Sharp Power Mean Bounds for the Combination of Seiffert and

0 downloads 0 Views 2MB Size Report
Jul 29, 2010 - be the arithmetic, geometric, logarithmic, harmonic, and identric means of two positive numbers a and b, respectively. Then it is well known that.
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2010, Article ID 108920, 12 pages doi:10.1155/2010/108920

Research Article Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means Yu-Ming Chu,1 Ye-Fang Qiu,2 and Miao-Kun Wang2 1 2

Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

Correspondence should be addressed to Yu-Ming Chu, [email protected] Received 29 March 2010; Revised 23 July 2010; Accepted 29 July 2010 Academic Editor: Lance Littlejohn Copyright q 2010 Yu-Ming Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We answer the question: for α ∈ 0, 1, what are the greatest value p and the least value q such that the double inequality Mp a, b < P α a, bG1−α a, b < Mq a, b holds for all a, b > 0 with a  / b. Here, Mp a, b, P a, b, and Ga, b denote the power of order p, Seiffert, and geometric means of two positive numbers a and b, respectively.

1. Introduction For p ∈ R, the power mean Mp a, b of order p and the Seiffert mean P a, b of two positive numbers a and b are defined by ⎧  ⎪ ap  bp 1/p ⎪ ⎨ , p/  0, 2 Mp a, b  ⎪ ⎪ ⎩√ab, p  0, ⎧ a−b ⎪ ⎪ , a/  b, 

⎨ a/b − π P a, b  4 arctan ⎪ ⎪ ⎩a, a  b.

1.1

The main properties of the power mean are given in 1. It is well known that Mp a, b is strictly increasing with respect to p for fixed a, b > 0 with a /  b. Recently, the power mean has been the subject of intensive research. In particular, many remarkable inequalities for the power mean can be found in the literature 2–16.

2

Abstract and Applied Analysis

The Seiffert mean P was introduced by Seiffert in 17, it can be rewritten in the following symmetric form see 18, 2.4:

P a, b 

⎧ ⎪ ⎨

a−b , 2 arcsina − b/a  b ⎪ ⎩a,

a / b, a  b.

1.2

√ b−log a, b /  a, Let Aa, b  1/2a  b, Ga, b  ab, La, b  b−a/log Ha, b  a, ba, b a 1/b−a , b/  a, be the arithmetic, geometric, logarithmic, 2ab/a  b and Ia, b  1/eb /aa,  ba harmonic, and identric means of two positive numbers a and b, respectively. Then it is well known that min{a, b} < Ha, b  M−1 a, b < Ga, b  M0 a, b < La, b < Ia, b < Aa, b  M1 a, b < max{a, b}

1.3

for all a, b > 0 with a /  b. In 9, Alzer and Janous presented the sharp power mean bounds for the sum 2/3Aa, b  1/3Ga, b as follows: Mlog 2/ log 3 a, b
0 with a /  b. In 17, Seiffert proved that La, b < P a, b < Ia, b

1.5

for all a, b > 0 with a  / b. The following power mean bounds for the Seiffert mean was given by Jagers 19: M1/2 a, b < P a, b < M2/3 a, b

1.6

for all a, b > 0 with a /  b. In 20, 21, the authors presented the bounds for the Seiffert mean P in terms of A and G as follows: P a, b >

3Aa, bGa, b , Aa, b  2Ga, b

1 1 2 1 Aa, b  Ga, b < P a, b < Aa, b  Ga, b, 2 2 3 3 P a, b > A1/3 a, bG2/3 a, b for all a, b > 0 with a /  b.

1.7

Abstract and Applied Analysis

3

The following sharp lower power mean bounds for 1/3Ga, b  2/3Ha, b, 2/3Ga, b  1/3Ha, b, and P a, b can be found in 4, 6: 2 1 Ga, b  Ha, b > M−2/3 a, b, 3 3 1 2 Ga, b  Ha, b > M−1/3 a, b, 3 3

1.8

P a, b > Mlog 2/ log π a, b for all a, b > 0 with a /  b. The purpose of this paper is to answer the question: for α ∈ 0, 1, what are the greatest value p and the least value q such that the double inequality Mp a, b < P α a, bG1−α a, b <  b. Mq a, b holds for all a, b > 0 with a /

2. Lemmas In order to prove our main result, we need several lemmas which we present in this section. Lemma 2.1. Let λ ∈ 0, 1/3, x ∈ 1, ∞ and hx  1−3λx2λ1 −13λx2λ −13λx1−3λ. Then there exists x0 > 1 such that hx < 0 for x ∈ 1, x0 , hx > 0 for x ∈ x0 , ∞ and hx0   0. Proof. Simple computations lead to h1  −12λ < 0,

2.1

lim hx  ∞,

2.2

h x  1 − 3λ2λ  1x2λ − 2λ1  3λx2λ−1 − 1  3λ, h 1  −6λ1  2λ < 0,

2.3

lim h x  ∞,

2.4

h x  2λx2λ−2 1  2λ1 − 3λx  1 − 2λ1  3λ > 0.

2.5

x → ∞

x → ∞

Inequality 2.5 implies that h x is strictly increasing in 1, ∞. Then 2.3 and 2.4 lead to that there exists x1 > 1 such that h x < 0 for x ∈ 1, x1  and h x > 0 for x ∈ x1 , ∞. Hence, hx is strictly decreasing in 1, x1  and strictly increasing in x1 , ∞. Therefore, Lemma 2.1 follows from 2.1 and 2.2 together with the monotonicity of hx. √ Lemma 2.2. If λ ∈ 1/ 10, 1/3, then the following statements are true: 1 300λ4  324λ3  29λ2 − 45λ − 8 < 0; 2 −1176λ5 − 24λ4  114λ3  10λ2 − 3λ − 1 < 0; 3 −24λ5  72λ4  178λ3  6λ2 − 25λ − 3 < 0.

4

Abstract and Applied Analysis

Proof. Simple computations lead to √ 3  29λ2 − 45λ − 8 < 300 × 1/34  324 × 1/33  29 × 1/32 − 45/ 10 − 8 1 300λ4  324λ√  590 − 243 10/54 < 0; √ 5 √ 4 2 −1176λ5 − 24λ4  114λ3 √10λ2 − 3λ − 1 < −1176 √ × 1/ 10 − 24 × 1/ 10  114 × 1/33  10 × 1/32 − 3/ 10 − 1  3070 − 1107 10/750 < 0; √ 5 10  72 × 1/34  3 −24λ5  72λ4  178λ3  6λ2 √− 25λ − 3 < −24 × 1/ √ 3 2 178 × 1/3  6 × 1/3 − 25/ 10 − 3  34750 − 17037 10/6750 < 0. √ Lemma 2.3. If α ∈ 0, 3/ 10, then I α a, bG1−α a, b < M2α/3 a, b

2.6

holds for all a, b > 0 with a /  b. Proof.√Without loss of generality, we assume that a > b. Let t  a/b > 1 and β  α/3 ∈ 0, 1/ 10. Then

logM2α/3 a, b − log I α a, bG1−α a, b

   log M2β a, b − log I 3β a, bG1−3β a, b 

3βt 1 − 3β 1  t2β 1 log − log t − log t  3β. 2β 2 t−1 2

ft 

3βt 1 − 3β 1  t2β 1 log − log t − log t  3β. 2β 2 t−1 2

2.7

Let 2.8

Then simple computations lead to limft  0,

2.9

t→1

f  t 

gt t − 12

,

2.10

where gt  t2β1 − 2t2β  t2β−1  / 1  t2β  − 3βt − 1  3β log t − 1 − 3βt − 2  1/t/2, g1  0, g  t 

g1 t  2 , 2 2t 1  t2β

2.11

Abstract and Applied Analysis

5

where g1 t  1−3βt4β2  6βt4β1 −13βt4β −2βt2β2  4βt2β1 −2βt2β −13βt2 6βt1−3β, g1 1  0,

2.12

g1 1  0,

2.13

g1 1  0.

2.14

Let g2 t  g1  t/8βt2β−3  and g3 t  g2  t/2βt2β−3 . Then        g2 t  1 − 3β 2β  1 4β  1 t2β2  3β 4β  1 4β − 1 t2β1        − 1  3β 4β − 1 2β − 1 t2β − β β  1 2β  1 t2        β 2β  1 2β − 1 t − β β − 1 2β − 1 ,

2.15

g2 1  0,



 √ √ g2 1  2 1 − 10β 1  10β ≥ 0,

2.17



√ √   g2 1  2 6β  1 1 − 10β 1  10β ≥ 0,

2.18

     2    g3 t  2 1 − 3β 2β  1 4β  1 β  1 t2  3β 4β  1 4β − 1        2  × 2β  1 2β − 1 t − 2 1  3β 4β − 1 2β − 1 β − 1 ,

 g3 1  9β 3 − 28β2 > 0,           g3 t  2β  1 4β  1 4 1 − 3β 2β  1 β  1 t  3β 4β − 1 2β − 1 ,

   g3 1  2β  1 4β  1 4  3β − 46β2 , min

β∈0,1/10



4  3β − 46β

2



√ 3 10 − 6 > 0.  10

2.16

2.19 2.20 2.21 2.22 2.23

√ From 2.21−2.23 we clearly see that g3 t > g3 1 ≥ 3 10 − 6/102β  14β  1 > 0 for t ∈ 1, ∞, hence g3 t is strictly increasing in 1, ∞. Then 2.20 implies that g3 t > 0 for t ∈ 1, ∞, hence g2 t is strictly increasing in 1, ∞. It follows from 2.18 and the monotonicity of g2 t that g2 t > 0 for t ∈ 1, ∞, hence  g2 t is strictly increasing in 1, ∞. Then 2.17 implies that g2 t > 0 for t ∈ 1, ∞, therefore g2 t is strictly increasing in 1, ∞. Equation 2.16 and the monotonicity of g2 t lead to that g2 t > 0 for t ∈ 1, ∞, so g1 t is strictly increasing in 1, ∞. From 2.9−2.14 and the monotonicity of g1 t we can deduce that ft > 0 for t ∈ 1, ∞.

2.24

6

Abstract and Applied Analysis Therefore, Lemma 2.3 follows from 2.7 and 2.8 together with 2.24.

Remark 2.4. In 22, Theorem 3.1, the authors proved that I 1/2 a, bG1/2 a, b < M1/3 a, b,

2.25

I 2/3 a, bG1/3 a, b < M4/9 a, b,

2.26

I 1/3 a, bG2/3 a, b < M2/9 a, b

2.27

for all a, b > 0 with a /  b. Obviously, 2.6 is the generalization of 2.25−2.27. √ √ Remark 2.5. If α ∈ 3/ 10, 1, then β  α/3 ∈ 1/ 10, 1/3 and 2.17 leads to



 √ √ g2 1  2 1 − 10β 1  10β < 0.

2.28

Inequality 2.28 and the continuity of g2 t imply that there exists δ > 0 such that g  2 t < 0

2.29

for t ∈ 1, 1  δ. From 2.29 and 2.9−2.16 we can deduce that ft < 0

2.30

for t ∈ 1, 1  δ. Equations 2.7 and 2.8 together with 2.30 lead to I α a, bG1−α a, b > M2α/3 a, b

2.31

for all a, b > 0 with a/b ∈√ 1, 1  δ ∪ 1/1  δ, 1. Therefore, α0  3/ 10 is the largest value in 0, 1 such that inequality 2.6 holds for α ∈ 0, α0 .

3. Main Result Theorem 3.1. If α ∈ 0, 1, then M0 a, b < P α a, bG1−α a, b < M2α/3 a, b

3.1

holds for all a, b > 0 with a /  b, and M0 a, b and M2α/3 a, b are the best possible lower and upper power mean bounds for the product Pα a, bG1−α a, b.

Abstract and Applied Analysis

7

Proof. For all a, b > 0 with a /  b, from 1.3, 1.5 and Lemma 2.1 we clearly see that P α a, bG1−α a, b > M0 a, b

3.2

P α a, bG1−α a, b < M2α/3 a, b

3.3

for all α ∈ 0, 1, and

√ for α ∈ 0, 3/ 10. √  b. Next, we prove that 3.3 is also true for α ∈ 3/ 10, 1 and all a, b > 0 with a / Without loss of generality, we assume that a > b. Let t  a/b > 1 and β  α/3 ∈ √ 1/ 10, 1/3. Then 1.1 leads to

logM2α/3 a, b − log P α a, bG1−α a, b

   log M2β a, b − log P 3β a, bG1−3β a, b 

  1 1  t4β t2 − 1 log − 3β log − 1 − 3β log t. 2β 2 4 arctan t − π

Ft 

  1 1  t4β t2 − 1 log − 3β log − 1 − 3β log t. 2β 2 4 arctan t − π

3.4

Let 3.5

Then simple computations lead to limFt  0,

 F  t 

t→1

       1 − 3β t4β2 − 1  3β t4β − 1  3β t2  1 − 3β 12β .  2   t  14 arctan t − π tt2 − 1 t4β  1

3.6 3.7

From Lemma 2.1 we know that there exists λ0 > 1 such that        1 − 3β λ0 4β2 − 1  3β λ0 4β − 1  3β λ0 2  1 − 3β  0,         1 − 3β t4β2 − 1  3β t4β − 1  3β t2  1 − 3β < 0

3.9

       1 − 3β t4β2 − 1  3β t4β − 1  3β t2  1 − 3β > 0

3.10



3.8

for t ∈ 1, λ0 , and 

for t ∈ λ0 , ∞.

8

Abstract and Applied Analysis We divide two cases to prove that F  t > 0

3.11

for t > 1. Case 1. t ∈ λ0 , ∞. Then 3.11 follows from 3.7 and 3.8 together with 3.10. Case 2. t ∈ 1, λ0 . Then 3.7 can be written as        1 − 3β t4β2 − 1  3β t4β − 1  3β t2  1 − 3β F1 t, F t    tt2 − 1 t4β  1 4 arctan t − π 



3.12

where    12βt t2 − 1 t4β  1 F1 t  4 arctan t  2         − π. t  1 1 − 3β t4β2 − 1  3β t4β − 1  3β t2  1 − 3β

3.13

Let x  t2 ∈ 1, λ0 2 , then 3.13 leads to F1 1  0, F1 t 

t2  1

4F2 x     2 , 4β2 − 1  3β t4β − 1  3β t2  1 − 3β 1 − 3β t

2 





3.14

where



 F2 x  18β2 − 9β  1 x4β3 − 18β2 − 3β  1 x4β2 



− 18β2  3β  1 x4β1  18β2  9β  1 x4β 



 2 6β2 − 1 x2β3 − 2 6β2 − 1 x2β2 



− 2 6β2 − 1 x2β1  2 6β2 − 1 x2β 



 18β2  9β  1 x3 − 18β2  3β  1 x2 



− 18β2 − 3β  1 x  18β2 − 9β  1 .

3.15

Abstract and Applied Analysis

9

Let F3 x  x4−2β /8βF2 4 x, then 3.15 leads to F2 1  0, F2 1  0,

3.16

F2 1  0, F2 1  0,

     F3 x  18β2 − 9β  1 4β  1 4β  3 2β  1 x2β3 

    − 18β2 − 3β  1 2β  1 4β  1 4β − 1 x2β2 

    − 18β2  3β  1 4β  1 4β − 1 2β − 1 x2β1 

     18β2  9β  1 4β − 1 2β − 1 4β − 3 x2β 

     6β − 1 2β  3 β  1 2β  1 x3

3.17

2



    − 6β2 − 1 β  1 2β  1 2β − 1 x2 

    − 6β2 − 1 2β  1 2β − 1 β − 1 x

      6β2 − 1 2β − 1 β − 1 2β − 3 . √ From β ∈ 1/ 10, 1/3 and x > 1, we clearly see that 18β2 − 9β  14β  14β  32β  1x2β3 < 18β2 − 9β  14β  14β  32β  1x3 , −18β2 − 3β  12β  14β  14β − 1x2β2 < −18β2 − 3β  12β  14β  14β − 1x2 , −18β2  3β  14β  14β − 12β − 1x2β1 < −18β2  3β  14β  14β − 12β − 1x2 and 18β2  9β  14β − 12β − 14β − 3x2β < 18β2  9β  14β − 12β − 14β − 3x. These inequalities and Lemma 2.2 lead to

     F3 x < 18β2 − 9β  1 4β  1 4β  3 2β  1 x3 

    − 18β2 − 3β  1 2β  1 4β  1 4β − 1 x2 

    − 18β2  3β  1 4β  1 4β − 1 2β − 1 x2 

     18β2  9β  1 4β − 1 2β − 1 4β − 3 x

      6β2 − 1 2β  3 β  1 2β  1 x3 

    − 6β2 − 1 β  1 2β  1 2β − 1 x2 

    − 6β2 − 1 2β  1 2β − 1 β − 1 x

      6β2 − 1 2β − 1 β − 1 2β − 3

10

Abstract and Applied Analysis

  2β 300β4  324β3  29β2 − 45β − 8 x3 

 −1176β5 − 24β4  114β3  10β2 − 3β − 1 x2 

 2 276β5 − 276β4  3β3  43β2 − 3β − 1 x

  24β5 − 72β4  62β3 − 6β2 − 11β  3

 < 2β 300β4  324β3  29β2 − 45β − 8 x

  −1176β5 − 24β4  114β3  10β2 − 3β − 1 x

  2 276β5 − 276β4  3β3  43β2 − 3β − 1 x  24β5 − 72β4  62β3 − 6β2 − 11β  3 

 −24β5  72β4  178β3  6β2 − 25β − 3 x  24β5 − 72β4  62β3 − 6β2 − 11β  3 < −24β5  72β4  178β3  6β2 − 25β − 3  24β5 − 72β4  62β3 − 6β2 − 11β  3 

 12β 20β2 − 3 < 0. 3.18

From 3.16−3.18 we can deduce that F2 x < 0

3.19

for x ∈ 1, λ0 2 . Equation 3.14 together with 3.19 imply that F1 t < 0

3.20

for t ∈ 1, λ0 . Therefore, 3.11 follows from 3.9 and 3.12 together with 3.20. It follows from 3.4−3.6 and 3.11 that P α a, bG1−α a, b < M2α/3 a, b

3.21

√ for α ∈ 3/ 10, 1 and all a, b > 0 with a /  b. At last, we prove that M0 a, b and M2α/3 a, b are the best possible lower- and upperpower mean bounds for the product P α a, bG1−α a, b, respectively.

Abstract and Applied Analysis

11

For any 0 < ε < 2/3α and x > 0, from 1.1 one has Mε 1, x lim x → ∞ P α 1, xG1−α 1, x 

 lim

x → ∞

 1  x−ε /21/ε 1−α/2  ∞, α x    √ 1 − x−1 / 4 arctan x − π

3.22



2α/3−ε  2α/3−ε P α 1, 1  xG1−α 1, 1  x − M2α/3−ε 1, 1  x 

Jx

√ 4 arctan 1  x − π

α2α−3ε/3 ,

3.23

√ where Jx  xα2α−3ε/3 1  x1−α2α−3ε/6 − 1/2 4 arctan 1  x − πα2α−3ε/3 1  1  x2α−3ε/3 . Let x → 0, making use of the Taylor expansion we get Jx 

 1 ε2α − 3εx1/3α2α−3ε2  o x1/3α2α−3ε2 . 24

3.24

Equation 3.22 implies that for any 0 < ε < 2/3α there exists X  Xε, α > 1 such that Mε 1, x > P α 1, xG1−α 1, x for x ∈ X, ∞. Equations 3.23 and 3.24 imply that for any 0 < ε < 2/3α there exists δ  δε, α > 0 such that P α 1, 1  xG1−α 1, 1  x > M2α/3−ε 1, 1  x for x ∈ 0, δ.

Acknowledgments The authors wish to thank the anonymous referees for their very careful reading of the paper and fruitful comments and suggestions. This paper is partly supported by N S Foundation of China under Grant 60850005, N S Foundation of Zhejiang Province under Grants Y7080106 and Y607128, and the Innovation Team Foundation of the Department of Education of Zhejiang Province under Grant T200924.

References 1 P. S. Bullen, D. S. Mitrinovi´c, and P. M. Vasi´c, Means and Their Inequalities, vol. 31 of Mathematics and Its Applications, D. Reidel Publishing, Dordrecht, The Netherlands, 1988. 2 W.-F. Xia, Y.-M. Chu, and G.-D. Wang, “The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means,” Abstract and Applied Analysis, vol. 2010, Article ID 604804, 9 pages, 2010. 3 M.-Y. Shi, Y.-M Chu, and Y.-P. Jiang, “Optimal inequalities among various means of two arguments,” Abstract and Applied Analysis, Article ID 694394, 10 pages, 2009. 4 Y.-M Chu and W.-F. Xia, “Two sharp inequalities for power mean, geometric mean, and harmonic mean,” Journal of Inequalities and Applications, Article ID 741923, 6 pages, 2009. 5 B.-Y. Long and Y.-M Chu, “Optimal power mean bounds for the weighted geometric mean of classical means,” Journal of Inequalities and Applications, Article ID 905679, 6 pages, 2010. 6 P. A. H¨asto, ¨ “Optimal inequalities between Seiffert’s mean and power means,” Mathematical Inequalities & Applications, vol. 7, no. 1, pp. 47–53, 2004.

12

Abstract and Applied Analysis

7 H. Alzer and S.-L. Qiu, “Inequalities for means in two variables,” Archiv der Mathematik, vol. 80, no. 2, pp. 201–215, 2003. 8 F. Burk, “The geometric, logarithmic, and arithmetic mean inequality,” The American Mathematical Monthly, vol. 94, no. 6, pp. 527–528, 1987. 9 H. Alzer and W. Janous, “Solution of problem 8∗ ,” Crux Mathematicorum with Mathematical Mayhem, vol. 13, pp. 173–178, 1987. 10 H. Alzer, “Ungleichungen fur ¨ Mittelwerte,” Archiv der Mathematik, vol. 47, no. 5, pp. 422–426, 1986. 11 H. Alzer, “Ungleichungen fur ¨ e/aa b/eb ,” Elemente der Mathematik, vol. 40, pp. 120–123, 1985. 12 C. O. Imoru, “The power mean and the logarithmic mean,” International Journal of Mathematics and Mathematical Sciences, vol. 5, no. 2, pp. 337–343, 1982. 13 A. O. Pittenger, “Inequalities between arithmetic and logarithmic means,” Univerzitet u Beogradu. Publikacije Elektrotehniˇckog Fakulteta. Serija Matematika i Fizika, no. 678–715, pp. 15–18, 1981. 14 A. O. Pittenger, “The symmetric, logarithmic and power means,” Univerzitet u Beogradu. Publikacije Elektrotehniˇckog Fakulteta. Serija Matematika i Fizika, no. 678–715, pp. 19–23, 1981. 15 K. B. Stolarsky, “The power and generalized logarithmic means,” The American Mathematical Monthly, vol. 87, no. 7, pp. 545–548, 1980. 16 T. P. Lin, “The power mean and the logarithmic mean,” The American Mathematical Monthly, vol. 81, pp. 879–883, 1974. 17 H.-J. Seiffert, “Problem 887,” Nieuw Archief voor Wiskunde, vol. 11, no. 2, pp. 176–176, 1993. 18 E. Neuman and J. S´andor, “On the Schwab-Borchardt mean,” Mathematica Pannonica, vol. 14, no. 2, pp. 253–266, 2003. 19 A. A. Jagers, “Solution of problem 887,” Nieuw Archief voor Wiskunde, vol. 12, pp. 230–231, 1994. 20 H.-J. Seiffert, “Ungleichungen fur ¨ einen bestimmten Mittelwert,” Nieuw Archief voor Wiskunde. Vierde Serie, vol. 13, no. 2, pp. 195–198, 1995. 21 J. S´andor, “On certain inequalities for means. III,” Archiv der Mathematik, vol. 76, no. 1, pp. 34–40, 2001. 22 M.-Y. Shi, Y.-M. Chu, and Y.-P. Jiang, “Three best inequalities for means in two variables,” International Mathematical Forum, vol. 5, no. 22, pp. 1059–1066, 2010.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014