May 7, 2015 - SEDIMENT MANAGEMENT AND CONTROL. PLAN IN RIVER BASIN. Profesor Dr Aminuddin Ab. Ghani. Invited Lecture. National Hydraulic ...
SEDIMENT MANAGEMENT AND CONTROL PLAN IN RIVER BASIN Profesor Dr Aminuddin Ab. Ghani
Invited Lecture National Hydraulic Research Institute Malaysia (NAHRIM) 7 May 2015
We l e a d
CURRENT ISSUES
We l e a d
We l e a d
2007 Sungai Pahang Flood
9
15 December 2007 (Second time after 1971 flood)
Potential Scour in River We l e a d
Type of scour
General scour
Contraction scour
Local scour
Bridge Failure We l e a d
Pier scour
Pier scour
Pier scour
Bridge Failure We l e a d
Abutment scour
Abutment scour
Bridge Failure We l e a d
Destroyed by floating debris during Dec 2014 flood
Sungai Nenggiri, Gua Musang
Bridge Failure We l e a d
Abutment scour during Dec 2014 flood
Sungai Tanum, Kuala Lipis
Local Scour at Piers We l e a d
Local Scour at Abutment We l e a d
Uniform Abutment (Without Foundation)
Local Scour at Abutment We l e a d
Compound Abutment (With Foundation)
In‐stream Sand Mining We l e a d
Bank Erosion
Riverbed Degradation
Sungai Muda @ Jeniang
We l e a d
SEDIMENT TRANSPORT IN RIVERS
The Fluvial System We l e a d
Links and interactions between sediment processes and fluvial landforms
We l e a d
Natural and anthropogenic catchment and river processes affecting sediment dynamics
We l e a d
Sediment movement through the system We l e a d
We l e a d
Sediment sources through a river catchment
Meandering River
We l e a d
Sand Deposition We l e a d
Mississippi river
Sungai Pahang, Pekan
Sand Deposition We l e a d
Stable or Graded River
We l e a d
A stream may then be classified as either stable or unstable. A channel that has adjusted dependent variables to accommodate the basin inputs (independent variables) is said to be stable. Mackin (1948) gave the following definition of a graded or stable stream:
A graded stream is one in which, over a period of years, slope is delicately adjusted to provide, with available discharge and with prevailing channel characteristics, just the velocity required for the transportation of the load supplied from the drainage basin. The graded stream is a system in equilibrium.
Stable or Graded River
We l e a d
River Equilibrium
We l e a d
Modes of Sediment Transport Wash Load
Total Load Suspended Load
Bed Load
Bed Material
Total Bed Material Load
Incipient Motion ‐ Shields Diagram
We l e a d
(Nalluri & Featherstone 2001)
o = c o = c o = gRSo
Types of Bed Form We l e a d
Lower Flow Regime
Upper Flow Regime
Bed Form in Natural Waterways
We l e a d
Bed Form Sungai Jelai, Batu Kurau
We l e a d
Suggested Manning’s n We l e a d
Critical Velocity (Vc) for various materials We l e a d
Pencerapan Data Endapan Sungai We l e a d
(a) Bed & Bank Materials Data (50 Sites at Sungai Muda)
Kg Pulau Mertajam CH2.90
River Mouth CH0
Kg Sg Deraka CH1.40 River Mouth CH0.80
Kg Rantau Panjang CH9.05
New Barrage CH10.74
Merdeka Bridge CH12.96
(a) Bed & Bank Materials Data (50 Sites at Sungai Muda)
Kuari 3 CH19.70
Kuari 4 CH21.0
Kuari 1 CH13.30
Kuari 2 CH13.9
Kg Matang Berangan CH23.10
Kuari 5 CH23.60
Kg Lahar Tiang CH21.90
(a) Bed & Bank Materials Data (50 Sites at Sungai Muda)
Kuari Kg Seberang Tok Soh CH27.00
Kg Pantai Perai CH30.80 Kuari Kg Terong CH29.80
Kuari Kg Pinang Tunggal CH25.60 Kuari Kg Pantai Perai CH31.00
Pinang Tunggal Bridge CH25.20
Kg Lubok Ekor CH34.00
Bed Material Sediment Size Distributions We l e a d
Sungai Muda
100 90
Percentage Passing (%)
80 70 60 50 40 30 20 10 0 0.001
0.01
0.1
1
10
100
Size Particle (mm) MU01 MU11 MU21 MU31 MU41
MU02 MU12 MU22 MU32 MU42
MU03 MU13 MU23 MU33 MU43
MU04 MU14 MU24 MU34 MU44
MU05 MU15 MU25 MU35 MU45
MU06 MU16 MU26 MU36 MU46
MU07 MU17 MU27 MU37 MU47
MU08 MU18 MU28 MU38 MU48
MU09 MU19 MU29 MU39 MU49
MU10 MU20 MU30 MU40 MU50
(a) Bed & Bank Materials Data (30 Sites at Sungai Langat)
We l e a d
Sg Batangsi, Semenyih
Jalan Kacau, Sg Semenyih
Sg Tenang, Semenyih River Mouth Banting Bridge
Kg Sawah
Kg Rinching Hilir Sg Semenyih Tesco Bantng
We l e a d
Sg Langat-Sg Labu
Stesen Hidrologi Dengkil
Taman Permata Dengkil
Kg Bkt Serdang Putrajaya (Water Intake)
Kg Paya Rumput Sg Machang
JPS Kuala Langat Jetty
(a) Bed & Bank Materials Data (30 Sites at Sungai Langat)
Sg Beranang Kg Labohan Dagang
Sg Rinching
We l e a d
Bt 18, Kajang
Kg Sg Balak, Cheras
Sg Tangkas (UKM)
Bt 14, Cheras
Kg Teras Jernang
Sg Long Quarry Bridge
Bandar Mahkota Bridge, Cheras
Kg Jenderam
(a) Bed & Bank Materials Data (30 Sites at Sungai Langat)
Hanson Quarry Bridge
Jenderam Hilir
Bed Material Sediment Size Distributions We l e a d
100
Sungai Langat
90
Percentage Passing (%)
80 70 60 50 40 30 20 10 0 0.001
0.01
0.1
1
10
100
Size Particle (mm) LA01
LA02
LA03
LA04
LA05
LA06
LA07
LA08
LA09
LA10
LA11
LA12
LA13
LA14
LA15
LA16
LA17
LA18
LA19
LA20
LA21
LA22
LA23
LA24
LA25
LA26
LA27
LA28
LA29
LA30
(a) Bed & Bank Materials Data (23 Sites at Sungai Kurau) We l e a d
Kg Pondok Quin Baharu Main Sg Kurau
Kg Relau Berdiri Sg Kurau
Bt 14, Sg Kurau Sg Kurau
Sg Kurau, Pondok Tanjong
Bed Material Sediment Size Distributions We l e a d
Sungai Kurau
100.00 90.00
Percentage Passing (%)
80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 0.01
0.10
1.00
10.00
100.00
Size Particle (mm) KU1
KU2
KU3
KU4
KU5
KU6
KU7
KU8
KU9
KU10
KU11
KU12
KU13
KU14
A1
A2
A3
A4
A5
A6
A7
A8
A9
Sediment Rating Curve Total Bed Material Load, Tj (Kg/s)
Sungai Muda 10
1
Jambatan Ladang Victoria
0.1
Jambatan Dato Syed Omar Jambatan Teloi Jambatan Jeniang Jambatan Gajah Putih Jambatan Nami
0.01 1
10
100 Discharge, Q (m 3/s)
1000
Sediment Rating Curve for Dengkil Reach
Total Bed Material Load, Tj (Kg/s)
1000
100
10
Dengkil Jemderam Jalan Tangkas Kg Dusun Nanding
1
Jambatan Bt 14 Cheras Jambatan Kg Rinching, Semenyih Present Study
0.1 1
10
100 Discharge, Q (m 3/s)
Sungai Langat
1000
Sediment Rating Curve
Total Bed Material Load, Tj (Kg/s)
10 KU1
KU2
KU6
KU11
KU12
A5
1
0.1
Sungai Kurau 0.01 0.1
1
10 Discharge, Q (m3/s)
100
Replenishment Rate 10000
Total Bed Material Load, Tj (Kg/s)
1000
100
10
1 Sungai Muda Sungai langat Sungai Kurau
0.1
0.01 1
10
100 Discharge, Q (m3/s)
1000
Comparison of Replenishment Rate for three rivers
10000
Existing Sediment Transport Equations Transport Modes
Bed Load
Total Bed Material Load
Equation
Range of Sediment Size/Flow
Shields
1.56 < d50(mm) < 2.47
Meyer-Peter-Muller
3.17 < d50(mm) < 28.6
Einstein – Brown
< 10
Einstein
0.785 < d50(mm) < 28.6
Graf
0.09 < d50(mm) < 2.78
Engelund & Hansen
0.19 < d50(mm) < 0.93
Yang
0.137 < d50(mm) < 1.71 yo(m) < 1.0 m
Ackers & White
0.04 < d50(mm) < 4.94
Existing Sediment Transport Equations We l e a d
Yang log CT 5.435 0.286 log
WS d 50
U 0.457 log WS
Wd U 1.799 0.409 log S 50 0.314 log WS
VSO VC SO log WS WS
Engelund-Hansen 0. 1 5 / 2 f
2 gRS o f V2
Detailed of the equations in Professor Talk booklet.
Assessment of Yang and Engelund-Hansen Equations
Total Bed Material Load, Tj (Kg/s)
Sungai Muda 10
1
Present Study Data Engelund-Hansen
0.1
Yang
0.01 1
10
100 Discharge, Q (m 3 /s)
1000
Assessment of Yang and Engelund-Hansen Equations
Total Bed Material Load, Tj (Kg/s)
1000
Sungai Langat 100
10 Present Study Data Engelund-Hansen
1
Yang
0.1 1
10
100 Discharge, Q (m 3/s)
1000
Assessment of Yang and Engelund-Hansen Equations 10
Total Bed Material Load, Tj (Kg/s)
Present Study Data Engelund-Hansen Yang
1
0.1
Sungai Kurau 0.01 0.1
1
10 Discharge, Q (m3/s)
100
Latest Sediment Transport Book We l e a d
Contains all the latest research developments in hydrodynamics of sediment transport
Sediment Transport Equation for Malaysia We l e a d
Sinnakaudan, S. K., Ab. Ghani, A., Ahmad, M. S. S., & Zakaria, N.A.(2006). Multiple Linear Regression Model for Total Bed Material Load Prediction, Journal of Hydraulic Engineering, American Society of Civil Engineers, Vol. 132, No. 5, May, pp. 521-528. ISSN 0733-9429
We l e a d
CASE STUDIES
We l e a d
HEC-RAS Modeling
HEC-RAS Modelling
Sungai Muda Model Set-up
We l e a d
CAD of Sungai Muda (2001) Natural Cross Sections
Sediment Input
Sungai Muda
We l e a d
Selection of Sediment Transport Equation We l e a d
Sungai Muda
Sediment Deposition after October 2013 Flood (50-yr ARI) We l e a d
Deposition
Sungai Muda
Original Bed Level
2003 Hydrograph
We l e a d
FLUVIAL-12 Modeling
Sediment Delivery • Sediment delivery is defined as the accumulated amount of sediment that has been delivered passing a certain channel section for a specified period of time. • The spatial variation of sediment delivery depicts the erosion and deposition along a stream reach. • A decreasing delivery in the downstream direction, i.e. negative gradient for the delivery-distance curve, signifies that sediment load is partially stored in the channel to result in a net deposition. • On the other hand, an increasing delivery in the downstream direction indicates sediment removal from the channel boundary or net scour. • A uniform-sediment delivery along the channel indicates sediment balance.
Sediment Delivery
10
Cross Sections with Sediment Deposition
Level (m)
8 6
Sungai Muda (FRCP)
4 2
CH 25.40
0 -2 0
25
50
75
100
125
150
175
200
225
250
275
300
325
350
375
Distance (m) Initial Bed Level
Predicted Bed Level (Dec 2003)
Water Level (Dec 2003)
12
Level (m)
10 8 6 4 2
CH 33.60
0 -2 0
25
50
75
100
125
150
175
200
225
250
275
300
325
350
375
Distance (m) Initial Bed Level
Predicted Bed Level (Dec 2003)
Water Level (Dec 2003)
400
Sediment Delivery
Sediment Delivery (tons)
140000 Reach 1
Peak (6th October 2003)
120000
End of Simulation (25th December 2003)
100000
Sungai Muda
80000
Reach 2 Deposition
Erosion
60000 40000 20000 0 0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Chainage no. Volume of Deposition (tons)
Volume of Deposition (m3)
1. CH 33.40 – CH 31.60
76,400
49,506
2. CH 30.00 – CH 23.00
97,900
63,438
Reach
** Assume sand density = 1400 kg/m3 1 tons = 907.18474 kg
Cross Section Changes (n=0.025) 12
8 6
(a) Ch. 39.50 (M8‐ Ladang Victoria Bridge)
4 2 0 -200
-150
-100
-50
0
50
Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level
Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)
12 10 8
Elevation (m)
Elevation (m)
10
6
(b) Ch 31.60 (Kuari Kg Pantai Perai )
4 2 0 -2 -4 -6 -200
-150
-100
-50
0
50
Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level
Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)
Cross Section Changes (n=0.025) 10 8
4 2 0 -2 -4 -6 -8 -200
(c) Ch. 25.20 (M7-Pinang Tunggal Bridge ) -150
-100
-50
0
50
Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level
Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)
10 8 6
Elevation (m)
Elevation (m)
6
4 2 0 -2 -4
(d) Ch. 23.00 (Kg Lahar Tiang)
-6 -400
-350
-300
-250
-200
-150
-100
-50
0
50
Distance (m) Predicted Bed Level (Design: ARI-50) Predicted Bed Level (Design: ARI-100) Predicted Bed Level (JPZ: ARI-50) Predicted Bed Level (JPZ: ARI-100) Existing Bed Level
Predicted Water Level (Design: ARI-50) Predicted Water Level (Design: ARI-100) Predicted Water Level (JPZ: ARI-50) Predicted Water Level (JPZ: ARI-100)
100
We l e a d
SWAT Modeling The predictions of suspended load from the catchment and in-stream were made using SWAT (Soil and Water Assessment Tool) model.
Subbasin for Upper Sungai Langat Basin
100 Q observed Q Predicted
60
40
20
0 06/14/97
06/19/97
06/24/97
06/29/97
07/04/97
07/09/97
07/14/97
Date (day) 14000 Suspended Sediment (ton/day)
Sungai Langat
Flow rate, Q (m 3/s)
80
Predicted and Observed Flow
12000 10000 8000
Predicted and Observed Suspended Sediment
SS Observed SS Predicted
6000 4000 2000 0 06/14/97
06/19/97
06/24/97
06/29/97 Date (day)
07/04/97
07/09/97
07/14/97
Suspended Sediment (tons/day)
100000 1.68
Tj = 1.2419Q 10000
1000
100 Predicted Observed
10
Sungai Langat 1 1
10
100
Flow, Q (m3/s)
Sediment Rating Curve year 2003
1000
We l e a d
RIVER SEDIMENT MANAGEMENT AND CONTROL PLAN
Annual Soil Loss Estimation -Universal Soil Loss Equation (USLE) or -Revised Universal Soil Loss Equation (RUSLE)
A = R. K. L. S. C. P A – Annual soil loss in tonnes/ha/year R – Rainfall/Runoff Erosivity Index in MJmmha‐1h‐1 K – Soil Erodibility Factor in tones/ha/(MJmmha‐1h‐1) L – Slope length Factor S – Slope steepness Factor C – Ground Cover‐management Factor P – Supporting practices Factor/erosion control practice factor
We l e a d
ESC Manual
We l e a d
We l e a d
Peninsular Map is for display of Erosivity spatial distribution only. R Factor should be extracted from blown‐up maps
Support Practice Factor, P We l e a d
Table 6.15: Support Practice, P factor for BMPs at construction/ developing sites1 (Adapted from Layfield, 2009; Troeh et al., 1998; Mitchell and Bubenzer, 1980; ECTC, 2003; Israelsen et al. 1980; HDI, 1987; SCS, 1978; Weischmeier and Smith, 1978; Kuenstler, 2009) Erosion control treatment Bare soil
P Factor
Figure
1.00
Bertam, Cameron Highland
Disked bare soil (rough or irregular surface)
0.90
Support Practice Factor, P Wired log / Sand bag barriers
0.85
We l e a d
Bertam, Cameron Highland
Check Dam
0.80
Kolej Universiti Islam Malaysia,Nilai
Grass buffer strips (to filter sediment laden sheet flow) Basin slope (%) 0 to 10 11 to 24
0.60 0.80
Sime Darby,Sepang
Sarawak
Support Practice Factor, P Erosion control treatment Contour furrowed surface Slope (%) Max. length 1 to 2 120 3 to 5 90 6 to 8 60 9 to 12 40 13 to 16 25 17 to 20 20 > 20 15
0.60 0.50 0.50 0.60 0.70 0.80 0.80
Silt fence
0.55
Sediment containment (Sediment basin/Trap)
systems
We l e a d
P Factor
0.50
Figure
Bertam, Cameron Highland KUIM, Nilai
Bertam, Cameron Highland
Support Practice Factor, P We l e a d
Berm drain and Cascade
0.50
Taiping, Perak Terracing Slope (%) 1 to 2 3 to 8 9 to 12 13 to 16 17 to 20 > 20
Bertam, Cameron Highland
0.12 0.10 0.12 0.14 0.16 0.18
Tawau,Sabah
Gua Musang, Kelantan
Evaluation of Water Resources with SWAT We l e a d
SPECIAL ISSUE 2015
Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China (Bieger et al. 2015) We l e a d
Xiangxi catchment (Yangtze Basin)
We l e a d
We l e a d
Integrated water resources management using engineering measures
We l e a d
Changjiang River basin. Water issues are droughts and floods in the upper reach; floods in the middle reach due to its low elevation and the sudden change from mountain areas to flood plains; and floods and navigation issues in the lower reach.
Integrated water resources management using engineering measures
We l e a d
Combination of engineering measures for flood management of Changjiang River
The water level for gauge stations (which are also very important cities/towns) of Shashi, Chenglingji, Hankou and Hukou will not exceed 45.0 m, 34.4 m, 29.73 m and 22.5 m, respectively, corresponding to the 50~100 year return period safety level
We l e a d
We l e a d
Major hydraulic works and reservoirs in the case study regions
We l e a d
Comparison of sediment yields and trends in sediment discharge
We l e a d
Modelling Techniques Used We l e a d
Dam construction
Priority Sediment‐related Issues in each River Basin. We l e a d
Policy Recommendations
We l e a d
Policy Recommendations
We l e a d
Policy Recommendations
We l e a d
Policy Recommendations
We l e a d
Policy Recommendations
We l e a d
Policy Recommendations
We l e a d