of ramose or massive, subcerioid colony; corallites separated by reticulated coenosteum; septa subcompact, thin, nearly equal in thickness, delicately granulated laterally; septa arranged bilaterally in unclear systems; pali or paliform lobes occur irregularly; columella trabecular, sometimes in the form of thin, twisted segments; synapticulae scattered over the colony; wall synapticulothecal, incomplete; endothecal dissepiments sparse, thin. Material examined.⎯Sample nos.: UNAM, IGM 8732–8733. Measurements.⎯d: 1.2–2.5 mm; c-c: 2–3.8 mm; s: 12–16. Occurrence.⎯Maastrichtian (Cardenas Formation) and ?Oligocene (San Juan Formation) of Mexico. Discussion.⎯The Mexican specimens closely resemble forms assigned to Goniopora cascadensis Vaughan, 1919, from the Oligocene of Mexico (San Juan Formation) by Frost and Langenheim (1974). They are different from the true Goniopora cascadensis which was transferred to the genus Porites (Foster, 1986,

← FIGURE 5—Scleractinian corals of the Cardenas Formation. 1, Actinacis haueri Reuss, 1854; sample UNAM, IGM 8735; upper surface; ⫻13.5. 2, Actinacis parvistella Oppenheim, 1930; sample UNAM, IGM 8736; cross thin section, slightly oblique; ⫻14; 3, 6, Placocoenia major Felix, 1903; sample 53; cross thin section; 3, ⫻3; 6, ⫻6. 4, Trochoseris aperta Duncan, 1864; sample UNAM, IGM 8726; cross thin section; ⫻3. 5, Goniopora sp.; sample UNAM, IGM 8733; ⫻12. 7, Cyathoseris formosa d’Achiardi, 1875; sample UNAM, IGM 8721; cross thin section; ⫻2.5. 8, Dermosmiliopsis orbignyi Alloiteau, 1952; sample UNAM, IGM 8724; cross thin section; ⫻2.5. 9, 10, Actinhelia elegans (Goldfuss, 1826); sample UNAM, IGM 8738; cross thin section; 9, ⫻6.5; 10, ⫻4.5.

1040

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

p. 79). The Oligocene specimens and the forms described in this paper might belong to a new species. They are not well enough preserved to create a new species. Family ACTINACIDIDAE Vaughan and Wells, 1943 Genus ACTINACIS d’Orbigny, 1849 Type species.⎯Actinacis martiniana d’Orbigny, 1850, Upper Santonian of France (Figuie`res). ACTINACIS

HAUERI Reuss, 1854 Figure 5.1

Actinacis haueri REUSS, 1854, p. 128, pl. 8, figs. 13, 14 (holotype lost, but topotypes studied by one of the authors [RCBS]); FELIX, 1903, p. 176, text-fig. 2; 1914, pars 7, p. 240 (taxon only mentioned); OPPENHEIM, 1930, p. 6, pl. 1, figs. 7, 8 (topotypes studied by one of the authors [RCBS]); BEAUVAIS, 1982, vol. 2, p. 268, pl. 48, fig. 3; BARON-SZABO, 2001, p. 260, fig. 1g; 2002, p. 100, pl. 69, fig. 3. Montipora cretacea UMBGROVE, 1925, p. 120, pl. 8, fig. 4; LELOUX, 1999, p. 193, fig. 2.

Description.⎯Ramose, plocoid colony; corallites circular; costosepta thin, arranged in two to three cycles in six systems, alternating in length; columella of several lamellar or twisted segments; wall synapticulothecal, incomplete. Material examined.⎯Sample nos.: UNAM, IGM 8734–8735. Measurements.⎯d: 0.6–1 mm; c-c: 2–3 mm; s: 22–24. Occurrence.⎯Turonian to Santonian of Georgia (Caucasus), Upper Turonian to Coniacian (Theresienstein reef) and Coniacian–Campanian (Gosau Group) of Austria, Coniacian of Germany, Lower Coniacian and Upper Santonian of southern France, Upper Campanian to Lower Maastrichtian of Romania, Maastrichtian of Mexico (Cardenas Formation), Upper Maastrichtian of the Netherlands. ACTINACIS

Oppenheim, 1930 Figure 5.2

PARVISTELLA

Actinacis haueri REUSS. QUENSTEDT, 1881, vol. 6, p. 900, pl. 178, fig. 28 (topotypes studied by one of the authors [RCBS]). Actinacis parvistella OPPENHEIM, 1930, p. 9, pl. 1, fig. 3–3a (topotypes studied by one of the authors [RCBS]); BEAUVAIS, 1982, vol. 2, p. 273, pl. 49, figs. 1, 2; pl. 69, fig. 3 (older synonyms cited therein); BARON-SZABO, 1998, p. 147, pl. 11, fig. 1 (older synonym cited therein); 2000, p. 118, pl. 11, figs. 1, 3; 2001, p. 258, figs. 1a, 2e; 2002, p. 100, pl. 67, fig. 6; pl. 68, figs. 1, 2. Actinacis multilamellata OPPENHEIM, 1930, p. 13, pl. 15, fig. 2 (topotypes studied by one of the authors [RCBS]); BEAUVAIS, 1982, vol. 2, p. 274, pl. 49, figs. 3, 4; pl. 69, fig. 2 (topotypes studied by one of the authors [RCBS]). Actinacis valverdensis WELLS, 1933, p. 120, pl. 11, figs. 1, 2.

Description.⎯Encrusting-lamellar or massive, plocoid colony; circular or slightly oval calices, average diameter of approximately 1 mm; costosepta straight, nearly equal in thickness, but irregularly alternating in length, generally developed in three complete cycles in six systems; columella trabecular, made of a small number of twisted segments; wall synapticulothecal, incomplete. Material examined.⎯Sample no.: UNAM, IGM 8736. Measurements.⎯d: 0.8–1.2 mm, in latest adult stages up to 1.5 mm; c-c: 1.5–3 mm; s: 24, in very early stages around 22. Occurrence.⎯Albian of Texas, Upper Turonian to Santonian of Austria, Lower Coniacian of southern France, Santonian of Georgia (in Caucasus), Campanian of northern Spain (Catalonia), Maastrichtian of Mexico (Cardenas Formation) and of the UAE/ Oman border region. Genus ACTINHELIA d’Orbigny, 1849 Type species.⎯Astrea elegans Goldfuss, 1826, Maastrichtian of the Netherlands (Maastricht).

ACTINHELIA ELEGANS (Goldfuss, 1826) Figure 5.9, 5.10 Astrea elegans GOLDFUSS, 1826, vol. 1, p. 69, pl. 23, fig. 6. Actinhelia elegans D’ORBIGNY, 1850, vol. 2, p. 278 (taxon only listed); LELOUX, 1999, p. 193, fig. 2; BARON-SZABO, 2002, p. 101, pl. 69, fig. 4; pl. 70, fig. 1; FILKORN, 2003a, p. 32 (taxon only listed); FILKORN, AVENDAN˜O-GIL, COUTIN˜O-JOSE´ M., AND VEGA-VERA, 2005, p. 118, fig. 2b (not seen). Actinohelia elegans GOLDFUSS. FELIX, 1914, pars 7, p. 234 (taxon only listed).

Description.⎯Massive, cerioid-subplocoid colony; gemmation extra- and intracalicinal; costosepta compact with rare pores, confluent or nonconfluent, arranged in two complete cycles in eight systems; septal flanks finely granulated; anastomosis common; corallites directly united by common wall or separated by vermiculate coenosteum; columella trabecular or absent; endothecal and perithecal dissepiments thin, vesicular; wall synapticulothecal and septoparathecal with pores. Material examined.⎯Sample nos.: UNAM, IGM 8737–8738. Measurements.⎯d: 1.3–2 mm; juvenile around 1 mm; c-c: 1– 2 mm; s: 16 ⫹ s (8s1 ⫹ 8s2 ⫹ s). Occurrence.⎯Maastrichtian of the Netherlands, Mexico (Cardenas and Ocozocuautla Formations), and Jamaica (Ducketts Land Settlement, Jerusalem Mountain Inlier, Maldon Formation; Baron-Szabo, personal data), Danian of France (Vigny; Alloiteau collection at the Natural History Museum, Paris, not catalogued; Baron-Szabo, 2003, personal data). Family HAPLARAEIDAE Vaughan and Wells, 1943 Genus MEANDROPHYLLIA d’Orbigny, 1849 Type species.⎯Meandrina lotharinga Michelin, 1843, Upper Jurassic of France (Meuse). MEANDROPHYLLIA OCEANI (de Fromentel, 1877) Figure 4.5 Latimaeandra oceani. DE FROMENTEL, 1877, p. 450, pl. 107, fig. 4; FELIX, 1914, pars 7, p. 176 (taxon only listed); BEAUVAIS, 1982, vol. 2, p. 221, pl. 43, figs. 5, 6; TCHE´CHME´DJIE´VA, 1995, p. 74, pl. 19, fig. 4 (not seen). Latimaeandraraea sampelayoi BATALLER, 1936, p. 42, figs. 14, 15. Meandraraea massilienis D’ORBIGNY. BATALLER, 1937, p. 209, text-fig. on p. 210 (not seen). Meandraraea sampelayoi BATALLER, 1937, p. 211, text-fig. on p. 211. ?Dimorphomeandra viaderi REIG ORIOL, 1997, p. 26, pl. 4, figs. 4, 5 (not seen).

Description.⎯Massive, meandroid colony; gemmation intracalicinal; corallites indistinct to subdistinct, arranged in wavy calicinal series; series separated by generally tholiform but occasionally tectiform collines; costosepta confluent to subconfluent, nearly equal in thickness, perforated, granular and ?pennular laterally; columella papillose; synapticulae present; wall synapticulothecal, incomplete. Material examined.⎯Sample nos.: UNAM, IGM 8739–8740. Measurements.⎯c-c (wall-wall): 2.5–4 mm; s/mm: 6–7/2. Occurrence.⎯Upper Turonian of Bulgaria, Coniacian to Santonian of France, Upper Santonian of Austria (Gosau Group), Campanian–Maastrichtian of northern Spain, Maastrichtian of Mexico (Cardenas Formation), Middle to Upper Maastrichtian of Jamaica (Jerusalem Mountain Inlier; Baron-Szabo, personal data). Family BRACHYPHYLLIIDAE Alloiteau, 1952 Genus DERMOSMILIOPSIS Alloiteau, 1952 Type species.⎯Dermosmiliopsis orbignyi Alloiteau, 1952, Upper Santonian of France (Aude).

BARON-SZABO ET AL.—MAASTRICHTIAN SCLERACTINIAN CORALS FROM MEXICO DERMOSMILIOPSIS ORBIGNYI Alloiteau, 1952 Figure 5.8 Dermosmiliopsis orbignyi ALLOITEAU, 1952, p. 671 (type probably lost); 1957, pl. 4, fig. 6a–b (type probably lost); TURNSˇEK AND POLSˇAK, 1978, p. 159, 176, pl. 15, figs. 1–7. Barysmilia tenuicosta (REUSS). BEAUVAIS, 1982, vol. 1, p. 182, pl. 14, fig. 9a, non fig. 9b (part).

Description.⎯Phaceloid-subdendroid colony; gemmation extracalicinal (-marginal); septa subcompact to porous, with strongly beaded margins, arranged in five complete cycles with the beginning sixth cycle in six systems in adult corallites; columella spongy-papillose; endothecal dissepiments sparse, subtabulate, thin; synapticulae abundant; wall synapticulothecal. Material examined.⎯Sample nos.: UNAM, IGM 8723–8725. Measurements.⎯d: 10–17 mm, juvenile corallites: 6.5–9 mm; s: 96 to around 130, in juvenile corallites: 48–70. Occurrence.⎯Santonian of France, Santonian to Campanian of Croatia, Maastrichtian of Mexico (Cardenas Formation). Family AGARICIIDAE Gray, 1847 Genus TROCHOSERIS Milne Edwards and Haime, 1849 Type species.⎯Anthophyllum distortum Michelin, 1844, Eocene of France (Auvert) (Milne Edwards and Haime, 1849). TROCHOSERIS APERTA Duncan, 1864 Figure 5.4 Trochoseris aperta, nobis DUNCAN, 1864, p. 303, pl. 19, fig. 5; 1880, p. 107, pl. 27, figs. 9, 10. Elliptoseris aperta DUNCAN, 1880, p. 48, pl. 8, figs. 3–6; FELIX, 1925, pars 28, p. 147 (taxon only listed). Trochoseris catadupensis VAUGHAN, 1899, p. 242, pl. 39, figs. 5, 6; FELIX, 1925, pars 28, p. 120 (taxon only listed); WELLS, 1934, p. 78, pl. 2, figs. 9, 10; 1941, p. 288; BUDD, STEMANN, AND STEWART, 1992, p. 593; MITCHELL, 2002, p. 6 ff., table 1 (topotypes studied by one of the authors [RCBS]); BARON-SZABO, 2002, p. 122, pl. 84, figs. 3, 5; FILKORN, 2003a, p. 32 (taxon only listed); FILKORN, AVENDAN˜O-GIL, COUTIN˜O-JOSE´ M., AND VEGA-VERA, 2005, p. 124, fig. 2i (not seen). Trochoseris meinzeri VAUGHAN, 1919, p. 426, pl. 106, fig. 2–2b; FELIX, 1925, pars 28, p. 121 (taxon only listed); BUDD, STEMANN, AND STEWART, 1992, p. 593. ?Trochoseris (?) sp. cf. T. meinzeri VAUGHAN. FROST AND LANGENHEIM, 1974, p. 197, pl. 61, fig. 4 (not seen). ?Trochosmilia oldhami DUNCAN. ABED AND EL-ASA’AD, 1981, p. 275, pl. 1, fig. 2a–b (not seen).

Description.⎯Solitary, turbinate-patellate, expanding rapidly from base of attachment; calice broad and shallow, calicular pit elongated, 4 mm long; costosepta long, straight, crowded, compact, subcompact to porous in younger cycles, developed in five to six cycles in six systems, ornamented by delicate, spiniform, and very elongated spiny granules laterally; around 12 septa extend to axial region; columella spongy-papillose; synapticulae numerous, disposed over corallite; endothecal dissepiments sparse, thin, vesicular; wall synapticulothecal; relicts of epicostal lamellae present. Material examined.⎯Sample no.: UNAM, IGM 8726. Measurements.⎯d: 23 ⫻ 25 mm; s (adult): around 140; s/mm: 12/5. Occurrence.⎯Campanian of Cuba, Campanian to Lower Maastrichtian of central Saudi Arabia, Campanian to Maastrichtian and Eocene of Jamaica (Jerusalem Mountain Inlier, Ducketts Land Settlement, Rio Minho, Maldon Formation; Baron-Szabo, personal data), Maastrichtian of Mexico (Cardenas and Ocozocuautla Formations), Paleocene of Pakistan, Eocene of Cuba and Panama, ?Upper Eocene of Mexico (Ixtaclum shale).

1041

Genus CYATHOSERIS Milne Edwards and Haime, 1849 Type species.⎯Pavonia infundibuliformis Blainville, 1830, Eocene of France (Auvert) (see Milne Edwards and Haime, 1849). CYATHOSERIS

d’Achiardi, 1875 Figure 5.7

FORMOSA

Cyathoseris ?formosa. D’ACHIARDI, 1875, p. 196, pl. 17, fig. 3a–b (type probably lost, but topotypes studies by one of the authors [RCBS]); FELIX, 1925, pars 28, p. 128 (older synonyms cited therein) (taxon only listed).

Description.⎯Massive-lamellar, thamnasterioid colony; gemmation circumoral; corallites (secondary) grouped around main (primary) corallite in meandroid series; septa confluent, straight; thick and compact to subcompact; compact and thick septa alternate with thin and often porous ones; ornamented by delicate, spiniform and very elongated spiny granules laterally; up to 20 septa reach calicinal center; columella spongy papillose; synapticulae numerous, disposed over colony; wall synapticulothecal, incomplete or absent; endothecal dissepiments sparse, thin, vesicular. Material examined.⎯Sample nos.: UNAM, IGM 8720–8721. Measurements.⎯d (primary corallite): 20–30 mm; d (secondary corallites): 3–9 mm; c-c (series): 5–13 mm; c-c (between series): 5–24 mm; s/mm: 4–7/2; s (secondary corallites): up to 36. Occurrence.⎯Maastrichtian of Mexico (Cardenas Formation), Eocene of Bosnia and Italy, Lower Oligocene of Slovenia and Italy. CHRONOSTRATIGRAPHIC AND GEOGRAPHIC SIGNIFICANCE OF THE CORALS OF THE CARDENAS FORMATION

The Maastrichtian coral fauna of Mexico (Cardenas Formation) is dominated by forms which are widespread in the Upper Cretaceous and rather geographically restricted in Lower Tertiary time (Table 1). On the genus level, 94% of the Mexican fauna corresponds to the Maastrichtian coral assemblages of Jamaica (material collected from the following areas: Ducketts Land Settlement, Jerusalem Mountain Inlier, Rio Minho, Maldon Inlier, Vaughnsfield, Logie Green, and Westmoreland, all of which correspond to Middle-Upper Maastrichtian [Kiessling and BaronSzabo, 2004; Baron-Szabo, in press, personal data]). In addition to the genera that are documented from both areas in this paper, the taxa Goniopora imperatoris Vaughan, 1919, Cyathoseris senessei (Alloiteau, 1957), and Dermosmiliopsis tenuicosta (Reuss, 1854) were described from the Maastrichtian of Jamaica (Ducketts Settlements Landing) by Baron-Szabo (2002). Moreover, specimens of the genus Actinacis were found by one the authors (RCBS) in the Coates collection (e.g., sample nos: 345; 363; 380; Maastrichtian of Jamaica, Jerusalem Mountain Inlier) which is housed at the Smithsonian Institution (Baron-Szabo, personal data). All of the genera, except for Placocoenia, have therefore been known from both areas. On the species level, the affinities to the Jamaican occurrences are significantly smaller. Only 56.3% of the Cardenas species also occur in the Jamaican assemblages. This observation is limited by the fact that it pertains to only 70 specimens belonging to 16 species, whereas the Jamaican assemblages consist of around 4,000 specimens, belonging to over 50 species (Baron-Szabo, in press, personal data). In addition to the very close relation to the Jamaican assemblages on the genus level, the Cardenas fauna shows close affinities to Upper Cretaceous coral associations of central Europe that preceded the timespan of the Mexican corals (close resemblance exists especially to the Coniacian to Santonian associations of France and Austria: Cladocora gracilis, Multicolumnastraea cyathiformis, Placocoenia major, Actinacis haueri, A. parvistella, Meandrophyllia oceani, and Dermosmiliopsis orbignyi) (Tables 1 and 2). Remarkable is

1042

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

TABLE 1—Paleogeographic distribution of the corals of the Cardenas Formation, according to the records included in the synonymy lists (also see ‘‘Occurrence’’). Caribbean (excluding Jamaica): Anguilla, Antigua, Cuba, Puerto Rico, southeastern USA; Central America: Costa Rica, Mexico (formations younger than Cardenas Formation), Panama; central Europe: Austria, France, Germany, The Netherlands; eastern Europe: Bulgaria, Romania; northern Mediterranean: Bosnia, Croatia, Italy, Spain, Slovenia; North America: Canada, USA (Texas); South America ⴙ Antarctica: Argentina, Antarctica; Middle East/eastern Mediterranean: Egypt, Greece, Saudi Arabia, UAE/Oman; Asia: Georgia (Caucasus), Pakistan, Tibet.

the fact that on the species level the Mexican fauna shows little, if any, similarities to the rather rich (Campanian to) Maastrichtian faunas reported from Madagascar (Alloiteau, 1936, 1958), the UAE/Oman border region (Baron-Szabo, 2000), western-central Asia (Kazakhstan, Turkmenistan, Ukraine; Kuzmicheva, 1987), the Netherlands (Leloux, 1999), and south-central USA (Wells, 1933), pointing to a reduced faunal exchange during the late Cretaceous (see also Filkorn, 2003a). However, the most detailed studies currently available on the distributional pattern of scleractinian corals during the late Cretaceous including the K/T-time period have shown that globally a much greater faunal exchange occurred with the Caribbean/Central American region than is reflected by the Mexican fauna (Baron-Szabo, in press, personal data). The reason for this discrepancy might be that the results pertain to only 70 specimens belonging to 16 species, and therefore should be viewed with caution. In addition to the issue concerning the geographical patterns, on the global scale, the Mexican corals play an important role in answering the question about survivorship across the K/T boundary. Studies carried out recently involving the revision and reevaluation of over 2,500 records of Cretaceous and Lower Tertiary scleractinian taxa, which included the Cardenas coral fauna, revealed that the scleractinian corals fared much better during the Cretaceous/Tertiary extinction than previously assumed (Kiessling and Baron-Szabo, 2004; Baron-Szabo, in press, personal data). At

this time, the best estimation for worldwide survivorship of scleractinian species across the K/T boundary lies at around 70% (Kiessling and Baron-Szabo, 2004; Baron-Szabo, in press, personal data). The corals species of the Cardenas Formation (68.8% survival) fit well into the global scheme. As shown in Tables 1 and 2, of the Cardenas species that survived, 11 taxa also occurred during the Paleocene of the Caribbean, South America, Asia, and/ or the European/Mediterranean area. So far, none of the survivors have been found in the Paleocene of Mexico. The only taxa known from the Paleocene or more recent periods of Mexico are the colonial coral Astrangia Milne Edwards and Haime, 1848 and a small number of solitary scleractinians belonging to the sphenotrochiid-like turbinoliids (Baron-Szabo, in press, and personal data). The material was collected from the Sepultura Formation (Baja California, Tellez collection) and shows close affinities to Lower Tertiary assemblages of North America. For the Eocene–Miocene time period, a vast number of scleractinian coral assemblages have been reported from numerous localities worldwide (central Europe/Mediterranean [e.g., Reuss, 1868, 1874; d’Achiardi, 1875; Oppenheim, 1901, 1912; BartaCalmus, 1973; Pfister, 1980; Darga, 1992; Schuster, 1996, 2002]; Asia [e.g., Duncan, 1880; Gregory, 1930; Kuzmicheva, 1987]; South America [e.g., Vaughan, 1922; Wells, 1941; Clark and Durham, 1946]; North America [e.g., Vaughan, 1900; Durham, 1942, 1943]; Central America [e.g., Frost and Langenheim, 1974; Budd

BARON-SZABO ET AL.—MAASTRICHTIAN SCLERACTINIAN CORALS FROM MEXICO

1043

TABLE 2—Stratigraphic distribution of the corals of the Cardenas Formation, according to the records included in the synonymy lists (also see ‘‘Occurrence’’).

?1

et al., 1992]; and the Caribbean [e.g., Budd et al., 1994]). Of the seven Cardenas survivors that also have been found in strata Eocene or younger in age (Tables 1 and 2), only two species were found in locations outside the Caribbean/Central American region: Cyathoseris formosa has been reported from the Eocene– Oligocene time period of Bosnia, Italy, and Slovenia, and Siderastrea vancouverensis was described from the ?Oligocene or ?Miocene of Vancouver Island. The Mexican corals of the Cardenas Formation represent the westernmost hermatypic assemblage of the scleractinian coral occurrences of the Maastrichtian (Fig. 6), in which two main reef complexes can be recognized (Kiessling and Baron-Szabo, 2004): the Middle East (e.g., Abed and El-Asa’ad, 1981; Smith et al., 1995; Metwally, 1996; Baron-Szabo, 2000) and the Caribbean (e.g., Vaughan, 1899; Wells, 1941; Mitchell, 2002; Baron-Szabo,

in press, personal data). Thus it belongs to one of the two main sources for survivorship of scleractinian corals at the K/T boundary. Despite the fact that the fauna of the Cardenas Formation consists of only 16 species, ecologically it forms a very diverse assemblage, that is characterized by 1) a wide range of growth types (e.g., massive, branching, lamellar, columniform), shows 2) a great variety of polyp integration types (e.g., plocoid, cerioid, phaceloid-dendroid, meandroid, thamnasterioid), and 3) is distinctly dominated by colonial forms (only one solitary taxon, Trochoseris aperta, was found). ACKNOWLEDGMENTS

We would like to thank C. C. Johnson (Indiana University), G. Stanley (University of Montana), and two unknown reviewers for helpful comments and suggestions on the manuscript. We are

1044

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

grateful to D. Opresko (ORNL, Oak Ridge) for useful suggestions on the systematics and linguistic corrections. As a research associate, one of the authors (R. C. Baron-Szabo) was generously offered the use of all of the facilities of the Smithsonian Institution (Washington, DC). We thank the following colleagues who made type material accessible: F. Collier (Museum of Comparative Zoology, Cambridge), H. Lobitzer (Geological Survey Vienna, Austria), H. Kollmann (Museum of Natural History, Vienna, Austria), C. Sorbini and G. Bianucci (both Department of Paleontology, Pisa, Italy), J. Darrell (The Natural History Museum, London, United Kingdom), C. Perrin (National Museum of Natural History, Paris, France), J. Vilella i Puig (Geological Museum of Barcelona, Spain), and J. Leloux (National Museum of Natural History, Leiden, The Netherlands). Many thanks are due to the DAAD (German Academic Exchange Organization) and Deutsche Forschungsgemeinschaft (DFG) for generously supporting the projects D/00/28492 (DAAD), GO 1021/2 (DFG), and Ba 1830/3 (DFG). REFERENCES

ABED, M. M., AND G. M. EL-ASA’AD. 1981. Campanian–Maastrichtian scleractinian corals from central Saudi Arabia. Bulletin of the Faculty of Science, Mansoura University, 8:271–295. ALLOITEAU, J. 1936. Polypiers fossiles de Madagascar. 1: Formes du Cre´tace´ de la province d’Ananalava. Annales Ge´ologiques du Service des Mines de Madagascar, 6:41–53. ALLOITEAU, J. 1952. Embranchment des Coelente´re´s. II. Madre´poraires post-pale´ozoiques, p. 539–684. In J. Piveteau (ed.), Traite´ de Pale´ontologie, 1. Masson, Paris. ALLOITEAU, J. 1957. Contribution a` la Syste´matique des Madre´poraires Fossiles. The`se Centre National Recherche Scientifique, Masson, Paris, 462 p. ALLOITEAU, J. 1958. Monographie des Madre´poraires fossiles de Madagascar. Annales Ge´ologiques de Madagascar, 25:1–218. BARON-SZABO, R. C. 1998. A new coral fauna of the Campanian from north Spain (Torallola village Prov. Lle`ida). Geologisch-Pala¨ontologische Mitteilungen Innsbruck, 23:127–191. BARON-SZABO, R. C. 1999. Taxonomy of Upper Cretaceous scleractinian corals of the Gosau Group (Weissenbachalm Steiermark Austria), p. 441–464. In H. Lobitzer and P. Grecula (eds.), Geologie ohne Grenzen. Abhandlungen der Geologischen Bundesanstalt Wien, Festschrift 150, Jahre Geologische Bundesanstalt, 56. BARON-SZABO, R. C. 2000. Late Campanian–Maastrichtian corals from the United Arab Emirates-Oman border region. Bulletin of The Natural History Museum London (Geology), 56:91–131. BARON-SZABO, R. C. 2001. Corals of the Theresienstein reef (Upper Turonian–Coniacian, Salzburg, Austria). Bulletin of the Biological Society of Washington, 10:257–268. BARON-SZABO, R. C. 2002. Scleractinian Corals of the Cretaceous. A Compilation of Cretaceous Forms with Descriptions Illustrations and Remarks on their Taxonomic Position. Privately published, Knoxville, Tennessee, 539 p., 142 pls., 86 text-figs. BARON-SZABO, R. C. 2003. Taxonomie und Ontogenie von Korallen der ostalpinen Oberkreide (Hochmoos- und Grabenbachschichten Gosau Gruppe Santon). Jahrbuch der Geologischen Bundesanstalt Wien, 143: 107–201. BARON-SZABO, R. C. 2005. Geographic and stratigraphic distributions of the Caribbean species of Cladocora (Faviidae). Facies, 51:1–12. BARON-SZABO, R. C. In press. Corals of the K/T-boundary, Pt. 1, Scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina, and Amphiastraeina. Journal of Systematic Palaeontology, 3. BARON-SZABO, R. C., AND C. M. GONZA´LEZ-LEO´N. 2003. Late Aptian– Early Albian corals from the Mural Limestone of the Bisbee Group (Tuape and Cerro de Oro areas) Sonora, Mexico, p. 40. In R. W. Scott (ed.), Perkins Memorial Volume. U.S. Gulf Coast Section SEPM Foundation Special Publications in Geology, No. 1. Cretaceous Stratigraphy and Paleoecology, Tulsa, Oklahoma. BARON-SZABO, R. C., S. CASADIO, AND A. PARRAS. 2004. First shallow water scleractinian coral reef from the Danian, northern Patagonia, Argentina. Ameghiniana, 40:R79. BARTA-CALMUS, S. 1973. Re´vision de Collections de Madre´poraires

Provenants du Nummulitique du Sudest de la France, de l’Italie et de la Yougoslavie Septentrionales. Thcse a l’Univertite de Paris VI, C.N.R.S., A.O., 8295, Paris, 694 p. , pls. 1–59. BATALLER, J. 1936. Contribucio´n al estudio de los poliperos Creta`cicos de Catalun˜a. Iberica, 1103:38–46. BATALLER, J. 1937. La fauna corallina del Creta`cic de Catalunya i regions limı´trofes. Arxius de l’escola superior d’agricultura, n.s., 3:1–299. BEAUVAIS, L., AND M. BEAUVAIS. 1975. Une nouvelle famille dans le sous-ordre des Stylinida alloiteau: Les Agatheliidae nov. fam. (Madre´poraires me´sozoiques). Bulletin de la Socie´te´ ge´ologique de France (7), 17:576–581. BEAUVAIS, M. 1982. Re´vision syste´matique des Madre´poraires des couches de Gosau (Cre´tace´ supe´rieur, Autriche). Travaux du Laboratoire de Pale´ontologie des Inverte´bre´s, 1, 256 p.; 2, 277 p.; 3, 177 p.; 4 (atlas):69 tabs., 5 (atlas), 131 figs. BERRYHILL, H. L., R. P. BRIGGS, AND L. GLOVER. 1960. Stratigraphy, sedimentology, and structure of Late Cretaceous rocks in eastern Puerto Rico. Bulletin of the AAPG, 44:137–155. BLAINVILLE, H. M. DE. 1830. Zoophytes, p. 274–364. In J. L. M. Defrance (ed.), Dictionnaire des Sciences Naturelles, 60. F. G. Levrault, Paris. BUDD, A. F., T. A. STEMANN, AND K. G. JOHNSON. 1994. Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. Journal of Paleontology, 68:951–977. BUDD, A., T. A. STEMANN, AND R. H. STEWART. 1992. Eocene Caribbean reef corals: A unique fauna from the Gatuncillo Formation of Panama. Journal of Paleontology, 66:570–594. CLARK, B. L., AND J. W. DURHAM. 1946. Eocene faunas from the department of Bolivar, Colombia. Geological Society of America Memoir, 16, 87 p. CONRAD, T. A. 1857. Descriptions of Cretaceous and Tertiary fossils, p. 140–174. In W. H. Emery (ed.), Report on the United States and Mexican boundary survey: U.S. 34th Congress, 1st session, Senate Ex Document 108 and House Ex Document, 135, 1(2). D’ACHIARDI, A. 1875. Coralli eocenici del Friuli. Atti della Societa Toscana di Scienze Naturali resindente in Pisa, 1:147–221. DARGA, R. 1992. Geologie, Pala¨ontologie und Palo¨kologie der su¨dostbayerischen unter-priabonen (Ober-Eoza¨n) Riffkalkvorkommen des Eisenrichtersteins bei Hallthurm (No¨rdliche Kalkalpen) und des Kirchbergs bei Neubeuern (Helvetikum). Mu¨nchener Geowissenschaftliche Abhandlungen A, 23:1–66. DE FROMENTEL, E. 1877. Zoophytes terrains cre ´ tace´s (10), p. 433–480. In A. d’Orbigny (ed.), Pale´ontologie Franc¸aise, 8. Masson, Paris. D’ORBIGNY, A. 1849. Prodro ˆ me de Pale´ontologie Stratigraphique Universelle, 1. Masson, Paris, 394 p. D’ORBIGNY, A. 1850. Prodro ˆ me de Pale´ontologie Stratigraphique Universelle, 2. Masson, Paris, 428 p. DUNCAN, P. M. 1863. On the fossil corals of the West Indian Islands. Quarterly Journal of the Geological Society of London, 19:406–458. DUNCAN, P. M. 1864. A description of, and remarks upon, some fossil corals from Sinde. Annals and Magazine of Natural History, 3 ser., 13: 295–320. DUNCAN, P. M. 1880. A monograph of the fossil corals and Alcyonaria of Sind. Memoirs of the Geological Survey of India, Palaeontologia Indica Series, 14, 110 p. DUNCAN, P. M., AND G. P. WALL. 1865. A notice of the geology of Jamaica especially with reference to the district of Clarendon; with descriptions of the Cretaceous Eocene and Miocene corals of the islands. Quarterly Journal of the Geological Society of London, 21:1–14. DURHAM, J. W. 1942. Eocene and Oligocene coral faunas of Washington. Journal of Paleontology, 16:84–104. DURHAM, J. W. 1943. Pacific coast Cretaceous and Tertiary corals. Journal of Paleontology, 17:196–202. EHRENBERG, C. G. 1834. Die Corallenthiere des Rothen Meeres Physiologisch Untersucht und Systematisch Verzeichnet. Kaiserliche Akademie der Wissenschaften Berlin, 156 p. FELIX, J. P. 1891. Versteinerungen aus der mexicanischen Jura- und Kreide-Formation. Palaeontographica, 37:140–194. FELIX, J. P. 1903. Studien u¨ber die korallenfu¨hrenden Schichten der oberen Kreideformation in den Alpen und in den Mediterrangebieten. Palaeontographica, 49:163–359. FELIX, J. P. 1914. Fossilium Catalogus. I. Animalia. Pars 5–7, p. 1–273. In F. Frech (ed.), Anthozoa Palaeocretacea. W. Junk, Berlin.

BARON-SZABO ET AL.—MAASTRICHTIAN SCLERACTINIAN CORALS FROM MEXICO FELIX, J. P. 1925. Fossilium Catalogus. I. Animali Pars 28, p. 1–296. In C. Diener (ed.), Anthozoa Eocaenica et Oligocaenica. W. Junk, Berlin. FELIX, J. P. 1927. Fossilium Catalogus. I. Animalia Pars 35, p. 297–488. In C. Diener (ed.), Anthozoa Miocaenica. W. Junk, Berlin. FILKORN, H. F. 1994. Fossil scleractinian corals from James Ross basin, Antarctica. Antarctic Research Series, 65, 96 p. FILKORN, H. F. 2003a. Late Cretaceous (Maastrichtian) corals from Chiapas, Mexico. Geological Survey of America, Abstracts and Programs, 35(4):32. FILKORN, H. F. 2003b. The Cretaceous corals of Mexico: Occurrences and history of research. Revista Mexicana de Ciencias Geolo´gicas, 20: 52–78. FILKORN, H. F., J. AVENDAN˜O-GIL, A. COUTIN˜O-JOSE´ M., AND F. J. VEGA-VERA. 2005. Corals from the Upper Cretaceous (Maastrictian) Ocozocoautla Formation, Chiapas, Mexico. Revista Mexicana de Ciencias Geolo´gicas, 22(1):115–128. FOSTER, A. B. 1986. Neogene paleontology in the northern Dominican Republic. 3. The family Poritidae (Anthozoa: Scleractinia). Bulletins of American Paleontology, 90:43–123. FROST, S. H., AND R. L. LANGENHEIM. 1974. Cenozoic Reef Biofacies. Northern Illinois Press, Dekalb, 388 p. GILI, E., P. W. SKELTON, E. VICENS, AND A. OBRADOR. 1995. Corals to rudists—an environmentally induced assemblage succession. Palaeogeography, Palaeoclimatology, Palaeoecology, 119:127–136. GOLDFUSS, A. 1826–1829. Petrefacta Germaniae (1). Arnz, Du¨sseldorf, 114 p. GO¨TZ, S. 2001. Rudisten-Assoziationen der keltiberischen Oberkreide SESpaniens: Pala¨ontologie Palo¨kologie und Sediment-Organismus-Wechselwirkungen. Bayerische Akademie der Wissenschaften Abhandlungen, 171, 112 p. GO¨TZ, S. 2003. Biotic interaction and synecology in a Late Cretaceous coral-rudist biostrome of southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 193:125–138. GRAY, J. E. 1842. Nomenclator zoologicus: Continens nomina systematica generum animalium tam viventum quam fossilium, p. 30. In L. J. R. Agassiz (ed.), fasc. 5. Sent et Grassmann, Soloduri, 1842–1847. GRAY, J. E. 1847. An outline of an arrangement of stony corals. Annals and Magazine of Natural History, 19:20–128. GREGORY, W. 1900. On the geology and fossil corals and echinids of Somaliland. Quarterly Journal of the Geological Society of London, 56:26–45, 2 pls. GREGORY, W. 1930. The fossil fauna of the Samana Range and some neighbouring areas, Pt. VII, The Lower Eocene corals. Memoirs of the Geological Survey of India, Palaeontologica Indica, n.s., 15:81–128. HACKEMESSER, M. 1936. Eine kretazische Korallenfauna aus MittelGriechenland und ihre pala¨obiologischen Beziehungen. Palaeontographica, series A, 84:1–97. HO¨FLING, R. 1997. Eine erweiterte Riff-Typologie und ihre Anwendung auf kretazische Biokonstruktionen. Abhandlungen Bayerische Akademie der Wissenschaften Naturwissenschaftliche Klasse Neue Folge, 169:1–127. HO¨FLING, R., AND R. W. SCOTT. 2002. Early and mid-Cretaceous buildups. Phanerozoic reef patterns, p. 521–548. In W. Kiessling, E. Flu¨gel, and J. Golonka (eds.), SEPM Special Publication, 72. IFRIM, C., W. STINNESBECK, AND A. SCHAFHAUSER 2005. Maastrichtian shallow-water ammonites of northeastern Mexico. Revista Geolo´gica Mexicana, 22:48–64. JOHNSON, C. C., D. SANDERS, E. G. KAUFFMAN, AND W. W. HAY. 2002. Patterns and processes influencing Upper Cretaceous reefs. Phanerozoic reef patterns, p. 549–585. In W. Kiessling, E. Flu¨gel, and J. Golonka (eds.), SEPM Special Publication, 72. KAUFFMAN, E. G., AND N. F. SOHL. 1973. Structure and evolution of Antillean Cretaceous rudist frameworks. Verhandlungen der Naturforschenden Gesellschaft Basel, 84:400–467. KIESSLING, W., AND R. C. BARON-SZABO. 2004. Extinction and recovery patterns of scleractinian corals at the K/T-boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 214:195–223. KUZMICHEVA, E. I. 1987. Upper Cretaceous and Paleogene corals of the USSR. Verkhnenelovye paleogenovye korallij SSSR, p. 1–187. (In Russian) LAMARCK, J. B. P. DE. 1816. Histoire Naturelle des Animaux sans Verte`bres. Verdie`re, Paris, 568 p. LAVIANO, A. 1984. Preliminary observation on the Upper Cretaceous

1045

coral-rudist facies of Ostuni (south-eastern Murge Apulia). Rivista Italiana di Paleontologia e Stratigrafia, 90:177–204. LELOUX, J. 1999. Numerical distribution of Santonian to Danian corals (Scleractinia Octocorallia) of southern Limburg the Netherlands. Geologie en Mijnbouw, 78:191–195. LIAO, WEI-HUA, AND JIN-BAO XIA. 1994. Mesozoic and Cenozoic scleractinian corals from Xizang. Palaeontologica Sinica, n. s., B, 184:1– 252. (In Chinese with English summary) LINNAEUS, C. VON. 1767. Madrepora. Systema Naturae Editio Duodecima Reformata, 1. Holmiae, Stockholm, p. 1272–1282. LO¨SER, H. 2000. Upper Cretaceous corals from the Ptoon Mountains (central Greece). Abhandlungen und Berichte fu¨r Naturkunde, 21:49–61. MASSE, J.-P., AND J. PHILIP. 1981. Cretaceous coral-rudist buildups of France, p. 399–426. In D. F. Toomey (ed.), European fossil reef models. Tulsa, Oklahoma, Society of Economic Paleontologists and Mineralogists SEPM (Society of Sedimentary Geology). METWALLY, M. H. M. 1996. Maastrichtian scleractinian corals from the western flank of the Oman Mountains, U.A.E. and their paleoecological significance. Neues Jahrbuch fu¨r Geologie und Palo¨ontologie, Monatshefte, 1996:375–388. MICHELIN, H. 1843. Iconographie Zoophytologique. Description par Localite´s et Terrains des Polypiers Fossiles de France (3):73–104. Bertrand, Paris. MICHELIN, H. 1844. Iconographie Zoophytologique. Description par Localite´s et Terrains des Polypiers Fossiles de France (4):105–144. Bertrand, Paris. MILNE EDWARDS, H., AND J. HAIME. 1848. Note sur la classification de la deuxie`me tribu de la famille des astre´ides. Comptes Rendus de l’Acade´mie des Sciences, 27:490–497. MILNE EDWARDS, H., AND J. HAIME. 1849. Me`moire sur les polypiers appartenant a` la famille des oculinides au groupe interme´diaire des Pseudoastre´ides et a` la famille des Fongides. Comptes Rendus de l’Acade´mie des Sciences, 29:67–73. MITCHELL, S. F. 2002. Palaeoecology of corals and rudists in mixed volcaniclastic-carbonate small-scale rhythms (Upper Cretaceous Jamaica). Palaeogeography, Palaeoclimatology, Palaeoecology, 186:237–259. MYERS, R. L. 1968. Biostratigaphy of the Cardenas Formation (Upper Cretaceous) San Luis Potosı´ Mexico. Paleontologia Mexicana, 24:1–89. OPPENHEIM, P. 1901. Die Priabonschichten und ihre Fauna, im Zusammmenhange mit gleichaltrigen und analogen Ablagerungen vergleichend betrachtet. Palaeontographica, 47:1–344. OPPENHEIM, P. 1912. Neue Beitra¨ge zur Eoca¨nfauna Bosniens. Beitra¨ge ¨ sterreich-Ungarns und des Orients, zur Pala¨ontologie und Geologie O 25:87–149. OPPENHEIM, P. 1930. Die Anthozoen der Gosauschichten in den Ostalpen. Privately published, Berlin-Lichterfelde, 604 p. PALLAS, P. S. 1766. Elenchus Zoophytorum. Hague-Comitum, p. xvi, 28, and 415. PFISTER, T. 1980. Systematische und pala¨oo¨kologische Untersuchungen an oligoza¨nen Korallen der Umgebung von San Luca (Provinz Vicena, Norditalien). Schweizerische Pala¨ontologische Abhandlungen (⫽Me´moires suisses de Pale´ontologie), 103:1–121. QUENSTEDT, F. A. 1881. Petrefactenkunde Deutschlands (6). Ro¨hren- und Sternkorallen (3):913–1094, Leipzig (Fues). REIG ORIOL, J. M. 1997. Ge´neros y Especies Nuevas de Madreporarios Creta´cicos. Reig Oriol, Barcelona, 45 p. REUSS, A. E. 1854. Beitra¨ge zur Charakteristik der Kreideschichten in den Ostalpen besonders im Gosauthale und am Wolfgangsee. Denkschriften der kaiserlichen Akademie der Wissenschaften MathematischNaturwissenschaftliche Classe, 7:73–133. REUSS, A. E. 1868. Palaeontologische Studien u¨ber die altern Tertia¨rschichten der Alpen. 1. Theil. Die fossilen Anthozoen und Bryozoen der Schichtengruppe von Crosara. Denkschriften der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 28:129–184, pls. 1–16. REUSS, A. E. 1874. Palaeontologische Studien u¨ber die altern Tertia¨rschichten der Alpen. 3. Theil. Die fossilen Anthozoen und Bryozoen der Schichtengruppe von San Giovanni, Ilarione und von Ronca. Denkschriften der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 33:1–60, pls. 37–56. REYEROS DE CASTILLO, M. M. 1983. Corales de algunas formaciones cretacicas del estado de Oaxaca. Paleontologia Mexicana, 47:1–67.

1046

JOURNAL OF PALEONTOLOGY, V. 80, NO. 6, 2006

SANDERS, D., AND R. C. BARON-SZABO. 1997. Coral-rudist bioconstructions in the Upper Cretaceous Haidach Section (Gosau Group; Northern Calcareous Alps Austria). Facies, 36:69–90. SANDERS, D., AND J. P. PONS. 1999. Rudist formations in mixed siliciclastic-carbonate depositional environments Upper Cretaceous Austria– stratigraphy sedimentology and models of development. Palaeogeography, Palaeoclimatology, Palaeoecology, 148:249–284. SAY, T. 1820. Observations on some species of zoophytes, shells, etc., principally fossil. American Journal of Science, 1st series, 2:34–45. SCHAFHAUSER, A., S. GO¨TZ, R. C. BARON-SZABO, AND W. STINNESBECK. 2003. Depositional environment of coral-rudist associations in the Upper Cretaceous Cardenas Formation (central Mexico). Geologia Croatica, 56:187–198. SCHUSTER, F. 1996. Paleoecology of Paleocene and Eocene corals from the Kharga and Farafra Oases (Western Desert, Egypt) and the depositional history of the Paleocene Abu Tartur carbonate platform, Kharga Oasis. Tu¨binger geowissenschaftliche Arbeiten (TGA), Reihe A. Geologie, Pala¨ontologie, Stratigraphie, 31:1–96. SCHUSTER, F. 2002. Oligocene scleractinian corals from Doutsiko (Mesohellic Basin, northwestern Greece). Courier Forschungsinstitut Senckenberg, 239:83–127. SCOTT, R.W. 1995. Global environmental controls on Cretaceous reefal ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 119: 187–199. SCOTT, R. W., P. A. FERNA´NDEZ-MENDIOLA, E. GILI, AND A. SIMO´. 1990. Persistence of coral-rudist reefs into the Late Cretaceous. Palaios, 5: 98–110. SKELTON, P. W. 1978. The evolution of functional design in rudists (Hippuritacea) and its taxonomic implications. Philosophical Transactions of the Royal Society of London Series, 284:305–318. SKELTON, P. W., E. GILI, B. R. ROSEN, AND F. X. VALLDEPERAS. 1997. Corals and rudists in the late Cretaceous: A critique of the hypothesis of competitive displacement. Boletin de la Real Sociedad Espanola de Historia Natural (Seccion Geologica), 92:225–239. SMITH, A. B., N. J. MORRIS, W. J. KENNEDY, AND A. S. GALE. 1995. Late Cretaceous carbonate platform faunas of the United Arab Emirates-Oman border region. Bulletin of The Natural History Museum, Geology Series, 51:91–120. STANLEY, S. M., AND L. A. HARDIE. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:3–19. TCHE´CHME´DJIE´VA, V. 1995. Cre´tace´ Supe´rieur: Chaetetides (Porifera) et Anthozoaires (Coelenterate). Fossilia Bulgarica, 5b. Presses universitaires ‘‘St. Kliment Ohridski,’’ Sofia, 143 p., 26 pls. TURNSˇEK, D., AND A. POLSˇAK. 1978. Senonian colonial corals from the biolithite complex of Oresˇje on Mt. Medvednica (NW Yugoslovia). Razprave Slovenska Akademija Znanosti in Umetnosti (4), 21:129– 180. UMBGROVE, J. H. F. 1925. Die Anthozoa uit het Maastrichtsche tufkrit. Leidse Geologische Mededelingen, 1:83–126. VAUGHAN, T. W. 1899. Some Cretaceous and Eocene corals from Jamaica. Bulletin of the Museum of Comparative Zoology, 34:227–250. VAUGHAN, T. W. 1900. The Eocene and Lower Oligocene coral faunas of the United States with descriptions of a few doubtfully Cretaceous species. United States Geological Survey Monograph, 39, 263 p., 24 pls. VAUGHAN, T. W. 1919. Fossil corals from central America Cuba and Porto Rico with an account of the American Tertiary Pleistocene and Recent coral reefs. Smithsonian Institution Bulletin, 103:189–524. VAUGHAN, T. W. 1922. Corals from the Eocene deposits of Peru, p. 124– 135. In T. O. Bosworth (ed.), Geology of the Tertiary and Quaternary Periods in the North-west Part of Peru, With an Account of the Palaeontology. MacMillan, London. VAUGHAN, T. W. 1923. Fauna of the Sooke Formation Vancouver Island

description of a new coral. Publications of Geology University of California, 14:175–176. VAUGHAN, T. W., AND J. W. WELLS. 1943. Revision of the suborders, families and genera of the Scleractinia. Geological Society of America Special Paper, 44:1–363. WELLS, J. W. 1933. Corals of the Cretaceous of the Atlantic and Gulf Coastal Plains and Western Interior of the United States. Bulletins of the American Paleontology, 18:1–207. WELLS, J. W. 1934. Some fossil corals from the West Indies. Proceedings of the U.S. Natural Museum, Washington, DC, 83:71–110. WELLS, J.W. 1941. Upper Cretaceous corals from Cuba. Bulletins of American Paleontology, 26:282–300. WELLS, J. W. 1946. Some Jurassic and Cretaceous corals from northern Mexico. Journal of Paleontology, 20:1–7. ACCEPTED 21 JULY 2005 APPENDIX

List of specimens studied Diploria conferticostata Vaughan, 1899 (syntypes, MCZ 114212, 114213); Diploria conferticostata var. columnaris Vaughan, 1899 (holotype, MCZ 114214); Dictuophyllia conferticostata (Vaughan) in Wells, 1934 (topotype, USNM 74477); Dictuophyllia conferticostata (Vaughan) in Baron-Szabo, 2002 (topotype, Coates coll., no. 523a); Cladocora jamaicaensis Vaughan, 1899 (holotype, MCZ 114203); Cladocora tenuis Reuss, 1854 in Felix, 1903 (topotype, Felix coll. NHMW, not catalogued); Cladocora tenuis Reuss, 1854 in Baron-Szabo, 2002 (topotype, BaronSzabo coll. GBA 56/II); Calamophyllia gracilis D’ORBIGNY, 1850 (holotype, MNHN, 7057); Antiguastrea cellulosa (Duncan, 1863) (syntypes, BMNH, R28626 and R28743); Antiguastrea cellulosa (Duncan, 1863) in Vaughan, 1919 (USNM 324923 and 324936); Antiguastrea cellulosa (Duncan) in Budd et al., 1992 (USNM 95453 and 95456); Multicolumnastraea cyathiformis (Duncan, 1865) (holotype, BMNH, R-28938); Multicolumnastraea cyathiformis (Duncan, 1865) in Vaughan, 1899 (hypotypes, MCZ 114199–201); Multicolumnastraea cyathiformis (Duncan, 1865) in Baron-Szabo, 2003 (GBA, Baron-Szabo coll., no. 51a/I); Placocoenia major Felix, 1903 (holotype, NHMW, Felix coll. no. 82); Placocoenia major Felix, 1903 in Baron-Szabo, 1999 (GBA, Baron-Szabo coll. no. WB 12–8); Siderastrea vancouverensis Vaughan, 1923 (holotype, USNM I312607); Siderastrea adkinsi (Wells, 1934) (holotype, USNM I74483); Siderastrea adkinsi (Wells, 1934) in Baron-Szabo et al., 2004 (UNAM, nos.: 255066–25592, 255802–255819, 255825–255860); Actinacis haueri Reuss, 1854 in Felix, 1903 (topotype, NHMW, Felix coll., not catalogued); Montipora cretacea Umbgrove, 1925 (holotype, RGM, RMNH 29072); Actinacis haueri Reuss, 1854 in Baron-Szabo, 2001 (USNM, Baron-Szabo coll., field nos.: TH-1L, TH-3Q, TH-7H); Meandraraea sampelayoi (Bataller, 1936) (holotype, MGSB 6797); Actinacis valverdensis WELLS, 1933 (holotype, USNM I75158); Actinacis parvistella OPPENHEIM, 1930 in BARON-SZABO, 1998 (NMHU K. 1167, K. 1168.1–9); Actinacis parvistella OPPENHEIM, 1930 in BARON-SZABO, 2000 (BM AZ 367, 514, 569, 576, 641, 666, 2528); Actinacis parvistella Oppenheim, 1930 in Baron-Szabo, 2001 (USNM, Baron-Szabo coll., field nos.: TA-9, TB-8, TC-2, 6, 9, 12, TD-4, TH-1GI, GII, M, TH-2G, TH4G, TH-7U, TH-8B, P); Actinhelia elegans (Goldfuss, 1826) (syntypes, IPB Goldfuss coll., nos. 231a, b); Actinhelia elegans (Goldfuss, 1826) in Baron-Szabo, 2002 (USNM, Coates coll., no. 339d); Meandrophyllia oceani (de Fromentel, 1877) (holotype, MNHN d’Orbigny coll., B17363); Trochoseris aperta Duncan, 1864 (holotype, BMNH R.39647 ⫽ topotype of Elliptoseris aperta Duncan, 1880); Trochoseris meinzeri Vaughan, 1919 (holotype, USNM M325228); Trochoseris catadupensis Vaughan, 1919 (holotype, MCZ 114204; Trochoseris catadupensis Vaughan, 1919 in Wells (1934) (hypotype, USNM I74491); Trochoseris catadupensis Vaughan, 1919 in Baron-Szabo, 2002 (topotype, Coates coll., no. 569c); Cyathoseris ?formosa d’Achiardi, 1875 (topotypes, Palaeontological Institute of Pisa, Italy, not catalogued).