Sensors Fundamentals.pdf - Renesas Interactive

5 downloads 967 Views 1MB Size Report
The Sensor Fundamentals lab provides an introduction to some of the ADI sensors and to the evaluation boards for these sensors compatible with Renesas  ...
Sensors Fundamentals

Renesas Electronics America Inc. © 2012 Renesas Electronics America Inc. All rights reserved.

Renesas Technology & Solution Portfolio

2

© 2012 Renesas Electronics America Inc. All rights reserved.

Agenda  Introduction  Sensors fundamentals  ADI sensors  Sensors data acquisition  ADI support for sensors applications  Hands on lab  Summary

3

© 2012 Renesas Electronics America Inc. All rights reserved.

Introduction  The Sensor Fundamentals lab provides an introduction to some of the ADI sensors and to the evaluation boards for these sensors compatible with Renesas MCU platforms  We will show the process of exchanging data with ADI digital sensors  We will show the steps required to read data from ADI analog sensors using the A/D converter incorporated in a Renesas MCU

4

© 2012 Renesas Electronics America Inc. All rights reserved.

Sensors Fundamentals

5

© 2012 Renesas Electronics America Inc. All rights reserved.

What is a Sensor?  A sensor is a device that receives a signal or a stimulus and responds with an electrical signal  Sensors are used to measure various physical properties:    

6

Temperature Tilt, inertial forces, shock and vibration - accelerometers Angular rate (how quickly an object turns) - gyroscopes Sound intensity - microphones

© 2012 Renesas Electronics America Inc. All rights reserved.

Sensors Classification  Sensors can be classified according to the physical property the sensor is designed to measure  From a signal-conditioning viewpoint, sensors can be classified as:  Active sensors – require an external source of excitation.  Passive sensors – generate their own electric output signal without requiring external voltages or currents

 From the output electrical signal viewpoint, sensors can be grouped in two categories:  Analog sensors – produce analog output  Digital sensors – provide digital output

7

© 2012 Renesas Electronics America Inc. All rights reserved.

ADI Sensors

8

© 2012 Renesas Electronics America Inc. All rights reserved.

Analog Devices Sensors Product Range  Analog Devices sensor portfolio focuses on:  Motion  Temperature  Sound

 ADI offers the broadest MEMS (MicroElectroMechanical Systems) inertial sensor portfolios in the industry, including:     

9

High performance low-g accelerometers High-g accelerometers Gyroscopes Fully integrated Inertial Measurement Units (IMUs) High performance MEMS microphones

© 2012 Renesas Electronics America Inc. All rights reserved.

ADI Sensors Evaluation  ADI offers for most of its products at least one type of evaluation board. Some boards can be connected directly to PCs using USB or Serial ports, others to FPGA or MCU development boards using special connectors

 The ADI evaluation boards compatible and directly connectable to the Renesas MCU platforms are the Pmods  Connections between a Renesas MCU other ADI evaluation boards can be made using wires 10

© 2012 Renesas Electronics America Inc. All rights reserved.

What are the Pmods?  Small I/O interface boards that offer an ideal way to extend the capabilities of development boards  Communicate with system boards using 6 or 12-pin connectors  Four main categories 1. 2. 3. 4.

Input / output Sensor / actuators Data acquisition and conversion Connectors

 Complete list at: www.digilentinc.com/AnalogDevices

3-axis Accelerometer

 Renesas MCU development boards with Pmod connectors  RL78/G13 RDK  RL78/G14 RDK  RX63N RDK

11

© 2012 Renesas Electronics America Inc. All rights reserved.

Serial converter & interface

Two 12-bit A/D inputs

ADI Pmods – Data Acquisition and Conversion PmodAD1 - Two 12-bit A/D inputs Analog Devices AD7476 Sampling rate: 1MSPS Resolution: 12 bit No. of Channels: 2 Interface: SPI ADC type: SAR

PmodAD4 – 1 channel 16-bit A/D converter Analog Devices AD7980 Sampling rate: 1MSPS Resolution: 16 bit No. of Channels: 1 Interface: SPI ADC type: PULSAR®

12

© 2012 Renesas Electronics America Inc. All rights reserved.

PmodAD2 - 4 channel 12-bit A/D converter Analog Devices AD7991 Sampling rate: 1MSPS Resolution: 12 bit No. of Channels: 4 Interface: I2C ADC type: SAR

PmodAD5 - 4 channel 24-bit A/D converter Analog Devices AD7193 Sampling rate: 4.8kSPS Resolution: 24 bit No. of Channels: 4 Interface: SPI ADC type: Σ-Δ

ADI Pmods – Data Acquisition and Conversion PmodAD6 - 1 channel 24-bit A/D converter Analog Devices AD7091R Sampling rate: 1MSPS Resolution: 12 bit No. of Channels: 1 Interface: SPI ADC type: SAR Ultralow power

13

© 2012 Renesas Electronics America Inc. All rights reserved.

PmodIA – High precision impedance converter Analog Devices AD5933 High precision impedance converter system solution that combines an on-board frequency generator with a 12-bit, 1 MSPS, A/D converter.

ADI Pmods – Data Acquisition and Conversion PmodDA1 - 8-bit dual D/A converter Analog Devices AD7303 Clock rate: up to 30MHz Resolution: 8 bit No. of Channels: 2 Interface: SPI

PmodDA4 – 8 channels 12-bit D/A converter Analog Devices AD5628 Clock rate: up to 50MHz Resolution: 16 bit No. of Channels: 8 Interface: SPI

14

© 2012 Renesas Electronics America Inc. All rights reserved.

PmodDA3 - 1 channel 16-bit D/A converter Analog Devices AD5541A Clock rate: up to 50MHz Resolution: 16 bit No. of Channels: 1 Interface: SPI

PmodPOT – Digital potentiometer Analog Devices AD5160 Resolution: 256 positions Interface: SPI

ADI Pmods – Input / Output PmodIOXP – I/O Expansion Module Analog Devices ADP5589 Functions as an I/O port expander and keypad matrix decoder

15

© 2012 Renesas Electronics America Inc. All rights reserved.

PmodRS232 – Serial converter & interface Analog Devices ADM3232E Translates voltage from the logic levels used by system boards to the RS232 voltage

ADI Pmods – Sensors PmodACL – 3-axis accelerometer Analog Devices ADP5589

PmodACL2 – 3-axis MEMS accelerometer Analog Devices ADXL362

Low power, 3-axis accelerometer with high resolution (13-bit). Measurement at up to ±16 g. Digital output data is formatted as 16-bit 2’s complement and is accessible through either a SPI or I2C.

Ultralow power, 3-axis MEMS accelerometer. Consumes less than 2 μA at a 100 Hz output data rate and 270 nA when in motion triggered wake-up mode. 12 bit output resolution.

PmodGYRO2 – Angular rate sensor (gyroscope) Analog Devices ADXRS453

PmodTMP2 – High accuracy digital temperature sensor Analog Devices ADT7420

Intended for industrial, instrumentation, and stabilization applications in high vibration environments. High accuracy rate sensing in harsh environments where shock and vibration are present.

16

© 2012 Renesas Electronics America Inc. All rights reserved.

Contains an internal band gap reference, a temperature sensor, and a 16-bit ADC to monitor and digitize the temperature to 0.0078°C resolution. The ADC resolution is set to 13 bits (0.0625°C) and can be programmed through the serial interface.

Sensors Data Acquisition

17

© 2012 Renesas Electronics America Inc. All rights reserved.

Sensors Interfacing With MCUs  When a sensor has to be interfaced with a microcontroller, the classification from the output electrical signal viewpoint is important  Usually, digital sensors can be connected directly to a microcontroller through the integrated data peripherals. Many sensors can be connected to the same peripheral.  If an analog sensor has to be interfaced, the analog sensor data has to be digitized. This process can be done with an A/D converter.

18

© 2012 Renesas Electronics America Inc. All rights reserved.

Sensors Interfacing With MCUs

19

© 2012 Renesas Electronics America Inc. All rights reserved.

I2C Communication

 ADT7420 – Reading back data from the ID register

20

© 2012 Renesas Electronics America Inc. All rights reserved.

SPI Communication

 ADXL345 – Reading back data from the ID register

21

© 2012 Renesas Electronics America Inc. All rights reserved.

Analog Output

 ADMP401 - The output signal amplified by SSM2167

22

© 2012 Renesas Electronics America Inc. All rights reserved.

Digital or Analog? Digital Sensors  Can be connected directly to MCU.  Many sensors can be connected to the same bus.  More expensive than analog sensors.  Bigger than analog sensors.  Are built to meet the requirements of most customers.

23

© 2012 Renesas Electronics America Inc. All rights reserved.

Analog Sensors  Usually, the analog signal has to be conditioned to meet the input requirements of the ADC.  Each sensor needs an ADC.  Cheaper than digital sensors.  Smaller than digital sensors.  ADC can be chosen to satisfy your specific sample rate and resolution requirements.

ADI Support for Sensors Applications

24

© 2012 Renesas Electronics America Inc. All rights reserved.

EZ.Analog.com  EngineerZone (ez.analog.com) is a technical support forum from Analog Devices  It allows you direct access to ADI technical support engineers  Use it also to connect with other developers who face similar design challenges

25

© 2012 Renesas Electronics America Inc. All rights reserved.

Wiki.Analog.com  Complementary site to EZ, the Wiki (wiki.analog.com) is a collaborative space allowing the sharing of knowledge and content between ADI engineers and the design engineering community

26

© 2012 Renesas Electronics America Inc. All rights reserved.

Sensors Drivers  The drivers for a wide list of ADI products can be downloaded from the Wiki page. The drivers may be used without modifications, with any microcontroller, but the specific communication functions for the desired type of processor and communication protocol have to be implemented.  For each driver can be downloaded also implementation examples for different types of processors including the Renesas RL78G13, Renesas RX62N and Renesas RX63N

27

© 2012 Renesas Electronics America Inc. All rights reserved.

Hands on Lab

28

© 2012 Renesas Electronics America Inc. All rights reserved.

Hands on Lab  During the hands on part of the lab the attendees are guided through a series of steps required to create a new project for the selected Renesas MCU, establish communication through SPI and I2C with different ADI digital sensors, read data from an ADI analog sensor through the A/D converter found on the Renesas MCU.  The data read from the ADI sensors is displayed on the LCD found on the Renesas RDK thus providing direct feedback without the need of additional hardware resources. Each sensor has a separate display page showing the values read from the sensor and also data graphs where possible.

29

© 2012 Renesas Electronics America Inc. All rights reserved.

Summary  The lab provided an introduction to some of the ADI sensors and to the evaluation boards for these sensors compatible with Renesas MCU platforms  The ADI support websites for sensors applications were presented:  wiki.analog.com - reference projects documentation and source code  ez.analog.com - technical support forum

 During the lab the attendees learnt how to create a new project for a Renesas MCU and how to exchange data with ADI digital and analog sensors

30

© 2012 Renesas Electronics America Inc. All rights reserved.

Questions?

31

© 2012 Renesas Electronics America Inc. All rights reserved.

Renesas Electronics America Inc. © 2012 Renesas Electronics America Inc. All rights reserved.