Ion-selective electrodes are characterized by parameters such as the slope of ... electrode material IS.! and that of the precipitate formed in the exchange.
Pure & Appl. Chem., Vol.51, pp.1913—198O.
0033—4545/79/0901—1913 $02.00/0
Pergamon Press Ltd. 1979. Printed in Great Britain.
©IUPAC
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ELECTROANALYTICAL CHEMISTRY*
SELECTIVITY COEFFICIENTS OF ION-SELECTIVE ELECTRODES Prepared for publication by E. PUNGOR, K. TOTH and A. HRABECZY-PALL Technical University, Budapest, Hungary
*Membership of the Commission during the preparation of the report (1975-1977) was as follows:
R. 0. BATES (Titular Member and Chairman; USA) J. F. COETZEE (Titular Member and Secretary; USA) E. BISHOP (Titular Member; UK) T. FUJINAGA (Titular Member; Japan) Z. GALUS (Titular Member; Poland) J. JORDAN (Titular Member; USA) H. W. NURNBERG (Titular Member; Federal Republic of Germany) P. ZUMAN (Titular Member; USA) M. BRANICA (Associate Member; Yugoslavia) A. K. COVINGTON (Associate Member; UK) L. GIERST (Associate Member; Belgium) K. IZUTSU (Associate Member; Japan) L. MEITES (Associate Member; USA) E. PUNGOR (Associate Member; Hungary) 0. A. SONGINA (Associate Member; USSR) B. TREMILLON (Associate Member; France) D. D. PERRIN National Representative; Australia) G. KRAFT (National Representative; Federal Republic of Germany) R. C. KAPOOR (National Representative; India) N. TANAKA (National Representative; Japan) W. KEMULA (National Representative; Poland) P.O. KANE (National Representative; UK)
SELECTIVITY COEFFICIENTS OF ION-SELECTIVE ELECTRODES
E.Pungor, K.Tôth, A.Hrabéczy-Páll Institute for General and Analytical Chemistry, Technical University, Budapest, Hungary
Abstract - In the present paper, after a short introduction including the difinition of the potentiometric selectivity coefficient and an outline of the methods used for its determination, selectivity coefficient data are collected in form of a table. In addition to the actual numerical values, the type of electrode and method and conditions used in the determination of the selectivity coefficient data are given in the table. THEORETICAL CONSIDERATIONS Ion-selective electrodes are characterized by parameters such as the slope of the potential response, selectivity coefficient, detection limit in unbuffered solutions, exchange current, response time etc. Among them, one of the most important is the selectivity coefficient of the electrode, on the basis of which the potential application of an electrode in a given system can be predicted. The selectivity coefficient is defined by the Nikolsky equation as follows: E = E0 + 2,303 RT log /a. + 1 z.F 1
where
V' K? j j L. 13 j=l a.
/
is the potential of the electrode E° is the standard potential of the electrode z. and z. are the charges on ions i and j, respectively /irefers to the primary ion, for which the electrode is designed and j to the interfering ion! a. and a. are the activities of ions i and j, respectively, and E
K?t is the selectivity coefficient of the electrode in the presence
ofionj. In general, the selectivity coefficient Kt can be expressed as follows:
K?t = K.. 1J
where
K..
f/u/
.
1J
f/ui
is the equilibrium constant of the reaction determining the electrode response in the presence of ions i and j /e.g. precipitate - exchange reaction, complex - forming reaction or extraction! is the function of the mobilities of ions i and j within the electrode membrane; it is equal to unity if only surface equilibrium reaction is involved.
Consequently, for precipitate-based electrodes /also referred to as crystal, single crystal or solid—state electrodes/, when only surface exchange reactions take place,
K?t = 1]
K..
13
1915
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
1916
that is, Kt is equal to the equilibrium constant of the exchange reaction between thelectrode membrane material and the ion j in solution, i.e. to the equilibrium constant of the precipitateexchange reaction. This theoretically can be expressed as the ratio of the solubility products of the electrode material IS.! and that of the precipitate formed in the exchange reaction /S/, if monvalent ions form the precipitates:
KP0t — ii
Si S. J
This offers a possibility for the theoretical calculation of selectivity coefficients for precipitate—based electrodes. However, in other cases there is no way for the theoretical calculation of the selectivity coefficient since it involves ion mobilities within the membrane which can not be determined exactly.
MEASURING TECHNIQUES Selectivity coefficients can be measured by different methods which fall into two main groups, namely 1. Separate - solution techniques 2. Mixed-solution techniques 1. In using the separate-solution techniques, the potential of the electrode studied is measured with the same potentiometric cell in solutions containing the primary ion and the interfering ion separately. From the electrode potentials measured, E. = E 1
= E
E j
o
o
+
2,3O3RT z.F 1
+
2,3O3RT log KP0t z.F ija.
log
a.
1
3
J
Kt can be calculated either with the so called equal activity or with the equal potential method. In both cases it is tacitly assumed that the electrode standard potentials are equal in the presence of ion I as well as in that of ion j and also that the response is Nernstian for both ions. According to the method of equal activities, the solutions of ion I and j are prepared at the same concentration and the potentiometric measurements are carried out. From the measured potential values fE. and E./ the selectivity coefficient can be calculated. For cations of the ame vaency the following equation holds: E. - E. 3
1=logKPOt 13
2,303RT
At
the method of equal potentials electrode potential measurements are made in two series of solutions containing the ion I and j separately. From the results two calibration graphs are constructed. The selectivity coefficient is then calculated from the activities of ions i and j corresponding to equal potentials as follows:
K?t= 1J
a.
1
a.
Z.
3
The separate-solution technique for determining selectivity coefficients is simple and allows a number of KP0t values to be measured on the basis of ij
Selectivity coefficients of ion—selective electrodes
1917
different activities and potentials. However, the result may be different depending on the activity and potential values used for the calculation and furtheron, they may be erroneous since the assumptions mentioned are not always true. Furthermore, in practical applications the primary and interfering ions are present simultaneously and the electrode may behave quite differently under the simultaneous effect of more ions than when the ions are present alone. Thus, the conditions of separate solution measurements do not resemble those prevailing in the actual measurements with ion—selective electrodes.
2. In the mixed-solution techniques, the electrode potentials are measured in solutions containing both the primery and the interfering ions. The method can be realized in two ways, by potentiometric direct or indirect /titration/ method. In the direct method a series of solutions is prepared in which either the concentration of the ion i is kept at a constant low value and that of the ion j is varied, or the concentration of the ion j is kept at a constant high value and that of the ion i is varied. Another approach of the latter is based on exponential dilution and is suitable for continuous measurement. The method is realized as follows: A container of constant volume contains a solution in which both the primary and the interfering ion are present in a relatively high concentration. This solution is diluted continuously at a constant flow rate with a solution of the ion j having the same concentration as that in the container, and a potential vs. time curve is recorded. /As a result, a curve consisting of two linear parts is obtained. / By rescaling the time axis a potential vs. - log a. plot is obtained. Applying the mixed-solution method, tI\e electrode potential is plotted against the varied ion concentration. The plot is generally composed of two straight lines.
If the selectivity coefficient of the electrode studied differs very much from unity /it is less than 10-6/, then the potentiometric indirect, titration method should be employed for its determination. As titrant, a soluble salt of the counter ion of the precipitate built into the membrane is used. For example, if the chloride ion selectivity of a silver iodide-based iodide ion—selective electrode is intended to be determined, then a olution containing chloride and iodide in the same concentration /e.g. l0M/ is titrated with silver nitrate solution and a titration curve is recorded using an iodide ion-selective and a reference electrode. The titration curve usually has two break points, the first corresponding to the titration of iodide and the second to that of the chloride. The concentration of the iodide ion is calculated forthecoprecipitation point considering the initial concentration of the iodide, the potential jump and the Nernstian response of the electrode, while the concentration of the chloride is equal to that originally present. Accordingly, this can be considered as a variety of the mixed-solution method where the concentration of the primary ion is varied while that of the interfering ion is constant. It should also be emphasized that this method yields only an approximate value for KPOt. iJ
CALCULATION OF THE SELECTIVITY COEFFICIENT At the mixed—solution methods the selectivity coefficient is calculated from the activities of the ions at the break point /B/ as follows: z.
KP0t ij
/a i'B z.
/a/B It may be mentioned here that if, at the mixed-solution method, the concentration of the ion j is constant and that of the ion i is varied, then the second straight line /that parallel to the abscissa! does not always show up. Since in the meaning of the selectivity coefficient it is involved that the effect of both ions at the break point is the same, the break point is located at a distance of 18 mV from the extrapolation of the upper straight line. This offers possibilities for determining the selectivity coefficient
1918
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
even if the second straight line can not be observed on the plot. In conclusion it must be pointed out that the selectivity coefficient data depend to a great extent on the method used for the determination and also on the concentration level of the primary as well as the interfering ion, and on the nature of the electrode membrane. Best agreement between selectivity coefficient data determined by different methods under different conditions is expected and found in the case of precipitate-based electrodes.
The following survey on selectivity data contains the electrode type, the method and conditions of measurement if available and the reference. The electrodes are listed in the following order: simple anions simple cations composite and organic ions and molecules In the Table i always refers to the ion or molecule measured while j to the means the pOtentiometric selectivity coefficient. interfering ones, and
SUGGESTED LITERATURE A.E.Pungor, K.Tóth:. Selectivity of ion-specific membrane electrodes, Anal.Chim.Acta 47, 291. /1969/ B.K.Srinivasan, G.A.Rechnitz: Anal.Chem. 41, 1203 /1969/ C.G.J.Moody, J.D.R.Thomas: Selective ion sensitive electrodes, Merrow Publishing Co. Ltd. Watford, Herts, England, 1971. D.P.L.Bailey: Analysis with ion-selective electrodes, London, New York, Rheine, 1976.
Selectivity coefficients of ion-selective electrodes
Table
Ion or molecule measured
1919
Selectivity coefficient data
Type of electrode
Interfering ion or molecule
LaF3 single
OH
crystal
Cl
K. .
Method
Experimental Ref. conditions
101
pH 4,5
90
NO3 HCO3
SO LaF3 single
OH
crystal
I Br
Cl LaF3 single
Cl
crystal
Br
}1010/
HgS/AgI
Cl
108
precipitate
Br
106
I
/1/.
SCN
106 1>1010/
HgS/Hg212
precipitate
Cl
io0
Br
1010
I
/1/
SCN
1010
92
cl03 pH 11,5
125
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
1930
Ion or Type of molecule electrode measured
Interfering ion or molecule
K..
Method
Experimental conditions
Ref.
.
/ > l0/ SCN
homogeneous
I Br
Cl
SCN
Ag2S/AgSCN
17
/ii013/
AgSCN/Ag2S
/lo/ /2/ lo
CN
102
OH
lO
F
l0
Cl
102
Br
11-
pH 2,5 c 1=1O3M
1> 1010/
c varied
I
125
/ > 1010 HgS /AgSCN
Cl
io2
Br
/10/
I
HgS+Hg2 /SCN/2
/>1010/
Cl
1o2
Br
iio2/
I
/lob0/ SCN
coated wire
Cl
/Aliquat
NO3
336 S/
SCN
precipitate in
SO-
mixed
c.=lO3
solution
—
4,6.102
l0
I
3,4.101
Cl
/2,8—3/ .lO
c varied
mixed
thermoplastic matrix /AgSCN
in polythene/
4.lO
c=lO5lO4M
solution
Br
I
/1—1,4/
/1,
58
74 ,7 102
c=lO1M c=lO5—lO3M c=1O3M c=lO5-lO3M c .=lO5M J
SCN
ion-association
C1O4
/12/
extraction sys-
104
/6,7/
tem /crystal
I
0,34
54
1931
Selectivity coefficients of ion—selective electrodes
Ion or Type of molecule electrode measured
violet in nitrobenzene /
Interfering ion or molecule
K.. 1J
Cl03
5.102
NO3
3.102
Br
Br03
Method
Experimental conditions
Ref.
6.lO 2.lO
Cl H2P0'
lO
OAc
S0Ag2S precipi-
I
1,3,1015
tate based
Br
5,0.1023
heterogeneous
Cl
1027
/
SRI
c .
4,0.1032
=lO2M
}
separate
Ag2S precipi-
tate based
SO
and
homogeneous
SO-
mixed
/Orion/
CO
solution
HCO3 I
101
70
l0
Cl
1M NaOH
Br
c .
F
c .=101-lO2M
1
=l01-lO2M
3
CN 2+
Hg Ag2S precipi-
Cl
tate based
Br
heterogeneous
I
/thermoplas-
CN
tic matrix/
520 Na
8.102 75
L08—l0
+
Ca2+ 2+
Mg
Pb2 Cu
2+
105_106
1932
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
Ion or Type of molecule electrode measured
Interfering ion or molecule
Hg S2—
2+
Method
K..
Ref.
102
Ag2S preci-
I
l,6.lO*8
pitate based
Br
2,5.1012
heterogeneous
Cl
6,3.1015
/SR/
OH
6,3.1017
SCN
8,0.1013
Ag2S preci-
Experimental conditions
titration
C=lO1-l02M
122
( 1021
SO P0
8,0.1017
Tl
6,3.1025
Cu2 Pb2 Cd2 Ni2 Zn2 Fe2 Mn2 La3
2,0.l0
CN
6,3.lO
S2O
2,0.10
l,6.l022 4,0.1023 5,O.1024 1,3.1028
.
3,2.1022
.
6,3.lO 5,0.1041 11
Cl
1
pitate /Crytur I Br
i
lo8lo0
CN 2— s203
Na+
K Ca2
l05_106
Mg
2+ .
Pb2 .
Cu2+ Ag2S precipi-
Cl
3.10.31
separate
tate/Crytur/
Br
5.1026
solution
I
2.1018
OH
8.. 1027
140
1933
Selectivity coefficients of ion—selective electrodes
Ionôr Type of molecule electrode measured
Interfering ion or molecule
Method
K.
Cl
7. lO calculated
Br
2.1O26 from solu-
I
8.lO bility
OH
p%J
lO
Ag2S
I
lO
homogeneous
Br
1013
Cl
1015
SCN
1013
Experimental conditions
Ref.
products 17
CN OH F C1O4
liquid ion
I
exchanger
NO3
2.lO
-lOs
/Orion/
Br
6.lO'
pH 4-11
F
3.lO 2.lO
Cl
C1O4
C104
1016 1,2.101
CC10 _lOl
liquid ion
I
2,89.102 mixed
exchanger
NO3
4,29.1O solution I=O,lM
/Orion/
OAc
1,65.1O
Br
l,O7.1O
HCO3
8,82.1c14
F
2,88.lO
I
, 0,016-0,071 separate jc=1O -
liquid ion
cClOlO3
—1
solution
exchanger
69
48
132
1oi
/Orion/ I
0,023-0,020 mixed solution
c1=0, l-O,O5M
cC1OO, 002- O,007M
C104
ion exchanger
NO3
Fe/Phen/3/Cl04/2 I_
1,O.lO 5,9.lO
in nitroben— zene R4N.C1O4
NO3
2,9 .1O3
52
1934
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
Ion or Type of molecule electrode measured
Interfering . ion or molecule
NO3
4,3.lO
I
2,9.102
Ni/Phen/3/Cl04/2 I
1,3.102
I
3,2.102
I
1,1.101
solid ion
F
4,2.lO separate
c=lO1M
exchanger
Cl
7,8.1O solution
unbuffered
on Selectrode
Br
6,5.lO
solution
body
I
Cd/Phen/3/C1O4/2
/azoviolene/
NO3 OAc
3,2.l0
Cl03
8,7.lO
BF4
0,12
SO
2,3.lO
OH
6,3.lO
exchanger on
CC1O =10
i,i.1o2
1O2M
4.102
1O3M
2,1.101
1O4M
0,39
separate
Br
6,6.102
solution
NO3
1,4.102
/o-tolidine/
Cl
2.lO
/o-dianizidine/
I
0,36
Br
2.102
NO3
Cl
/1,66/
ylene
Br
3,4.102
benzidine/
NO3
2,9.102
OH
exchanger
I
j
128
9.lO
I
liquid ion
c.=c.=101M i
1,8.102
/tetrameth-
Cl
127
1,l.1O 6,3.1O
I
Ref.
/75/
OH
solid ion
Selectrode
C1O4
Experimental conditions
2,0.102
Cu/Phen/3/C1O4/2
C1O4
Method
I
Orion
C104
K
3.lO /1,0/
1,2.102
mixed solution
117
1935
Selectivity coefficients of ion—selective electrodes
Ion or Type of molecule electrode measured
Cl04
Interfering ion or molecule
Method
K..
Experimental conditions
Ref.
130
/Orion/
NO3
l,5.lO
mixed
Fe/Phen-R/
Br
5,6.lO
solution
OAc
5,l.lO
HCO3 F
3,5.lO 2,5.lO
Cl
2,2.lO
SO
l,6.lO
I
2,4.1O2
separate
c=1O1M
azoviolene
BF4
1,2.101
solution
for SO
derivative in
OH
l,6.lO
NO3
2,O.lO
Cl03
l,8.lO
liquid
dichloro benzene
1O2M
SO
C104
ion exchanger
Br
117.101:
F
l,8.lO
OAc
4,l.lO
Cl
2,5.lO
OH
l,3.lO
2,8.10
lO1M
mixed
115
solution NaOH
/Orion/ in PVC I
5.lO
separate
c1=1O1M
solution
Br NO3 C1O4
Brilliant
Green in rubber
9.102
separate
HCO3
5.102
solution
NO3
102
Cl
8.lO 7.lO 5.lO
F
3.lO
OAc
liquid
2,9.lO
I_
Br
C104
104
7,4.102
/Methylene
I
4,8.102
blue in
SCN
4,7.102
SO
2,5.1O
nitrobenzene/
cBr=lO2M
1.106
E1
32
E2
mixed solution
cC1OO,2 - 2 mM
c=high
60
1936
COI'NISSION ON ELECTROANALYTICAL CHEMISTRY
Ion or Type of molecule electrode measured
Interfering iot or molecule
Experimental conditions
ci0= 0,2
1,3. lO
mixed
OAc
l,2.l0
solution
3
9;l.l0
•2CO3
—4 8,3.10
103
8,0.l0
Br
8,0.l0 4,8.l0 3,4.l0
OH
9,l.l0
NO3
Cl
liquid ion
Method
C lO
BrO
Cl04
K..
Ref.
-2 mM . c. = high
2,4.l0
separate
c=9,l
solution
•103M
exchanger
NO3 OAc
/perchlorate
OH
4,7.l0 4,3.lO
of tetrakis-
Cl
2,6.l0
triphenyl
HCO3
3,4.lO
phosphine
H2P04
2,9.l0
SO
2,2.lO
HPO
3,9.iO
NO3
2,8.lO
mixed
OAc
l,6.lO
solution
OH C1
8,3.lO 2,4.lO
SO
3,4.lO
143
silver /1/ / .
c=2,7.lO3M
c=91l.lO3M c. varied 1
c=217.l03M c. varied
C10
Cl
4.1O
/Aliquat 336S/ N0
2,8.1O2
coated wire
SO Cl03 NO3
1/ 1>1/
Zn
Cr3 A13 Ni2 Fe2 Co2 Mn2
cTl=1OM
134
mixed
cFe=104M
38
solution
I =
solution
1/ 0,8
2,9.10
—3
1,9.l0
l,6.1O 8,3.lO 2,O.1O
4,4.l0
1/ /
2+
Experimental conditions
1>1/
2+
Cu
1969
2+ 2+
Sr
Ba2
K
io
Li
•+
Na
+
K Rb Cs Fe
3+
Ag2SCUS
+
Cu2
2 Cu
/6 /
0,1
pH 2
101
in 6.lo3M salicylaldoxime
Ni2
5.102
mixed
Pb2
3.l0
solution
Fe2
< 2.l0
+ Na K+
cFe3+104M I =
0,1
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
1970
Ion or molecule measured
Type of electrode
Interfering ion or molecule
Method
K.
Experimental Ref. conditions
measured
NH Ca Ba
2+ 2+
Cd2 AuCl4
liquid
Cl0
separate c=c=lO4M
33
solution
/Safranine 0
tetrachloro aurate/ Re04
liquid
ClO
0,42
separate
/Brilliant
SCN
0,11
solution
Green
NO3
0,002
ClO4
0,12
separate
SCN
0,11
solution
NO3
0,04
c=c=l02M
34
perrhenate I
Tn-
liquid
fluoro
/Crystal
Cl04 SCN
acetate
Violet!
NO3
HPO
so
1]
c.=c.=lO4M
/l,5.l0/ mixed /5,5.10/
53
solution
/1/
lO io
CH
C12COO 2,7.101 1.101 C6H5COO CH3COO
lO
/COO/
lO
I_ Br
1,4.101
Cl
8.lO
F Benzene
liquid
sulpho- /Crystal nate
Violet!
/1,8.10/
lO
Cl
3.lO
NO3
7.6.101 solution - 0,005 M
mixed
c=O5 M
phenol-4-
l,6.l02
0,005 M
disulphonate 5.lO
0,005 M
sulphonate benzene—m--
56
1971
Selectivity coefficients of ion-selective electrodes
Ion or molecule measured
Type of elec trode
Method
K
Interfering ion or molecule
measured
benzoate
4.102
Experimental Ref. conditions
0,005 M
-naphthalenesulpho-
nate
0,00025M
/16/
1,3,6 naphta- 8.lo lene
c 0,005M
trisul—
phonate cx-naphthalenesul-
phonate
/
liquid
Cl
Crystal
NO3
Violet!
4.lo
mixed
c 0,5M
3.102
solution
0,005M
benzene-
sulphonate
7.102
1,5 naphtha-
lenedisulphonate
7.l0
0,005M
6.lO
O,OlM
2,5.102
O,005M
4,5.lO
0,005M
1,3,6—
naphthalenetri-
sulphonate 4-hydroxy2-naphthalene sulpho—
nate
2, 3-dihydroxy naphthalene6-sulpho-
nate
P.A.A.C. 51/9—K
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
1972
Ion or molecule measured
Type of electrode
Interfering ion or molecule
Iso-
Coated
lauryl-
wire
Cl
benzene
/Aliquat
sO-
sulpho-
336S in
nate
PVC!
K.
Method Experimental Ref. conditions
1, 2. 102
37
6.lO 9,3.101 1
NO3
8,1. l0 5,9.10
Cl04 OAc
1
lauryl
sulphate
/1,36/
lauryl
0,81
sulphonate p- toluene
sulpho-
8-quino-
nate
0,75
Cl
5.lO
mixed
OAc
8.l0
solution
Ion pair
NO3
3.102
consisting
sO-
8. lO
liquid ion
pH = 6,5
133
line 5- sulpho- exachanger
nate
/Hqs/
[Hqs—_4. 103M
of Hqs and benzyl-
dimethyl tetradecyl ammoni urn!
lO
Maleic
liquid
Acetic
acid
/Crystal
fumaric acid
Violet in
benzoic acid
3.l02
1 ,2-dichlo-
CF3COO
3.101
roethane I
salicylic
acid
I'N 1'U1TD'IUV 'S8 /9L61/ SLI 'Sz 'a'r 'S3TAU 'f's '!pOO 'suxoqj /L61/'L6 'L8 '9Z 'M'a'r 'SeTAQ 'f'f 'W'M 'eOTtd 'SPUIOtLL'I'cI'f 'oPt'qPj __________ ,-i IEL6TI 'H'CE 'SUA5 'UI93'IUV '1717 /L6I/ '9L8 '8Z 'a 'iAa 'v'o 'Zçuqoej 'W1TD'lPU( 'E17 /1L61/ '0601 '6? 'fl 'f ')jOTZflj 3V'U1TID'IUV 'L9 IEL6I/ '6L1 'OE 's 'y' 'ZTUqO9I '17 /OL6I/ '069 'TE 'S 'A'H 'cLtog /1L61/'Ef,i'UIeqYIPUY 'SLST '?E '6f'o 's'v 'uPqP /17L61/'E/, 'ozz 'EE 'IYV '5fo 'Y'V '91'IPtIV 'EE/9L61/'6 ''y 'ffOff 'V'V '9'1'1UV /9L611'6 '6E 'SE •f'r[ 'Aeuto 'ff'f 'cOOW 'QJ 15L61/ 'LSI '9E 'S'W 'M'f 'SSOI OU8TOS_''tf 'L91 10L61/ 'L86 'LE 'J 'fUTCfl 'S 'T)[ZNO H 'iesçec 'meqD'IPUV /hL61/'9h7 'Zh81 '8E 'S'A '6Un3: 'M'>I 'fund '6hz /LL6T/ 'L6t '6E 'A'V 'A)[SAeTptOO 'UUtT4S atJ 'AO{U 'I'N 'AO[nqz''y 'I'flA 'AOSTlCfl 'WT11)I'IPUV'1Z IL6TI'LZ 'OLIZ 'Oh 'A'Y 'c)jSA9TptOD 'A'V 'AO)[ueqaxcg 'UTAAg'I'M 'S'A 'UPULX9q ''f
' ' 'ff'
'ZI
'qsax 'qsax
'a
'I'TUv
'U1e1'Uv
PUTJ
'3['
PV'WTq3'UV
'tO5 '1'5 'Ut5
'l1P3
'1eSTt 'U183'U
'SI 'M'I 'lTt3
'STt
'113
'qosat
''3 'h4 'j'[ SN
IT stn'S'/
'j'Q'f
'
'D'1UV
'-ee ';t 'O'v
utnqcoqj_'j 'surn DwT'TPuv
'TqTs-1v
'TPPqT5V
SIRUy
'Ut
'S'A
' 't ' '5 'Ef
'9I
'L '8i '6I 'OS 'IS
•t'S
•SS •9S LS 9ç
9Aiuy
POOW
'O
'L
PU1i
'weq'uj
''y
'q'Az V'WTq3'PUV 'L6I 'LS
'AOqnqzo
'UAA
'[ 'UOtOf 'fl ',t8IPeT /LL6TI •EE 'H's 'f'D 'Apoo •j'a'f 'suioqj, /3L61/ 'OZi 'W 'TfhflO 'a 'M 'UQUITS ILL6I/'16_OV'U1T4D'IUV 'LOT 'E'f 'II3tH •ci'v 'SeUOL' •I'E 'uTddoqD 'wet:D'Iuv 'Ui /6961/ '6StiI 'J 'IedeH 'w 'ojzser 'OI /LL6II 'i'n 'uuLIeH 'ziuqej /5L61/ 551 'V'M 'U'>I 'IOOd 'EZ /9L61/ 691' 'W'Jl 'fl8SH 'ZUqoaj '1 /8961/ '6Z9 v 'T)PTUIflH 'z '8L 15L611 'I9 'V 'TNDTUIflh1 'zoTMoucot 'N '1tOT3 uIP,L 'E /9L61/ 'Lt •v 'TLOTUTflfl •V lu1suaMerI PUPTJ /LL6T/ 1L1 ,i 'TqsqqsI 'tTO> 'f7 /1L61/ S8L 'TqsqqsI •y 'OAf f'W3qD010W ,--: /EL6T/ •ozz N 'qsqqsI >I IEL6TI .c1z N 'M[8w__N £L61 611 N 'TqsqjsI H 'tto> 'TqOflOUtOH P:uwEPL /EL6I/'O L98 'icpoow 'SWOLLIU'f /9L61/'TOT 6L1 H 'SU1f '4OULt3'S H '99T3t •meq3.-[Puy 'zI' /L6T/ 9S8 v 'oAi w 'nsTwauox N 'qsqqsI •DoS.u1atiD•TTnEL IEL6TI'
'DSId 'IedH '
'5
sAiuv 'T
'I
SAIUY
PUTJ
''
'I'It1Y
'
ITUV
'
'qsqps 'UT) 'teq
r
SATUV
/9L611 6L "I '3> f'f '1pOO4 'roi /LL611 tL 'sAHr Kumopnaszsa '91 /ZL6T/ LL •E9 d 'OTAT) 'U9UtTA' •>I 'U1tSNDTM •w 'UOSTTM 'Ofufl .>r 'q:9J Q9 19
J1
0
'qur)I
'U1TOTPUflS
VU1Tq3Uy
/9L6T/
L8E
LE
't'9
SPO1913
SUaTZT33OZ 30 1S—UOt ATlZ
TATZ11S
6L61
'OIAD ' 'U3UrrA
')I 'WQ.tS)(Z)TM 'N 'UOSITM '21 'lObUfld 'E 'T3A10H L8 /9L6I/ 'I0 '49J1')1 'IUV 'WTqD 'V'H 'SU3SflI 'f' 'U3SSOOf) 'IUV '111143 88 /LL6I/ 'H'I '1T'')I 'V'3 '2['I '9AO.th503 ''3'I'I2UV £ /0L61/ 'Et' 'S 'II 'U'D 'UPTSTR13 '13UV 3nI £ /oL6T/ 'II 'f'U 'SUTA9n 'TUV '111343 /L6I/
'd
OV
'U
'S9 '99 'L9 '89 '69 'S'Jl 'Rtf'VI puese.td_tadd 94 4EI 1flUUV 'UrnisUi'uy 'dux son S3TehUV 'L961 :'qrtd 'OOld U1n4SUI'IUVSI 'L961 'P21 •rI 9IMOI
'LN
'cI
'0/.
'IL
'L 'EL 'IL 'SL '9/.
'LL '8L '6/.
'08 '18 'Z8 'E8 '1i8
'98 'L8 '88
'68
'06
'S'J
9 'T
'
U1flU3 'ssei J'a
'I'8961
)(IOA
"I'f 'ZtM5 'IUY I /8961/ '58 '3 'tlU3T 'D'I 'flos3dO 61 /L6IL 'S86 3 'flU3T'I 3'I 'tlDSedOd 'nUPOON 'UrnOj'Ae '111143 81 /EL6I/ 'L9I'1 'fl'M 'NTIN ')I'S 'APSATLIS 'd 'UPZH 'S 'iUfl)I '1tIOIoa121'r 'l1I43 /9L61/ '111 'N 'TUT3SN 'V 'Tt3qI 'TUV Lt7 /6961/ '6EE 'N 'TuTsN 'V '1uv Is /oL6T/ 'I€z 'ti 'TuTosN 'v 'çteqj 'Tuv Dv'wTq3 £5 /1L61/ 'zo 'w 09 /zL61/ 'sot 'N 'TUTOSPN '1uy PDv'U1Tq3 Z9 /zL61/ '6 'N 'TUTSN 'V 'TteqvI 'WT43'Tuv /EL6T/ 'E9 'N 'TUTSN 'I 'TZZOTTPd 'TPt.IV 'mTqD /L6I/ 'SLE 'N 'TflSN 'H 't9ST9t 'IPUV £ /0L61/ '191 'S'N 'U4OJ ''Fj 'ZTU4D9 'TUV /EL6T/ EE1 'r'o 'Apoo 'suioq /6961/ '9501 '12'D 'IcPOON 'S'U '8N0 ''U'f 'SU1OqJJ uy s1c 56 /oL6T/ '016 'f's 'Apoo 'I'U'f 'SWOIJ1 61 /ZL6T/ '21'M '3tO 'Q 'UUDJI '21 e.xnd ___________________ 'W3143'TddV 9E /EL6I/ 'it' 'a'S 'SS'O 'f 'UOSUt4Of'3'3 '1119t13'TUV /5L61/ '6EZ 58 /9L6iJ 'i 'f'H 'U9SI9TN 'H'21 'U9SUH 3V'U1Tq3'TUV PZ,'Wq3'IPUV 8L /5L61/ 'E9 'N 3VWII '8961 SPUZ SSTMS '3U03 UO 'euiqeO tedd U9AE 98 /9L61/ 'TZ 'N 'M 'UOUITS l4bTnI
L
V'WT43
V'T43
'teqI
'u-ços 'y 'pteq-ç' 'TPU oV'wTq3 °v 9 £LPOV
j'j'
'43
'''qP' j
UTL
E9
'UOWT5'fr_'qosat
'Uf 'N9TT{A0N 'I 'A0STt3 ' 9 'UO
'16 'Z6 UOTULtO3UI 'E6 'N StPtd 'f 'S6 'f
'T 'OTttV M
L
AtSWq3
V'Wq3'1UV U10t
UOTEO
OI3
'3 'XnttTH ''f 'UUO4 /L6T/ '89E ')[9Ut9d .0 'qA OV'Wq3'1UV ZL /L6T/ 'SLE 3v'uxq3 '9 ')PTd ')I 'q9L '21 ',t0fUfld 'W ')i29A M 'UOWTS 'TPUV ________________ '3'14
'6
pexap
—
pU
'f 'eI33flH 'f '13 'TPtH PTW1113 L2
S
/EL6I/ 'LL '[ 'toEun 'IUV DV'UXTT43 c9 /EL6I/ 'Ot'Z •96 'f ')PTd '>1 •L6 'I'V"1 'POTd 'A 'AO)[US M 'UOUITS .erI.1uv 16961/ 'S99 '86 'pOTd''V'[ 'UOWTSM wxTq3 EZ /69611 'ZL wnoi'AeT 'Wl '66 'D'I 'tiosedOd •A 'YAPS '3 ______________ /EL6TI 'tObUfld''OOT TUY 'WI3 6E /L9611 'V8Z '>1 "-I9L 'OOld oawi 'duics 'TT'd'896T a'ioT 'tOf'Ufld '21 /ZL6T/ TZS 'zoEun '-It9L e.tnd WOj\ tSSM a'EOT 'lO5Ufld /i7L6T/ •E •v•ErT7OT 'TqSetflO 'j 3VWT43'TUV_'STflbpUT Z- IEL6T/ vo'coi 'zse;t)I T" /9961/ L8LT CfY9OT 'z:;-çuqoaI •I.W 1zSx)I ')[OUq0U1Z W81t3TUV /99611 EL6 LOT V'EY 'ZUq39J •uieqD •bua SM9N euti •T /L9611 9'I 'ZUt4D9j ffZ 'UT I /L96T/ •EZ969 U1843TUV VE'6OT 'Z4UqDa /8961/ •Y•o.oTI 'z:Tu3eH /6961/ Y601 V'TTT 'Z[UT4D?i Wd1 'flesH •uIeq3'uTc /6961/ '111 'zUqD9j 'iuue ? 10L611 vrEri 'ZTUMOeU •a '-t'a •TPuV •W9D f'I' /ZL6T/ OLE S9 /EL6TI .czT7 •:a•H•tET 'taPTesuTeI •Y'(t 'z:nqDs risii '40I /iL6T/9t7 06S M'f'911 'SSOj 9ST3tT3S 1L96T/ 9LE1 /•pa •cl LS UOUTT4SM 6961 'SsoU '•;t sir qndoeds ••j/ •f•811 '3TZfl .)I 'pTpI P4DVWT4DTUV /1L61/ •i: f611 'OTZnH 'uesu j' tq -r /EL6T/ .ssT f ')[9Ui49d 1? /EL6T/ •SZ o--t 'qci 2 'NeUt9d 19L611 •8S1 azzi 'PTWWS •I 'tof,und uie LL /1L61/ L6E dIEZT 'tTOIDS 'M 'UOUITS PTWPID /OL6T/ ZLE •V'•7ZT 'z:rEtups •Y'D_'U9St9d 'NSW d'H ')[Otl 9TeDU9TOS /8961/ L9Z 69 /9L61/ 6EE 1SZ1 ')iI9)[9S '19UTO8 f
't9J
'6T
OT
I
'ZTU38
V8OT
'3UITAOT3
'PTWS
'
T
pu uieqydd
't9
iw
pu
T
'nuey
•E
S
Z 'U ITUV T
.eni.iuvT
6S
'E 'TnqTT 4D'TV
stn
MfLTT
? 3VWq3IPUY
ooi 'qA
UTL Ab
fV
'f
1
1T9AT0
1980
126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143.
COMMISSION ON ELECTROANALYTICAL CHEMISTRY
M. Semler, H. Adametzová, J. Electroanal.Chem. 56 /1974/ 155. M. Sharp, Anal.Chim.Acta62 /1972/ 385. M. Sharp, Anal.Chim.Acta 61 /1972/ 99. M. Sharp, Anal.Chim.Acta 59 /1972/ 137. M. Sharp, Anal.Chirn.Acta 65 /1973/ 405. W. Simon, W.E.Morf, P.Ch. Meier, Structure and Bonding 16 /1973/ 114. K. Srinivasan, G.A. Rechnitz, Anal.Chem. 41 /1969/ 1203. M. Sugawara, T. Nakajima, T. Kambara, J. Electroanal.Chem. 67 /1976/ 315. W. Szczepaniak, K. Ren, Anal. Chim.Acta 82 /1976/ 37. K. Tôth, E. Pungor, Proc. IMECO Symp. 1968. p. 35. K. Tóth, E. Pungor, Anal. Chim.Acta 51 /1970/ 221. P.K.C. Tseng, W.F. Gutknecht, Anal.Lett. 9 /1976/ 795. P.K.C. Tseng, W.F. Gutknecht, Anal. Chem. 48 /1976/ 1996. J. Vesely, Coll. Czech. Chem. Commun. 36 /1971/ 3364. J. Vesely, 0.J. Jensen, B. Nicolaisen, Anal. Chim.Acta 62 /1972/ 1. J.L. Walker, Jr., Anal.Chem. 43 /1971/ 89A. D. Weiss, Chem. Listy 65 /1971/ 1091. A.C. Wilson, K.H. Pool, Talanta 23 /1976/ 387.