Signal Generators. ▫ Signal Simulation ... V = V(t) sin[2p f c. (t) + f(t)]. AM, Pulse.
FM. PM. V = V(t) sin[q(t)]. Beyond S-Parameters ... Where are AM signals used?
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop
Signal Generation Back to Basics
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Page M6- 1
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda The need for creating test signals – Aerospace Defense to Communications
From Generating Signals… – No modulation – Analog Modulation – Composite Modulation
…To T Simulating Si l ti Si Signals l – Simulating real-life signals
Signal Generators Signal Simulation Solutions
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw Agilent From2007 Movies …. Workshop Nov. 1940 - News Flash Disney releases Fantasia with “Fantasound”, a new audio stereophonic sound system Walt Disney orders eight audio oscillators (HP 200B) for the sound production of the movie Fantasia. The 200B was used to calibrate the breakthrough sound system of Walt Disney's celebrated animated film, Fantasia
Stimulus/Response Testing
Input
Output
Equalizer
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Tone/volume
Power
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Aerospace Defense …. TESTING RADAR TRANSMITTERS and RECEIVERs RF Signal Injection
ANTENNA
IF Signal Injection LNA 1st LO
Signal Processor (range and Doppler)
2nd IFA
LO Substitution
Beyond S-Parameters © Agilent Technologies, Inc. 2007
IF BPF 2nd LO
1st IFA
IF BPF
Aerospace and Defense Symposium 2007 To Mobile Communications…. EuMw 2007 Agilent Workshop TESTING DIGITAL TRANSMITTERS and RECEIVERs
1011001110001010001
1011001110001010001
RF Signal injection IF Signal Injection Baseband Signal Injection Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda The need for creating test signals – Aerospace Defense to Communications
From Generating Signals… – No modulation – Analog Modulation – Composite Modulation
…To T Simulating Si l ti Si Signals l – Simulating real-life signals
Signal Generators Signal Simulation Solutions Summaryy
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – No Modulation
Ti Time
Volta age
Volta age
Continuous Wave (CW)
Oscilloscope
F Frequency
Spectrum Analyzer
The sine wave is the basic, non-modulated signal: It is useful for stimulus/response testing of linear components and for Local Oscillator substitution. substitution Available frequencies range from low RF to Millimeter.
6 GHz
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Millimeter
Microwave
RF
20-70 GHz
300 GHz
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Modulation: Where the Information Resides
V = V(t) sin[2p fc(t) + f(t)]
AM, Pulse
FM
V = V(t) sin[q(t)]
Beyond S-Parameters © Agilent Technologies, Inc. 2007
PM
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals - Analog Modulation Amplitude Modulation Important p Characteristics for Amplitude Modulation
Modulation depth %,dB
Carrier
z
Voltage
z z
Time
z z
Modulation frequency
Where are AM signals used? z z z
AM Radio Antenna scan ASK (early digital 100101)
Beyond S-Parameters © Agilent Technologies, Inc. 2007
z
Modulation frequency (rate) Depth of modulation (Mod Index) Linear AM (%) Log AM (dB) Sensitivity (depth/volt) Distortion %
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Amplitude Modulation
Voltage e
Carrier
Where are AM signals used? Time z z
Modulation
Beyond S-Parameters © Agilent Technologies, Inc. 2007
z
AM Radio A t Antenna scan ASK (early digital 100101)
Aerospace and DefenseModulation Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Frequency Modulation
Voltag ge
IImportant t t Characteristics Ch t i ti for f Frequency Modulation z
Time
z z z z z
Wh Where are FM signals i l used? d? z z z z
FM Radio Aviation Flight systems Radar FSK (early digital 1011)
Beyond S-Parameters © Agilent Technologies, Inc. 2007
z
Frequency Deviation Modulation Frequency dcFM Accuracy Resolution Distortion Sensitivity (dev/volt)
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Frequency Modulation
V V= b = DF
dev
A sin[2pf i [2 fct + bm(t)] (t)] Important Characteristics for Frequency Modulation
/Fmod z z
Voltage
z z
Time
z z z
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Frequency Deviation Modulation Frequency dcFM Accuracy Resolution Distortion Sensitivity (dev/volt)
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Phase Modulation Vo oltage
Important Characteristics for Phase Modulation z z
Time
z z z z
Where are Phase Modulated signals used? z z
PSK (early digital 1010) Radar(pulse coding)
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Phase deviation Modulation Rate Accuracy Resolution Distortion Sensitivity
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation
Voltage
Phase Modulation
Where are Phase Modulated signals used? Time
z z
Beyond S-Parameters © Agilent Technologies, Inc. 2007
PSK (early digital 1010) Radar(pulse coding)
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Pulse Modulation T Rise
Rate=1/T
time
Power
On/Off ratio
Pulse Width
t
Important Characteristics for Pulse Modulation
z
Time
z z z
Where are Pulse Modulated signals used? z
z
Radar High g Power Stimulus/Response Communications
Beyond S-Parameters © Agilent Technologies, Inc. 2007
1/T
1/t Power
z
Pulse width Pulse period On/Off ratio Rise time
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Pulse Modulation
T Ri Rise
Rate=1/T
Where are Pulse Modulated signals used?
time
Pow wer
On/Of f ratio
Pulse Width
z z
t
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Time z
Radar High Po Power er Stimulus/Response Communications
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Simultaneous modulation of two Mod Types Independent Amplitude and Phase Modulation
Integrated IQ Modulator
Q
I Independent p FM and Pulse Modulation FM during the pulse = chirp
Beyond S-Parameters © Agilent Technologies, Inc. 2007
32 QAM Constellation Diagram
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Vector Signals (Amplitude and Phase) P l Display Polar Di l
Phase 0d deg
• Magnitude is an absolute value • Phase is relative to a reference signal (0 degrees) Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Defense Composite Modulation Vector Signal Changes or Modifications
Phase 0 deg
Magnitude Change
Phase
0 deg
Phase Change
0 deg 0 deg
Both Change Beyond S-Parameters © Agilent Technologies, Inc. 2007
Frequency Change
Aerospace and– Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals Composite Modulation Polar Versus I-Q Format
Q z
Project Signals to “I” and “Q” Axes
z
Polar to Rectangular Conversion
z
IQ Pl Plane Sh Shows 2 Thi Things
Q-Value Phase
0 deg
I I-Value
Beyond S-Parameters © Agilent Technologies, Inc. 2007
z
z
What the modulated carrier is doing relative to the unmodulated d l t d carrier. i What baseband I and Q inputs are required to produce the modulated carrier
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Transmitting Digital Data -- Bits vs Symbols Binary Data bit = 0,1 Transmission Bandwidth Required
Transmitting Digital Bits (f 1 = 0, f 2 = 1 )
f1
f (t) =
f2 T
010101010
2/ T Main lobe width is 2 × Sample rate
Symbol = Groups/blocks of Bits 2 bits/symbol (00 01 10 11) 3 bit bits/symbol / b l (000 001 …..)) 4 bits/symbol (0000 0001 ..)
Symbol Rate =
Bit rate
# bits per symbol Symbol 1 (00) S b l 2 (01) Symbol
f (t) =
Symbol 3 (10) Symbol 4 (11)
S Beyond S-Parameters © Agilent Technologies, Inc. 2007
2/ S Main lobe width is 2 × Symbol rate
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Digital Modulation Characteristics Modulation format
Number of bits per symbol
Constellation
Transmission bandwidth
Q
BPSK
1
1
0 I
F 01
QPSK
Q
2
I 10
11 Q
16 QAM
4
Symbol Rate = #symbols/sec. (Hz) Beyond S-Parameters © Agilent Technologies, Inc. 2007
00
F/2
0000
I
F/4
Aerospace and Symposium 2007 Generating Signals – Defense Composite Modulation EuMw 2007 Agilent Workshop Vector Modulation - Important Characteristics Q z z z z
Phase
IQ Modulation Bandwidth Frequency Response/flatness IQ quadrature skew IQ gain balance
0 deg
I
flatness
Fb w
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and– Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals Composite Modulation Vector Modulation - Where Used
Q
z
I
Beyond S-Parameters © Agilent Technologies, Inc. 2007
z
Mobile Digital Communications Modern Radars
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda The need for creating test signals – Aerospace Defense to Communications
From Generating Signals… – No modulation – Analog Modulation – Composite Modulation
…To T Simulating Si l ti Si Signals l – Simulating real-life signals
Signal Generators Signal Simulation Solutions
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Simulating Signals Add interference/impairments to user data Multipath signals
Multi-path Fading
1011001110001010001
1011001110001010001
Add signal i l impairments i i t Streaming data Recovering User Data g test signal g imperfections Removing Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Simulating SignalsWorkshop Record/playback real signals scenarios RF Signal Injection
ANTENNA
LNA 1st LO
Signal Processor (range and Doppler)
2nd IFA
IF BPF 2nd LO
Beyond S-Parameters © Agilent Technologies, Inc. 2007
1st IFA
IF BPF
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda The need for creating test signals – Aerospace Defense to Communications
From Generating Signals… – No modulation – Analog Modulation – Composite Modulation
…To T Simulating Si l ti Si Signals l – Simulating real-life signals
Signal Generators Signal Simulation Solutions
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Signal Generators • Basic CW Signals • Block Diagram (RF and Microwave) • Specifications • Applications
• Analog Signals • Block Diagram (AM, FM, PM, Pulse) • Applications
• Vector Signals • Block Diagram (IQ) • Applications
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace Defense Symposium 2007 Basic 2007 CW Signals –and Block Diagram EuMw Agilent Workshop RF Source Synthesizer Section Frac-N
Output Section ALC Modulator
Output Attenuator
Phase Detector VCO
divide by X Reference Oscillator
Reference Section Beyond S-Parameters © Agilent Technologies, Inc. 2007
ALC Driver ALC Detector ALC = automatic level control
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Reference Section
Divide by X
Phase Detector Optional External Reference Input
Reference Oscillator (TCXO or OCXO)
Aging Rate
TCXO C O +/- 2ppm/year
OCXO +/- 0.1 ppm /year
Temp.
+/- 1ppm
+/- 0.01 ppm
Line Voltage
+/- 0.5ppm
+/- 0.001 ppm
Beyond S-Parameters © Agilent Technologies, Inc. 2007
To synthesizer section
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Synthesizer Section Front panel control
N = 93.1 Frac-N
Error signal
5MHz To output section Phase Detector
X VCO
5MHz From reference section
Beyond S-Parameters © Agilent Technologies, Inc. 2007
465 5 MHz 465.5
2
Multiplier
931 MHz
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Basic CW Signals – Block Diagram PLL/Fractional-N…suppress phase noise Overall phase noise of signal
Reference oscillator
Phase detector noise
20logN
VCO noise i
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Phase-locked-loop (PLL) bandwidth selected for optimum noise performance
Broadband noise floor
frequency
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Output Section • ALC •maintains level output ALC Modulator power by adding/subtracting From power as needed synthesizer
Output Attenuator
section Source S output
• Output Attenuator •mechanical or electronic •provides p attenuation to achieve wide output range (e.g. -136dBm to +17dBm)
ALC Driver
ALC Detector
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Microwave Source Reference Section Frac N
ALC Modulator
Phase Det VCO Sampler Ref Osc
YIG Oscillator Phase Detector
ALC Driver
Frac -N
Synthesizer Section
Beyond S-Parameters © Agilent Technologies, Inc. 2007
ALC D Detector t t
Output Section
Output p Attenuator
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Frequency z z z
Range -- Fmin to R t Fmax Resolution – smallest frequency increment Accuracyy – is it where it says y it is
Uncertainty Powerr
Accuracy = +_ f CW * t aging * t
f CW =
Frequency q y
t aging = t cal =
Accuracy = +_152 Hz
Beyond S-Parameters © Agilent Technologies, Inc. 2007
cal
CW frequency = 1 GHz aging rate = 0.152 ppm/year time since last calibrated = 1 year
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Amplitude Range ((-136dBm 136dBm to +17dBm) Accuracy (+/- 0.5dB) Resolution (0.02dB) Switching Speed (19ms) Reverse Power Protection
Source protected from accidental transmission from DUT
What is Pmax out?
How accurate is this number?
DUT Voltage
• • • • •
What is Pmin out? Frequency
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Frequency Sweep Ramp sweep • • •
f2
accuracy sweep time resolution f1 t2
t1
time
Step sweep • • •
accuracy number of points switching time
f4 f3 f2 f1 t1
Beyond S-Parameters © Agilent Technologies, Inc. 2007
t2
t3
t4
Aerospace Defense Symposium 2007 Basic 2007 CW Signals –and Specifications EuMw Agilent Workshop Frequency Sweep - Amplitude power
level accuracy spec
Frequency Sweep • Level Accuracy • Flatness • Source Match (SWR)
f1
P2 power sweep range g
P1
Beyond S-Parameters © Agilent Technologies, Inc. 2007
frequency
f2
po ower
Power Sweep • Power Sweep Range • Power Slope Range • Source Match (SWR)
flatness spec
t1
t2
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Spectral Purity • Phase Noise • Spurious
CW output
Phase noise
Non-harmonic spur ~65dBc
Harmonic H i spur ~30dBc
Sub-harmonics
0 5 f0 0.5 Beyond S-Parameters © Agilent Technologies, Inc. 2007
f0
2f0
Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Spectral Purity – Phase Noise CW output Measured as dBc/Hz Frequency
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Basic2007 CW Signals – Applications As a Local Oscillator DUT IF signal
transmitter output
LO signal
Key Specs: • • • • •
Frequency Range Accuracy Resolution Output Power Phase Noise
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Poor frequency P f accuracy and/or resolution will cause the transmitter output to be at the wrong frequency
poor phase noise spreads energy into adjacent channels
Aerospace and Defense Symposium 2007 EuMw Agilent Basic2007 CW SignalsWorkshop – Applications In-Channel Receiver Testing The smallest RF signal that will produce a desired baseband output from the receiver
Receiver Sensitivity IF signal
DUT Key Specs:
in-channel signal (cw signal) source
• Range (-136dBm ( 136dBm to +17dBm) 17dBm) • Accuracy (+/- 0.5dB) • Resolution (0.02dB) Level (d dBm)
p output
IF Rejection j Curve
-116 116 dB dBm tto – 126 dBm IF Channel Frequency
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw Agilent Basic 2007 CW SignalsWorkshop – Applications Out-of-channel Receiver Testing Receiver Selectivity Spurious Response Immunity IF signal out-of-channel signal (CW and/or modulated signal)
DUT source output IF Rejection Curve
Key Specs: Frequency Range Output Power Phase Noise Broadband noise Non-harmonic spurious
spur from source and/or high levels of phase noise can cause a good receiver to fail
Level ((dBm)
• • • • •
Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 Basic2007 CW SignalsWorkshop – Applications EuMw Agilent Non-linear Amplifier Testing - TOI f1
DUT output RF
f2 K S Key Specs: • • • • •
Frequency Range Frequency Accuracy Frequency q y Resolution Output Power Non-harmonic spurious
isolato r
Two tone Intermodulation Two-tone Distortion test system third order f f2
products will also fall here
1
spurious signals from source can corrupt measurement
fL = 2f1 - f2
fU = 2f2 - f1
frequency
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 Basic2007 CW Signals – Applications EuMw Agilent Workshop Out-of-channel Receiver Testing - IMD Intermodulation immunity
f1
IF signal
isolator
f2
Fmod = nF1 + mF2
DUT • • • • •
Frequency Range Frequency Accuracy Frequency Resolution Output Power Non-harmonic spurious
out-of-channel signals
sources output F1
F2
Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007
IF Rejection Curve
Intermodulation product Fmod = 2F2 – F1 spur from source
Level (d dBm)
Key Specs:
n= -1,2 , m= 2,-1
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Basic2007 CW Signals – Applications Stimulus-Response Testing
Detector
Sweeper Input
Detector
Fout
Fin
DUT
Fin
Fout
Key Specs:
LO Beyond S-Parameters © Agilent Technologies, Inc. 2007
• • • • • • •
Frequency Range Frequency Accuracy Frequency Ramp/step sweep P Power sweep Sweep speed Output Power accuracy Residual FM
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Generators • Basic CW Signals • Block Diagram (RF and Microwave) • Specifications • Applications
• Analog Signals • Block Diagram (AM, FM, PM, Pulse) • Applications
• Vector Signals • Block Diagram (IQ) • Applications
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Block Diagram Add AM, FM, PM, and Pulse Modulation
VCO
Output Attenuator
ALC Modulator Pulse Mod.
Freq. Freq Control
Reference Oscillator
Beyond S-Parameters © Agilent Technologies, Inc. 2007
ALC Driver
FM, PM input
AM input
Pulse Mod input
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Block Diagram Add internal modulation generator VCO
Output Attenuator
ALC Modulator Pulse Mod.
Freq. Control
ALC Di Driver
AM input FM, PM input
Reference Oscillator
Beyond S-Parameters © Agilent Technologies, Inc. 2007
FM AM Source Source
Pulse Mod input
Pulse Source
Aerospace Defense Symposium 2007 EuMw 2007 Agilent Workshop Analog Signals –and Applications Receiver Baseband Distortion
Receiver In channel signal In-channel (modulated signal)
Key Specs: • Frequency Range • Modulation rate/deviation • Modulation Distortion =
Receiver Distortion %
( i (dB)/20) x 10-(margin(dB)/20)
Example: For a receiver distortion of 5% and a 10 dB test margin, the SG must have < 1.58% mod distortion
Distortio n
Lev vel (dBm)
Required SG M d l ti Modulation distortion
Non-linear distortion is characterized by the appearance of harmonics other than the fundamental component in the baseband output
Frequency q y
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Applications Pulsed Radar Testing with Chirps RF Si Signall Injection
Key Specs:
FM during the pulse = chirp
• Frequency Range • FM Modulation rate/deviation • Pulse rate, width, rise time
LNA 1st LO
Signal Processor (range and Doppler)
2nd IFA
IF BPF 2nd LO
Beyond S-Parameters © Agilent Technologies, Inc. 2007
ANTENNA
1st IFA
IF BPF
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Generators
• Basic CW Signals • Block Diagram (RF and Microwave) • Specifications • Applications
• Analog a og Signals Sg as • Block Diagram (AM, FM, PM, Pulse) • Applications
• Vector Signals • Block Diagram (IQ) • Applications
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Block Diagram IQ Modulation 01
I :
Q
00
Carrier
I
p/ 2
Q :
11 z z z
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Good Interface with Digital Signals and Circuits Can be Implemented with Simple Circuits F t accurate Fast, t state t t change h
10
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Vector Signals – Workshop Block Diagram Adding the IQ modulator Synthesizer VCO
I-Q Modulator
Output
p/2
Freq. C t l Control
ALC Driver
Q Reference
Beyond S-Parameters © Agilent Technologies, Inc. 2007
I
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Block Diagram Baseband IQ signal generation Analog Reconstruction Filters
Symbol y Mapping and Baseband Filters
Pattern RAM
00 -> 1 1+j1 j1 11000101101 01001011100 10101010
01 -> -1+j1 10 -> -1-j1 11 -> 1-j1
Beyond S-Parameters © Agilent Technologies, Inc. 2007
DAC
I
DAC
Q
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Vector Signals Block Diagram Baseband Generator: Baseband Filters Fast Transitions Require Wide Bandwidths
Frequency
Frequency Filtering Slows Down Transitions and Narrows the Bandwidth Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Block Diagram Adding an internal Baseband Generator Synthesizer VCO
I-Q Modulator
Output
p/2
Freq. C t l Control
ALC Driver
Q DAC
I Reference
DAC
Pattern RAM and Symbol Mapping
Baseband Generator Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications
• • • •
Formatt Specific F S ifi Signal Si lG Generation ti Receiver Sensitivity Receiver Selectivity Component Distortion
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Vector Signals Applications Digital Format Access Schemes Different time - different Users One User
FDMA
Differ channel - different Users
CDMA Same channel – many users Beyond S-Parameters © Agilent Technologies, Inc. 2007
TDMA
OFDM
Different time - different Users
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Format Specific Modulation GSM: slots
multiple users, same frequency, different time
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Digital Receiver Sensitivity The smallest modulated RF signal that will produce a specified BER from the receiver
DUT RF DAC
Baseband DSP
Amp plitude
RF LO
Payload Data BER Spec Line frequency
Beyond S-Parameters © Agilent Technologies, Inc. 2007
BER
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Digital Receiver Sensitivity T ti Testing a -110 110 dB sensitivity iti it digital di it l receiver: i X= Failed unit O=Passed unit
-110 dB specification
X
X
X
-110 dB specification Set source to -111 dBm
X
X X X Actual output power= -114 dBm O
Set source to -115 115 dBm
Frequency Case 1: Source has +/-5 dB of output power accuracy at -100 to -120 dBm output power. Beyond S-Parameters © Agilent Technologies, Inc. 2007
O O O
Actual output power= -112 dBm
O
Frequency Case 2: Source has +/-1 dB of output power accuracy at -100 to -120 dBm output power.
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Receiver Sensitivity – Connected Solutions • Simulated portion RF
IF
I Demodulator
Q
A/D Converter
Baseband De-Coding
DUT
RF/IF BER
Signal Generator Beyond S-Parameters © Agilent Technologies, Inc. 2007
Simulation Software
Signal y Analyzer
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Receiver Selectivity (Blocking Tests) In-channel signal g (modulated signal) RF DAC
Out-of-channel O t f h l signal i l (CW or modulated signal)
Baseband DSP
RF LO
Lev vel (dBm)
IF Rejection Curve Spur from source and/or high levels of phase noise can cause a good receiver to fail
Sensitivity specification
F Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007
Payload Data
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Vector Signals – Workshop Applications Component Distortion – Adjacent Channel Power Ratio
DUT Spectral p Output p from amplifier p ACPR
Input from VSG
Spectral regrowth ACP Margin Margin (dB)
0
Error contribution (dB) 3.0
Beyond S-Parameters © Agilent Technologies, Inc. 2007
1
2
3
4
5
10
15
2.5
2.1
1.8
1.5
1.2
0.4
0.2
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Component Distortion – Error Vector Magnitude OFDM Si Signall 400 MHz Bandwidth
DAC
Q
Q Magnitude Error
Q (IQ error mag)
I
Error Vector Magnitude
Test Signal
f
Ideal (Reference) Signal Phase Error (IQ error phase)
I Beyond S-Parameters © Agilent Technologies, Inc. 2007
I
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Component Distortion – EVM
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Measured EVM = -30 dB, 3.3%
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda The need for creating test signals – Aerospace Defense to Communications
From Generating Signals… – No modulation – Analog Modulation – Composite Modulation
…To T Simulating Si l ti Si Signals l – Simulating real-life signals
Signal Generators Signal Simulation Solutions
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop
Simulating real signal environments Fading Baseband SW Waveform Capture and Playback Baseband SW
Signal Creation
Create Impairments
Import/export Custom Digital Data
Digital Signal Interface
Stream Data
I t Internal l BBG
Vector Baseband IQ generation Signal External BBG Generato r Si Signal l Create Standard Creation Signals SW
User H d Hardware
RF/Microwave Signals
Remove test signal imperfections pe ect o s
Vector Signal Analyzer
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Simulation Solutions Remove Test Signal Imperfections BBG
Add Predistortion (corrections) Signal Software
LAN/GPIB
VSG
Measurement Results
Measure Modulated Signal VSA
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Remove Test Signal Imperfections – IQ Flatness
Source of error – I/Q modulator, RF chain, IQ path Result – passband tilt, tilt ripple, ripple and roll off
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Simulation Solutions Remove Test Signal imperfections – IQ flatness Solution – measure vector signal generator and apply predistortion Tradeoff – calculation time, valid cal time Typical application – wideband, multitone, and multicarrier
500 MHz UWB
32 tones - 80 MHz 2.4 dB
Before
0.1 dB
< 3 dB After
Beyond S-Parameters © Agilent Technologies, Inc. 2007
6-8 dB
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Removing Test Signal Imperfections - IMD Before Predistortion Measured in-band IMD = -40 dBc
Beyond S-Parameters © Agilent Technologies, Inc. 2007
After Predistortion Measured in-band IMD = -84 dBc
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Removing Test Signal Imperfections – Group Delay Before Predistortion EVM -30 dB, 3.3%
Beyond S-Parameters © Agilent Technologies, Inc. 2007
After Predistortion EVM –34 dB, 2%
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Non-linear Amplifier Testing DUT output RF
Intermodulation Di t ti Distortion • Improved IMD suppression (typically > 80 dBc) • Correct generator with additional devices in the loop • Lower overall cost-of-test for large # tones Signal Studio – Enhanced Multitone
• Same hardware for ACPR/NPR distortion tests
Up to 1024 tones
Set relative tone power
Set relative tone phase
80 MHz correction BW
plot CCDF p
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Adding Impairments to Signals – Fading Faded signal
R Receiver i transmission channel
Interferers
SW and interface hw
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Faded analog RF, IF, or IQ for receiver test Faded digital IQ baseband for digital subsystem test
BER/PER analysis
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop RF Capture & Playback RF Signal Injection
ANTENNA
LNA 1st LO
Record signals off the air Transfer files to a PC equipped with Baseband Studio and re-format Stream St them th iinto t th the V Vector t PSG signal i l generator t for f playback l b k Signal Processor (range and Doppler)
2nd IFA
IF BPF 2nd LO
Beyond S-Parameters © Agilent Technologies, Inc. 2007
1st IFA
IF BPF
Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Digital Capture & Playback Capture p data from the digital g section of a transmitter Digital bus
Capture digital I/Q signals
DUT
Test stimulus to the digital section of a receiver Digital bus
Playback digital I/Q signals
DUT
Beyond S-Parameters © Agilent Technologies, Inc. 2007
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop
THANK YOU! Beyond S-Parameters © Agilent Technologies, Inc. 2007