Forum
Letters Sebacinales, but not total root associated fungal communities, are affected by land-use intensity There is great scientific and societal interest in the ecology and functioning of the immense diversity of microorganisms associated with plant roots (Mendes et al., 2011; Porras-Alfaro & Bayman, 2011). In particular, research into plant–soil interactions has unveiled a pivotal role of root-associated fungi in influencing plant growth and community structure (van der Heijden et al., 2008; Schnitzer et al., 2011; Wagg et al., 2014). So far, knowledge on the identity of fungi associated with plant roots, and forces structuring the communities they form, is still scarce. This extends to agricultural systems, where communities of belowground fungi are a largely unknown but potentially important driver of plant productivity akin to natural systems, and display a considerably high diversity (Orgiazzi et al., 2012). So far, most research has focused on plant pathogens (e.g. Xu et al., 2012) and on arbuscularmycorrhizal fungi (AMF). AMF are an important group of plant symbionts, and we know that these generally increase in diversity in response to reduced agricultural management intensity (Oehl et al., 2004; Verbruggen et al., 2012). For other groups of root endophytes little is known about responses to agricultural management, even though they may be of high ecological significance (Rodriguez et al., 2009). Apart from potential effects on plants, there is great interest in identifying taxa that may serve as bio-markers for sustainable agricultural practices, as has recently been explored for AMF by Jansa et al. (2014). So far this has not been attempted for other root inhabiting fungi, likely because it is unknown whether root-colonizing fungi are sensitive to changes in land-use intensity. In this study we have sampled wheat roots in agricultural fields that were either managed conventionally (seven sites) or had been converted to organic farming recently (2–4 yr; eight sites), moderately long ago (10– 14 yr; six sites), or had been subjected to long-term organic farming (16–33 yr; eight sites). We analyzed the fungal community in roots using next generation sequencing of fungi and ask how different biotic and abiotic aspects drive fungal communities inhabiting wheat roots.
Materials and Methods All sites were situated in Switzerland occurring in a circle with a radius of c. 50 km around Z€ urich, northern Switzerland, with a similar soil type typical of the region (cambisol with a loamy texture; see Honegger et al., 2014, for further description). All sites contained pasture in 2010, grew maize (Zea mays) in 2011 and 1036 New Phytologist (2014) 203: 1036–1040 www.newphytologist.com
winter-wheat (Triticum aestivum) or spelt (Triticum aestivum ssp. spelta) from 2011 to 2012 (see Supporting Information Notes S1 for further details on sampling and molecular analysis). In short: roots from six wheat individuals were sampled between 4 and 8 June 2012, washed, DNA was isolated from 7 to 10 mg lyophilized roots, and subjected to PCR using the general fungal primers ITS1F (Gardes & Bruns, 1993) and ITS4 (White et al., 1990). Additionally, at each field 15 soil samples were taken using a corer (3 cm width, 20 cm depth), pooled, and used to estimate the following parameters: pH (H2O), available phosphorus (P; CO2 -extractable), available potassium (K; CO2 -extractable) and magnesium (Mg; CaCl2 -extractable). Between 26 and 29 June soil cover for each plant species (weeds) was determined in all fields (except for one organically managed field) in three randomly placed 1-m2 plots. Cover of each plant was averaged over these three plots, Shannon diversity (H) was calculated based on this average perspecies cover and averages were summed as an estimate of total plant cover. Read numbers of operational taxonomic units (OTUs; see Fig. S1 for sample-based rarefaction plots) were natural log (loge + 1) transformed for all analyses, and Bray Curtis dissimilarity index (abundance based) and Jaccard index (presence/absence based) were used to assess community differences between sites. As a measure of environmental distances between sites, Principal Component Analysis was performed on normalized values of the variables soil pH, available P, K and Mg, soil respiration and microbial biomass as representing the ‘soil environment’ (the latter two biotic variables are included because they may be inclusive of environmental differences not covered by the measured abiotic variables). The Euclidean distance between site projections along the first three Principal Components was calculated (weighted according to eigenvalues of respective axes) which together accounted for 92.1% of variance, and used as a measure of site environmental dissimilarity. As a measure of vegetation dissimilarity absolute cover (in m2) by each weed species was natural log (loge + 1) transformed and for the resulting matrix Euclidean distances between sites were calculated, because this measure explicitly puts weight on abundances (cover) of species. For spatial distance the Euclidean distance between each site was calculated in meters using the geographical coordinates determined at each site. Each of these dissimilarity matrices was compared to fungal community dissimilarity using a Mantel test with 9999 permutations. Different management groups were compared using PERMANOVA with the four different times since conversion (0, 2–4, 10–14, > 16 yr) as factor levels. In order to identify which environmental and biotic variables significantly predict fungal community composition, we performed redundancy analysis (RDA, euclidean distance based) with a combination of forward and backward predictor selection using the ordistep function in R. Ó 2014 The Authors New Phytologist Ó 2014 New Phytologist Trust
New Phytologist
Results The different management groups were found to not have a significant effect on fungal communities (abundance: pseudoF3,25 = 0.99; P = 0.46, presence/absence: pseudo-F3,25 = 0.98; P = 0.50), which means that community dissimilarity (turnover) was as large within groups as between groups. The three most common OTUs across fields were a taxon closely matching Glarea lozoyensis which occurred in all fields, a member of the Sordariomycetes also occurring in all fields, and another Sordariomycete related to the Lasiosphaeriaceae occurring in all but two fields. Relative abundances and occurrence frequencies of the most frequent OTUs are shown in Fig. 1(a). Relating fungal community dissimilarity to site-specific parameters showed a significant effect of soil environmental dissimilarity (R = 0.25, P = 0.017), but not of spatial distance or vegetation composition, and this was the same using a presence/absence based distance measure (environment: R = 0.24, P = 0.019; space and vegetation: not significant (NS)). RDA testing the effect of the separate environmental and biotic predictors on OTUs resulted in an explained variance of all predictors of 33.1%, where soil pH (F = 3.45, P < 0.01), Mg concentration (F = 2.04, P < 0.01) and plant H (F = 1.41, P = 0.017) were sequentially selected as significant predictors. Together these predictors explained 22.9% of variance, and no single further predictor addition improved the model. When based on presence/absence of fungal taxa, pH and Mg were also sequentially selected but plant diversity ceased to significantly improve the model (results not shown). Interestingly we found seven representative OTUs of Sebacinales occurring in a total of 11 sites, exclusively on organic farms. Relative abundances of these OTUs were low, ranging from 0.01% to 0.44% of the number of reads per site. In order to test whether management intensity may affect occurrence of Sebacinales, we performed a nested PCR with the same DNA samples using the Sebacinales-specific primers NSSeb1 – NL2R and NSSeb2 – NLSeb1.5R (Garnica et al., 2013). We screened PCR products of this reaction on a 1.5% agarose gel for presence of bands, cleaned the products and subjected the positive ones to Sanger sequencing using the NSSeb2 primer. We tested the effect of management (organic vs conventional) using a v2 test (P-value was approximated using Monte Carlo permutation because of low values under conventional management). Ó 2014 The Authors New Phytologist Ó 2014 New Phytologist Trust
Forum 1037
(a) Glarea lozoyensis (all fields) Unclassified Sordariomycetes (all) Unclassified Lasiosphaeriaceae (93%) Cadophora sp. AU_BD06 (all) Myrmecridium schulzeri (all) Pseudolachnea fraxini (69%) Tetracladium apiense (all) Microdochium bolleyi (all) Plectosphaerella cucumerina (79%) Podospora intesnacea (97%) Tetracladium sp. J3 (90%) Periconia macrospinosa (all) Cadophora sp. MTFA12 (69%) Ilyonectria macrodidyma (all) Fusarium flocciferum (97%) Other
(b)
Percentage of fields where Sebacinales occurred
This procedure tests which predictors significantly explain the community using a permutation test, takes the strongest one as a covariate, and repeats this process until no further predictor significantly improves the model. In between each addition of a covariate it additionally tests whether previous additions are still significant. The predictors tested in this model were: pH, available P, Mg, K, plant H, and plant cover. Soil respiration and microbial biomass were not included because they were strongly collinear with the abiotic variables; however, an additional test indicated that inclusion of these variables would not have affected the results. If not specifically mentioned otherwise analyses were performed in R using the vegan package 2.0-5 (Oksanen et al., 2012).
Letters
100 80 60 40 20 0 Con
Org (2–4 yr)
Org (10–14 yr) Org (> 16 yr)
Fig. 1 (a) Closest BLAST hits of the 15 most abundant taxa as represented by read numbers, averaged over all fields (all Ascomycetes; area represents relative number of reads). After each taxon name the percentage of all fields in which that particular taxon was found is indicated between brackets (if 100% it is indicated with ‘all’). (b) The percentage of fields within each management group (Con, conventional; Org, under organic management) in which members of Sebacinales were detected in wheat roots. NGS (open circles, dashed line), represents fields where Sebacinales were detected using Next Generation Sequencing; Total (open circles, solid line) represents the number of fields including both NGS and Sebacinales specific PCR (effect of management NGS: v2 = 5.64, P = 0.027; Total: v2 = 7.48, P < 0.01). Average Shannon diversity (H) of weed assemblages ( SEM) of the corresponding groups was 0.73 (0.18), 1.67 (0.15), 1.57 (0.22) and 1.63 (0.15), respectively.
We yielded amplification product in all but one of the 11 organic sites where Sebacinales were detected previously, but also in six more sites bringing the total of sites to 17. As can be seen in Fig. 1(b), these were almost exclusively (except for one) organically managed fields. Sanger sequencing of these 16 samples yielded 12 good quality sequences, all of which were confirmed to be of Sebacinalean origin by BLAST analysis. These sequences represented eight unique OTUs (97% similarity), of which one was shared by four sites, another by two, and the other six only occurred in one site each (see Table S1 for BLAST scores of sequences). The remaining four samples are inferred to contain multiple Sebacinales sequences and could therefore not be identified by direct Sanger sequencing. Phylogenetic analysis with representative sequences obtained from Weiss et al. (2011) and Garnica et al. (2013) showed that all OTUs clustered with Sebacinales group B (not shown). Logistic regression (GLM function with binomial error distribution based on presence/absence) indicated that occurrence of Sebacinales across sites is significantly predicted by organic vs conventional agriculture (z = 2.35, P = 0.019) and by plant H, but not by other environmental predictors when used as predictors separately (Table 1). When both predictors are added New Phytologist (2014) 203: 1036–1040 www.newphytologist.com
1038 Forum
New Phytologist
Letters
Table 1 Relationship between the occurrence of Sebacinales members and field specific environmental predictors using logistic regression n Plant diversity pH Mg P K
28 29 29 29 29
z
P 2.71 0.38 0.9 0.92 0.28
0.006 0.71 0.37 0.36 0.78
Plant diversity represents Shannon’s H index. Bold values indicate significant (P < 0.05) predictors.
simultaneously, plant diversity still remains a significant predictor (z = 2.01, P < 0.05).
Discussion We found that total fungal communities in roots of wheat plants were primarily driven by soil abiotic predictors, in particular soil pH and Mg concentration. This is in line with other studies on fungal communities in plant roots and soil (e.g. Widden, 1987; Dumbrell et al., 2010; Rousk et al., 2010), where pH has been found to be a main driver. In case of Mg concentration, coarsescale fungal community shifts in arbuscular mycorrhizal fungi and dark septate endophytes (DSE) have been reported (Postma et al., 2007). In addition to these predictors, we found that the diversity of weed communities significantly predicted the fungal community inside wheat roots. Earlier work investigating AMF communities in roots showed that the neighboring plant community can have a strong effect (Mummey et al., 2005; Hausmann & Hawkes, 2009). In the current study, AMF were detected at a relatively low read abundance (0.12%) precluding specific analysis, which may be caused by a bias of the ITS1F-ITS4 primer set in favor of Dikarya (e.g. Orgiazzi et al., 2012). For taxa other than AMF and ectomycorrhizal fungi (Simard et al., 2012), the influence of surrounding plant communities on root-fungal communities is much less known and may very well often be absent (Botnen et al., 2014). The fact that the Sebacinales (Weiss et al., 2011) and other root associated fungi have a broad host range can cause the surrounding plant community to influence fungal communities in wheat roots, if these fungi proliferate more extensively in some hosts other than wheat. Such a mechanism could result in weed diversity significantly changing fungal communities in wheat roots, and potentially explain the strong relationship between Sebacinales occurrence and weed diversity we report here (Table 1). An alternative reason for the effect of weeds on fungi found in wheat roots is that weed litter left in soil stimulates growth of fungi that can colonize wheat roots, as many root endophytes are known to have saprobic activity (Porras-Alfaro & Bayman, 2011). This is also true for Sebacinales (Zuccaro et al., 2011), of which some members form ericoid mycorrhizas and thus clearly associate with soil very rich in organic matter. Therefore, more work is needed to establish whether plant diversity is indeed responsible for significant changes in root-colonizing fungal communities or whether there may be other underlying factors responsible for these relationships. New Phytologist (2014) 203: 1036–1040 www.newphytologist.com
One of the main findings we report here is that fungi in the order of Sebacinales were significantly more prevalent in wheat roots from organically managed than from conventionally managed fields. As can be seen in Fig. 1(b), their occurrence already increases strongly within 2–4 yr after conversion to organic farming, and only became slightly larger (reaching 80–90% of sites) with a longer time span since conversion. The majority of roots yielded goodquality sequences through direct Sanger sequencing suggesting low diversity of Sebacinales, even though our templates were pools of roots from six individual plants. This is in agreement with results obtained by Selosse et al. (2009) and Garnica et al. (2013) who could directly sequence PCR product from various plant species. The mechanism responsible for this increased prevalence of Sebacinales in organically managed fields is uncertain; in organically managed fields no pesticides or mineral fertilizers are being used, but replaced with organic fertilizers, and it is thus possible that Sebacinales are sensitive to any of these factors. Another important difference is that the abundance of weeds was much higher in organically managed fields compared to the conventionally managed fields (Honegger et al., 2014). Studies of natural ecosystems including temperate grasslands (Wehner et al., 2014), arctic vegetation (Blaalid et al., 2014), and forest soil (Buee et al., 2009) have reported average Sebacinales read numbers to range between 1.7% and 11.3% of all fungi. Even though PCR based sequencing can only give a very rough estimate of relative abundances, the observation that in the current study read numbers were much lower (and never exceeded 1%) may indicate that Sebacinales are sensitive to agriculture in general. Given that this sensitivity appears to extend from organic to more intensive agricultural practices means that Sebacinales may be useful as bioindicators (e.g. to detect the use of pesticides, mineral fertilizers, or presence of weeds). The functional consequence of the finding that Sebacinales are possibly absent in intensively used agricultural sites is not certain; Sebacinales show a surprisingly wide spectrum of mycorrhizal types (ectomycorrhizas, orchid mycorrhizas, ericoid mycorrhizas, and others) but are also found as apparently symptomless endophytes in vascular plants of nearly all assessed plant families (Selosse et al., 2009; Oberwinkler et al., 2013). Members have been shown to have positive growth effects on cereals like maize and barley through a variety of mechanisms (Waller et al., 2005, 2008; Yadav et al., 2010; Oberwinkler et al., 2013). So far however, this work has mainly focused on the only two cultured endophytic Sebacinales, Piriformospora indica and Sebacina vermifera (Waller et al., 2008; Yadav et al., 2010). Waller et al. (2005) revealed that P. indica has biocontrol activities as its presence strongly suppressed the negative effects of the root pathogen Fusarium culmorum on barley. Whether similar functions are performed in the sites we sampled remains to be studied, as they were found at low relative abundance and represent thus far uncultured strains of Sebacinales. More research is now needed to elucidate which factors control Sebacinales in roots of crop plants, of which organic farming practices and plant diversity are potentially fruitful candidates. In this respect it is especially important to test whether the Sebacinales present at low abundance in wheat and other crops have a biological function (e.g. acquire nutrients for the plant, Ó 2014 The Authors New Phytologist Ó 2014 New Phytologist Trust
New Phytologist provide protection from disease and stress), and whether sampling at multiple time-points throughout the season might change abundance and occurrence estimates. Our results are also interesting in the context of the recent finding that farming has potentially led to a loss of groups of microbiota which convey functions present in natural systems, from which they have developed (Fierer et al., 2013). Our results suggest that Sebacinales may be another compelling example of such losses.
Acknowledgements The authors thank Hansruedi Oberholzer, Caroline Scherrer, Urs Zihlmann and Fredi Strasser for discussion and practical support, and Adrian Honegger for the plant species inventory. The authors want to thank three anonymous reviewers for their supportive comments and valuable improvements. E.V. acknowledges support from Freie Universit€at Berlin, D.H., R.W. and M.G.A.vdH. were funded by the Institute of Sustainability Sciences, Agroscope, and M.H. was supported by grants 137136 and 143097 from the Swiss National Science Foundation. Erik Verbruggen1,2*, Matthias C. Rillig1,2, Jeannine Wehner1,2, Django Hegglin3, 3 Raphael Wittwer and Marcel G. A. van der Heijden3,4,5 1
Institut f€ ur Biologie, Freie, Universit€at Berlin, Altensteinstr. 6, 14195 Berlin, Germany; 2 Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany; 3 Plant–Soil Interactions, Institute for Sustainability Sciences, Agroscope, Reckenholzstrasse 191, CH 8046 Z€ urich, Switzerland; 4 Institute of Evolutionary Biology and Environmental Studies, University of Z€ urich, Winterthurestrasse 190, CH 8057 Z€ urich, Switzerland; 5 Plant–Microbe Interactions, Faculty of Science, Institute of Environmental Biology, Utrecht University, 3508 TC Utrecht, the Netherlands (*Author for correspondence: tel +49 3083853146; email
[email protected])
References Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Høiland K, Eidesen PB. 2014. Arctic root-associated fungal community composition reflects environmental filtering. Molecular Ecology 23: 649–659. Botnen S, Vik U, Carlsen T, Eidesen PB, Davey ML, Kauserud H. 2014. Low host specificity among arctic root-associated fungi. Molecular Ecology 23: 975–985. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F. 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist 184: 449–456. Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME Journal 4: 337–345. Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley RL. 2013. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342: 621–624. Ó 2014 The Authors New Phytologist Ó 2014 New Phytologist Trust
Letters
Forum 1039
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. Garnica S, Riess K, Bauer R, Oberwinkler F, Weiß M. 2013. Phylogenetic diversity and structure of sebacinoid fungi associated with plant communities along an altitudinal gradient. FEMS Microbiology Ecology 83: 265–278. Hausmann NT, Hawkes CV. 2009. Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist 183: 1188–1200. van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296–310. Honegger A, Wittwer R, Hegglin D, Oberholzer H, Zihlmann U, De Ferron A, Jeanneret P, van der Heijden MGA. 2014. Auswirkungen langj€ahriger biologischer Landwirtschaft. Agrarforschung Schweiz 5: 44–51. Jansa J, Erb A, Oberholzer H-R, Smilauer P, Egli S. 2014. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Molecular Ecology 23: 2118–2135. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker P et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097–1100. Mummey DL, Rillig MC, Holben WE. 2005. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil 271: 83–90. Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiß M, Garnica S, Zuccaro A. 2013. Enigmatic Sebacinales. Mycological Progress 12: 1–27. Oehl F, Sieverding E, M€a der P, Dubois D, Ineichen K, Boller T, Wiemken A. 2004. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138: 574–583. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H et al. 2012. Vegan: community ecology package. R package version 2.0-5. Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V. 2012. Unravelling soil fungal communities from different mediterranean land-use backgrounds. PLoS ONE 7: 1–9. Porras-Alfaro A, Bayman P. 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology 49: 291–315. Postma JWM, Olsson PA, Falkengren-Grerup U. 2007. Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biology and Biochemistry 39: 400–408. Rodriguez RJ, White JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytologist 182: 314–330. Rousk J, B a ath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4: 1340–1351. Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA et al. 2011. Soil microbes drive the classic plant diversity-productivity patter. Ecology 92: 296–303. Selosse M-A, Dubois M-P, Alvarez N. 2009. Do Sebacinales commonly associate with plant roots as endophytes? Mycological Research 113: 1062–1069. Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. 2012. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews 26: 29–60. Verbruggen E, van Der Heijden MGA, Weedon JT, Kowalchuk GA, R€oling WFM. 2012. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology 21: 2341–2353. Wagg C, Bender SF, Widmer F, van der Heijden MGA. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA 111: 5266–5270. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, H€ uckelhoven R, Neumann C, von Wettstein D et al. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, USA 102: 13386–13391. Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Sch€a fer P, Kogel K-H. 2008. Systemic and local modulation of plant responses by New Phytologist (2014) 203: 1036–1040 www.newphytologist.com
1040 Forum
New Phytologist
Letters
Piriformospora indica and related Sebacinales species. Journal of Plant Physiology 165: 60–70. Wehner J, Powell JR, Muller LAH, Caruso T, Veresoglou SD, Hempel S, Rillig MC. 2014. Determinants of root-associated fungal communities within Asteraceae in a semi-arid grassland. Journal of Ecology 102: 425–436. Weiss M, S y korova Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D. 2011. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6: e16793. White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gefland D, Sninsky J, White T, eds. PCR protocols: a guide to method and applications. San Diego, CA, USA: Academic Press, 315–322. Widden P. 1987. Fungal communities in soils along an elevation gradient in Northern England. Mycologia 79: 298–309. Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M. 2012. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biology and Biochemistry 46: 26–32. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK. 2010. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. The Journal of Biological Chemistry 285: 26532–26544. Zuccaro A, Lahrmann U, G€ uldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M et al. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens 7: e1002290.
Supporting Information Additional supporting information may be found in the online version of this article. Fig. S1 Rarefaction analysis of number of fungal operational taxonomic units (OTUs) before downsampling. Table S1 BLAST hits of Sebacinales sequences Notes S1 Detailed description of sampling, sample preparation, and operational taxonomic unit (OUT) recovery. Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office. Key words: disturbance, mycorrhiza, organic agriculture, root endophytes, Sebacinales, weed diversity.
www.newphytologist.com
[email protected]
[email protected]
www.newphytologist.com
New Phytologist (2014) 203: 1036–1040 www.newphytologist.com
Ó 2014 The Authors New Phytologist Ó 2014 New Phytologist Trust