sediment management and control plan in river basin

1 downloads 0 Views 24MB Size Report
May 7, 2015 - SEDIMENT MANAGEMENT AND CONTROL. PLAN IN RIVER BASIN. Profesor Dr Aminuddin Ab. Ghani. Invited Lecture. National Hydraulic ...
SEDIMENT MANAGEMENT AND CONTROL PLAN IN RIVER BASIN Profesor Dr Aminuddin Ab. Ghani

Invited Lecture National Hydraulic Research Institute Malaysia (NAHRIM) 7 May 2015

We l e a d

CURRENT ISSUES

We l e a d

We l e a d

2007 Sungai Pahang Flood

9

15 December 2007 (Second time after 1971 flood)

Potential Scour in River We l e a d

Type of scour

General scour

Contraction scour

Local scour

Bridge Failure We l e a d

Pier scour

Pier scour

Pier scour

Bridge Failure We l e a d

Abutment scour

Abutment scour

Bridge Failure We l e a d

Destroyed by floating debris during Dec 2014 flood

Sungai Nenggiri, Gua Musang

Bridge Failure We l e a d

Abutment scour during Dec 2014 flood

Sungai Tanum, Kuala Lipis

Local Scour at Piers We l e a d

Local Scour at Abutment We l e a d

Uniform Abutment  (Without Foundation)

Local Scour at Abutment We l e a d

Compound Abutment  (With Foundation)

In‐stream Sand Mining We l e a d

Bank Erosion

Riverbed Degradation

Sungai Muda @ Jeniang

We l e a d

SEDIMENT TRANSPORT IN RIVERS

The Fluvial System We l e a d

Links and interactions between sediment processes and fluvial landforms

We l e a d

Natural and anthropogenic catchment and river processes affecting sediment dynamics

We l e a d

Sediment movement through the system We l e a d

We l e a d

Sediment sources through a river catchment

Meandering River

We l e a d

Sand Deposition We l e a d

Mississippi river

Sungai Pahang, Pekan

Sand Deposition We l e a d

Stable or Graded River

We l e a d

A stream may then be classified as either stable or unstable. A channel that has adjusted dependent variables to accommodate the basin inputs (independent variables) is said to be stable. Mackin (1948) gave the following definition of a graded or stable stream:

A graded stream is one in which, over a period of years, slope is delicately adjusted to provide, with available discharge and with prevailing channel characteristics, just the velocity required for the transportation of the load supplied from the drainage basin. The graded stream is a system in equilibrium.

Stable or Graded River

We l e a d

River Equilibrium

We l e a d

Modes of Sediment Transport Wash Load

Total Load Suspended Load

Bed Load

Bed Material

Total Bed Material Load

Incipient Motion ‐ Shields Diagram

We l e a d

(Nalluri & Featherstone 2001)

o = c o = c o = gRSo

Types of Bed Form We l e a d

Lower Flow Regime

Upper Flow Regime

Bed Form in Natural Waterways

We l e a d

Bed Form Sungai Jelai, Batu Kurau

We l e a d

Suggested Manning’s n We l e a d

Critical Velocity (Vc) for various materials We l e a d

Pencerapan Data Endapan Sungai We l e a d

(a) Bed & Bank Materials Data (50 Sites at Sungai Muda)

Kg Pulau Mertajam CH2.90

River Mouth CH0

Kg Sg Deraka CH1.40 River Mouth CH0.80

Kg Rantau Panjang CH9.05

New Barrage CH10.74

Merdeka Bridge CH12.96

(a) Bed & Bank Materials Data (50 Sites at Sungai Muda)

Kuari 3 CH19.70

Kuari 4 CH21.0

Kuari 1 CH13.30

Kuari 2 CH13.9

Kg Matang Berangan CH23.10

Kuari 5 CH23.60

Kg Lahar Tiang CH21.90

(a) Bed & Bank Materials Data (50 Sites at Sungai Muda)

Kuari Kg Seberang Tok Soh CH27.00

Kg Pantai Perai CH30.80 Kuari Kg Terong CH29.80

Kuari Kg Pinang Tunggal CH25.60 Kuari Kg Pantai Perai CH31.00

Pinang Tunggal Bridge CH25.20

Kg Lubok Ekor CH34.00

Bed Material Sediment Size Distributions We l e a d

Sungai Muda

100 90

Percentage Passing (%)

80 70 60 50 40 30 20 10 0 0.001

0.01

0.1

1

10

100

Size Particle (mm) MU01 MU11 MU21 MU31 MU41

MU02 MU12 MU22 MU32 MU42

MU03 MU13 MU23 MU33 MU43

MU04 MU14 MU24 MU34 MU44

MU05 MU15 MU25 MU35 MU45

MU06 MU16 MU26 MU36 MU46

MU07 MU17 MU27 MU37 MU47

MU08 MU18 MU28 MU38 MU48

MU09 MU19 MU29 MU39 MU49

MU10 MU20 MU30 MU40 MU50

(a) Bed & Bank Materials Data (30 Sites at Sungai Langat)

We l e a d

Sg Batangsi, Semenyih

Jalan Kacau, Sg Semenyih

Sg Tenang, Semenyih River Mouth Banting Bridge

Kg Sawah

Kg Rinching Hilir Sg Semenyih Tesco Bantng

We l e a d

Sg Langat-Sg Labu

Stesen Hidrologi Dengkil

Taman Permata Dengkil

Kg Bkt Serdang Putrajaya (Water Intake)

Kg Paya Rumput Sg Machang

JPS Kuala Langat Jetty

(a) Bed & Bank Materials Data (30 Sites at Sungai Langat)

Sg Beranang Kg Labohan Dagang

Sg Rinching

We l e a d

Bt 18, Kajang

Kg Sg Balak, Cheras

Sg Tangkas (UKM)

Bt 14, Cheras

Kg Teras Jernang

Sg Long Quarry Bridge

Bandar Mahkota Bridge, Cheras

Kg Jenderam

(a) Bed & Bank Materials Data (30 Sites at Sungai Langat)

Hanson Quarry Bridge

Jenderam Hilir

Bed Material Sediment Size Distributions We l e a d

100

Sungai Langat

90

Percentage Passing (%)

80 70 60 50 40 30 20 10 0 0.001

0.01

0.1

1

10

100

Size Particle (mm) LA01

LA02

LA03

LA04

LA05

LA06

LA07

LA08

LA09

LA10

LA11

LA12

LA13

LA14

LA15

LA16

LA17

LA18

LA19

LA20

LA21

LA22

LA23

LA24

LA25

LA26

LA27

LA28

LA29

LA30

(a) Bed & Bank Materials Data (23 Sites at Sungai Kurau) We l e a d

Kg Pondok Quin Baharu Main Sg Kurau

Kg Relau Berdiri Sg Kurau

Bt 14, Sg Kurau Sg Kurau

Sg Kurau, Pondok Tanjong

Bed Material Sediment Size Distributions We l e a d

Sungai Kurau

100.00 90.00

Percentage Passing (%)

80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 0.01

0.10

1.00

10.00

100.00

Size Particle (mm) KU1

KU2

KU3

KU4

KU5

KU6

KU7

KU8

KU9

KU10

KU11

KU12

KU13

KU14

A1

A2

A3

A4

A5

A6

A7

A8

A9

Sediment Rating Curve Total Bed Material Load, Tj (Kg/s)

Sungai Muda 10

1

Jambatan Ladang Victoria

0.1

Jambatan Dato Syed Omar Jambatan Teloi Jambatan Jeniang Jambatan Gajah Putih Jambatan Nami

0.01 1

10

100 Discharge, Q (m 3/s)

1000

Sediment Rating Curve for Dengkil Reach

Total Bed Material Load, Tj (Kg/s)

1000

100

10

Dengkil Jemderam Jalan Tangkas Kg Dusun Nanding

1

Jambatan Bt 14 Cheras Jambatan Kg Rinching, Semenyih Present Study

0.1 1

10

100 Discharge, Q (m 3/s)

Sungai Langat

1000

Sediment Rating Curve

Total Bed Material Load, Tj (Kg/s)

10 KU1

KU2

KU6

KU11

KU12

A5

1

0.1

Sungai Kurau 0.01 0.1

1

10 Discharge, Q (m3/s)

100

Replenishment Rate   10000

Total Bed Material Load, Tj (Kg/s)

1000

100

10

1 Sungai Muda Sungai langat Sungai Kurau

0.1

0.01 1

10

100 Discharge, Q (m3/s)

1000

Comparison of Replenishment Rate for three rivers

10000

Existing Sediment Transport Equations Transport Modes

Bed Load

Total Bed Material Load

Equation

Range of Sediment Size/Flow

Shields

1.56 < d50(mm) < 2.47

Meyer-Peter-Muller

3.17 < d50(mm) < 28.6

Einstein – Brown

< 10

Einstein

0.785 < d50(mm) < 28.6

Graf

0.09 < d50(mm) < 2.78

Engelund & Hansen

0.19 < d50(mm) < 0.93

Yang

0.137 < d50(mm) < 1.71 yo(m) < 1.0 m

Ackers & White

0.04 < d50(mm) < 4.94

Existing Sediment Transport Equations We l e a d

Yang log CT  5.435  0.286 log

WS d 50



U  0.457 log WS

 Wd U  1.799  0.409 log S 50  0.314 log   WS 

  VSO VC SO    log   WS    WS

Engelund-Hansen 0. 1 5 / 2    f

2 gRS o f  V2

Detailed of the equations in Professor Talk booklet.

Assessment of Yang and Engelund-Hansen Equations

Total Bed Material Load, Tj (Kg/s)

Sungai Muda 10

1

Present Study Data Engelund-Hansen

0.1

Yang

0.01 1

10

100 Discharge, Q (m 3 /s)

1000

Assessment of Yang and Engelund-Hansen Equations

Total Bed Material Load, Tj (Kg/s)

1000

Sungai Langat 100

10 Present Study Data Engelund-Hansen

1

Yang

0.1 1

10

100 Discharge, Q (m 3/s)

1000

Assessment of Yang and Engelund-Hansen Equations 10

Total Bed Material Load, Tj (Kg/s)

Present Study Data Engelund-Hansen Yang

1

0.1

Sungai Kurau 0.01 0.1

1

10 Discharge, Q (m3/s)

100

Latest Sediment Transport Book We l e a d

Contains all the latest research developments in  hydrodynamics of sediment transport

Sediment Transport Equation for Malaysia We l e a d

Sinnakaudan, S. K., Ab. Ghani, A., Ahmad, M. S. S., & Zakaria, N.A.(2006). Multiple Linear Regression Model for Total Bed Material Load Prediction, Journal of Hydraulic Engineering, American Society of Civil Engineers, Vol. 132, No. 5, May, pp. 521-528. ISSN 0733-9429

We l e a d

CASE STUDIES 

We l e a d

HEC-RAS Modeling

HEC-RAS Modelling

Sungai Muda Model Set-up

We l e a d

CAD of Sungai Muda (2001) Natural Cross Sections

Sediment Input

Sungai Muda

We l e a d

Selection of Sediment Transport Equation We l e a d

Sungai Muda

Sediment Deposition after October 2013 Flood (50-yr ARI) We l e a d

Deposition

Sungai Muda

Original Bed Level

2003 Hydrograph

We l e a d

FLUVIAL-12 Modeling

Sediment Delivery • Sediment delivery is defined as the accumulated amount of sediment that has been delivered passing a certain channel section for a specified period of time. • The spatial variation of sediment delivery depicts the erosion and deposition along a stream reach. • A decreasing delivery in the downstream direction, i.e. negative gradient for the delivery-distance curve, signifies that sediment load is partially stored in the channel to result in a net deposition. • On the other hand, an increasing delivery in the downstream direction indicates sediment removal from the channel boundary or net scour. • A uniform-sediment delivery along the channel indicates sediment balance.

Sediment Delivery

10

Cross Sections with Sediment Deposition

Level (m)

8 6

Sungai Muda (FRCP)

4 2

CH 25.40

0 -2 0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Distance (m) Initial Bed Level

Predicted Bed Level (Dec 2003)

Water Level (Dec 2003)

12

Level (m)

10 8 6 4 2

CH 33.60

0 -2 0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Distance (m) Initial Bed Level

Predicted Bed Level (Dec 2003)

Water Level (Dec 2003)

400

Sediment Delivery  

Sediment Delivery (tons)

140000 Reach 1

Peak (6th October 2003)

120000

End of Simulation (25th December 2003)

100000

Sungai Muda

80000

Reach 2 Deposition

Erosion

60000 40000 20000 0 0

2

4

6

8

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Chainage no. Volume of Deposition (tons)

Volume of Deposition (m3)

1. CH 33.40 – CH 31.60

76,400

49,506

2. CH 30.00 – CH 23.00

97,900

63,438

Reach

** Assume sand density = 1400 kg/m3 1 tons = 907.18474 kg

Cross Section Changes (n=0.025) 12

8 6

(a) Ch. 39.50 (M8‐ Ladang Victoria  Bridge) 

4 2 0 -200

-150

-100

-50

0

50

Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level

Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)

12 10 8

Elevation (m)

Elevation (m)

10

6

(b) Ch 31.60  (Kuari Kg Pantai  Perai )

4 2 0 -2 -4 -6 -200

-150

-100

-50

0

50

Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level

Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)

Cross Section Changes (n=0.025) 10 8

4 2 0 -2 -4 -6 -8 -200

(c) Ch. 25.20 (M7-Pinang Tunggal Bridge ) -150

-100

-50

0

50

Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level

Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)

10 8 6

Elevation (m)

Elevation (m)

6

4 2 0 -2 -4

(d) Ch. 23.00 (Kg Lahar Tiang) 

-6 -400

-350

-300

-250

-200

-150

-100

-50

0

50

Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level

Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)

100

We l e a d

SWAT Modeling The predictions of suspended load from the catchment and in-stream were made using SWAT (Soil and Water Assessment Tool) model.

Subbasin for Upper Sungai Langat Basin

100 Q observed Q Predicted

60

40

20

0 06/14/97

06/19/97

06/24/97

06/29/97

07/04/97

07/09/97

07/14/97

Date (day) 14000 Suspended Sediment (ton/day)

Sungai Langat

Flow rate, Q (m 3/s)

80

Predicted and Observed Flow

12000 10000 8000

Predicted and Observed Suspended Sediment

SS Observed SS Predicted

6000 4000 2000 0 06/14/97

06/19/97

06/24/97

06/29/97 Date (day)

07/04/97

07/09/97

07/14/97

Suspended Sediment (tons/day)

100000 1.68

Tj = 1.2419Q 10000

1000

100 Predicted Observed

10

Sungai Langat 1 1

10

100

Flow, Q (m3/s)

Sediment Rating Curve year 2003

1000

We l e a d

RIVER SEDIMENT MANAGEMENT  AND CONTROL PLAN

Annual Soil Loss Estimation -Universal Soil Loss Equation (USLE) or -Revised Universal Soil Loss Equation (RUSLE)

A = R. K. L. S. C. P A – Annual soil loss in tonnes/ha/year R – Rainfall/Runoff Erosivity Index in MJmmha‐1h‐1 K – Soil Erodibility Factor in tones/ha/(MJmmha‐1h‐1)  L – Slope length Factor S – Slope steepness Factor C – Ground Cover‐management Factor P – Supporting practices Factor/erosion control practice factor

We l e a d

ESC Manual

We l e a d

We l e a d

Peninsular Map is for display  of Erosivity spatial  distribution only.  R Factor should be extracted  from blown‐up maps

Support Practice Factor, P We l e a d

Table 6.15: Support Practice, P factor for BMPs at construction/ developing sites1 (Adapted from Layfield, 2009; Troeh et al., 1998; Mitchell and Bubenzer, 1980; ECTC, 2003; Israelsen et al. 1980; HDI, 1987; SCS, 1978; Weischmeier and Smith, 1978; Kuenstler, 2009) Erosion control treatment Bare soil

P Factor

Figure

1.00

Bertam, Cameron  Highland

Disked bare soil (rough or irregular surface)

0.90

Support Practice Factor, P Wired log / Sand bag barriers

0.85

We l e a d

Bertam, Cameron  Highland

Check Dam

0.80

Kolej Universiti Islam  Malaysia,Nilai

Grass buffer strips (to filter sediment laden sheet flow) Basin slope (%) 0 to 10 11 to 24

0.60 0.80

Sime Darby,Sepang

Sarawak

Support Practice Factor, P Erosion control treatment Contour furrowed surface Slope (%) Max. length 1 to 2 120 3 to 5 90 6 to 8 60 9 to 12 40 13 to 16 25 17 to 20 20 > 20 15

0.60 0.50 0.50 0.60 0.70 0.80 0.80

Silt fence

0.55

Sediment containment (Sediment basin/Trap)

systems

We l e a d

P Factor

0.50

Figure

Bertam, Cameron  Highland KUIM, Nilai

Bertam, Cameron  Highland

Support Practice Factor, P We l e a d

Berm drain and Cascade

0.50

Taiping, Perak Terracing Slope (%) 1 to 2 3 to 8 9 to 12 13 to 16 17 to 20 > 20

Bertam, Cameron  Highland

0.12 0.10 0.12 0.14 0.16 0.18

Tawau,Sabah

Gua Musang,  Kelantan

Evaluation of Water Resources with SWAT We l e a d

SPECIAL ISSUE 2015

Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China (Bieger et al. 2015) We l e a d

Xiangxi catchment (Yangtze Basin)

We l e a d

We l e a d

Integrated water resources management using engineering measures

We l e a d

Changjiang River basin. Water issues are droughts and floods in the upper reach; floods in the middle reach due to its low elevation and the sudden change from mountain areas to flood plains; and floods and navigation issues in the lower reach.

Integrated water resources management using engineering measures

We l e a d

Combination of engineering measures for flood management of Changjiang River

The water level for gauge stations (which are also very important cities/towns) of Shashi, Chenglingji, Hankou and Hukou will not exceed 45.0 m, 34.4 m, 29.73 m and 22.5 m, respectively, corresponding to the 50~100 year return period safety level

We l e a d

We l e a d

Major hydraulic works and reservoirs in the case study regions

We l e a d

Comparison of sediment yields and trends in  sediment discharge

We l e a d

Modelling Techniques Used We l e a d

Dam construction

Priority Sediment‐related Issues in each River Basin. We l e a d

Policy Recommendations

We l e a d

Policy Recommendations

We l e a d

Policy Recommendations

We l e a d

Policy Recommendations

We l e a d

Policy Recommendations

We l e a d

Policy Recommendations

We l e a d