Signal Generation Back to Basics - Agilent Technologies

210 downloads 355 Views 4MB Size Report
Signal Generators. ▫ Signal Simulation ... V = V(t) sin[2p f c. (t) + f(t)]. AM, Pulse. FM. PM. V = V(t) sin[q(t)]. Beyond S-Parameters ... Where are AM signals used?
Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop

Signal Generation Back to Basics

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Page M6- 1

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda ƒ The need for creating test signals – Aerospace Defense to Communications

ƒ From Generating Signals… – No modulation – Analog Modulation – Composite Modulation

ƒ …To T Simulating Si l ti Si Signals l – Simulating real-life signals

ƒ Signal Generators ƒ Signal Simulation Solutions

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw Agilent From2007 Movies …. Workshop Nov. 1940 - News Flash Disney releases Fantasia with “Fantasound”, a new audio stereophonic sound system Walt Disney orders eight audio oscillators (HP 200B) for the sound production of the movie Fantasia. The 200B was used to calibrate the breakthrough sound system of Walt Disney's celebrated animated film, Fantasia

Stimulus/Response Testing

Input

Output

Equalizer

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Tone/volume

Power

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Aerospace Defense …. TESTING RADAR TRANSMITTERS and RECEIVERs RF Signal Injection

ANTENNA

IF Signal Injection LNA 1st LO

Signal Processor (range and Doppler)

2nd IFA

LO Substitution

Beyond S-Parameters © Agilent Technologies, Inc. 2007

IF BPF 2nd LO

1st IFA

IF BPF

Aerospace and Defense Symposium 2007 To Mobile Communications…. EuMw 2007 Agilent Workshop TESTING DIGITAL TRANSMITTERS and RECEIVERs

1011001110001010001

1011001110001010001

RF Signal injection IF Signal Injection Baseband Signal Injection Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda ƒ The need for creating test signals – Aerospace Defense to Communications

ƒ From Generating Signals… – No modulation – Analog Modulation – Composite Modulation

ƒ …To T Simulating Si l ti Si Signals l – Simulating real-life signals

ƒ Signal Generators ƒ Signal Simulation Solutions ƒ Summaryy

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – No Modulation

Ti Time

Volta age

Volta age

Continuous Wave (CW)

Oscilloscope

F Frequency

Spectrum Analyzer

The sine wave is the basic, non-modulated signal: It is useful for stimulus/response testing of linear components and for Local Oscillator substitution. substitution Available frequencies range from low RF to Millimeter.

6 GHz

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Millimeter

Microwave

RF

20-70 GHz

300 GHz

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Modulation: Where the Information Resides

V = V(t) sin[2p fc(t) + f(t)]

AM, Pulse

FM

V = V(t) sin[q(t)]

Beyond S-Parameters © Agilent Technologies, Inc. 2007

PM

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals - Analog Modulation Amplitude Modulation Important p Characteristics for Amplitude Modulation

Modulation depth %,dB

Carrier

z

Voltage

z z

Time

z z

Modulation frequency

Where are AM signals used? z z z

AM Radio Antenna scan ASK (early digital 100101)

Beyond S-Parameters © Agilent Technologies, Inc. 2007

z

Modulation frequency (rate) Depth of modulation (Mod Index) Linear AM (%) Log AM (dB) Sensitivity (depth/volt) Distortion %

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Amplitude Modulation

Voltage e

Carrier

Where are AM signals used? Time z z

Modulation

Beyond S-Parameters © Agilent Technologies, Inc. 2007

z

AM Radio A t Antenna scan ASK (early digital 100101)

Aerospace and DefenseModulation Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Frequency Modulation

Voltag ge

IImportant t t Characteristics Ch t i ti for f Frequency Modulation z

Time

z z z z z

Wh Where are FM signals i l used? d? z z z z

FM Radio Aviation Flight systems Radar FSK (early digital 1011)

Beyond S-Parameters © Agilent Technologies, Inc. 2007

z

Frequency Deviation Modulation Frequency dcFM Accuracy Resolution Distortion Sensitivity (dev/volt)

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Frequency Modulation

V V= b = DF

dev

A sin[2pf i [2 fct + bm(t)] (t)] Important Characteristics for Frequency Modulation

/Fmod z z

Voltage

z z

Time

z z z

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Frequency Deviation Modulation Frequency dcFM Accuracy Resolution Distortion Sensitivity (dev/volt)

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Phase Modulation Vo oltage

Important Characteristics for Phase Modulation z z

Time

z z z z

Where are Phase Modulated signals used? z z

PSK (early digital 1010) Radar(pulse coding)

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Phase deviation Modulation Rate Accuracy Resolution Distortion Sensitivity

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation

Voltage

Phase Modulation

Where are Phase Modulated signals used? Time

z z

Beyond S-Parameters © Agilent Technologies, Inc. 2007

PSK (early digital 1010) Radar(pulse coding)

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Pulse Modulation T Rise

Rate=1/T

time

Power

On/Off ratio

Pulse Width

t

Important Characteristics for Pulse Modulation

z

Time

z z z

Where are Pulse Modulated signals used? z

z

Radar High g Power Stimulus/Response Communications

Beyond S-Parameters © Agilent Technologies, Inc. 2007

1/T

1/t Power

z

Pulse width Pulse period On/Off ratio Rise time

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Analog Modulation Pulse Modulation

T Ri Rise

Rate=1/T

Where are Pulse Modulated signals used?

time

Pow wer

On/Of f ratio

Pulse Width

z z

t

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Time z

Radar High Po Power er Stimulus/Response Communications

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Simultaneous modulation of two Mod Types Independent Amplitude and Phase Modulation

Integrated IQ Modulator

Q

I Independent p FM and Pulse Modulation FM during the pulse = chirp

Beyond S-Parameters © Agilent Technologies, Inc. 2007

32 QAM Constellation Diagram

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Vector Signals (Amplitude and Phase) P l Display Polar Di l

Phase 0d deg

• Magnitude is an absolute value • Phase is relative to a reference signal (0 degrees) Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Defense Composite Modulation Vector Signal Changes or Modifications

Phase 0 deg

Magnitude Change

Phase

0 deg

Phase Change

0 deg 0 deg

Both Change Beyond S-Parameters © Agilent Technologies, Inc. 2007

Frequency Change

Aerospace and– Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals Composite Modulation Polar Versus I-Q Format

Q z

Project Signals to “I” and “Q” Axes

z

Polar to Rectangular Conversion

z

IQ Pl Plane Sh Shows 2 Thi Things

Q-Value Phase

0 deg

I I-Value

Beyond S-Parameters © Agilent Technologies, Inc. 2007

z

z

What the modulated carrier is doing relative to the unmodulated d l t d carrier. i What baseband I and Q inputs are required to produce the modulated carrier

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Transmitting Digital Data -- Bits vs Symbols Binary Data bit = 0,1 Transmission Bandwidth Required

Transmitting Digital Bits (f 1 = 0, f 2 = 1 )

f1

f (t) =

f2 T

010101010

2/ T Main lobe width is 2 × Sample rate

Symbol = Groups/blocks of Bits 2 bits/symbol (00 01 10 11) 3 bit bits/symbol / b l (000 001 …..)) 4 bits/symbol (0000 0001 ..)

Symbol Rate =

Bit rate

# bits per symbol Symbol 1 (00) S b l 2 (01) Symbol

f (t) =

Symbol 3 (10) Symbol 4 (11)

S Beyond S-Parameters © Agilent Technologies, Inc. 2007

2/ S Main lobe width is 2 × Symbol rate

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals – Composite Modulation Digital Modulation Characteristics Modulation format

Number of bits per symbol

Constellation

Transmission bandwidth

Q

BPSK

1

1

0 I

F 01

QPSK

Q

2

I 10

11 Q

16 QAM

4

Symbol Rate = #symbols/sec. (Hz) Beyond S-Parameters © Agilent Technologies, Inc. 2007

00

F/2

0000

I

F/4

Aerospace and Symposium 2007 Generating Signals – Defense Composite Modulation EuMw 2007 Agilent Workshop Vector Modulation - Important Characteristics Q z z z z

Phase

IQ Modulation Bandwidth Frequency Response/flatness IQ quadrature skew IQ gain balance

0 deg

I

flatness

Fb w

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and– Defense Symposium 2007 EuMw 2007 Agilent Workshop Generating Signals Composite Modulation Vector Modulation - Where Used

Q

z

I

Beyond S-Parameters © Agilent Technologies, Inc. 2007

z

Mobile Digital Communications Modern Radars

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda ƒ The need for creating test signals – Aerospace Defense to Communications

ƒ From Generating Signals… – No modulation – Analog Modulation – Composite Modulation

ƒ …To T Simulating Si l ti Si Signals l – Simulating real-life signals

ƒ Signal Generators ƒ Signal Simulation Solutions

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Simulating Signals Add interference/impairments to user data Multipath signals

Multi-path Fading

1011001110001010001

1011001110001010001

Add signal i l impairments i i t Streaming data Recovering User Data g test signal g imperfections Removing Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Simulating SignalsWorkshop Record/playback real signals scenarios RF Signal Injection

ANTENNA

LNA 1st LO

Signal Processor (range and Doppler)

2nd IFA

IF BPF 2nd LO

Beyond S-Parameters © Agilent Technologies, Inc. 2007

1st IFA

IF BPF

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda ƒ The need for creating test signals – Aerospace Defense to Communications

ƒ From Generating Signals… – No modulation – Analog Modulation – Composite Modulation

ƒ …To T Simulating Si l ti Si Signals l – Simulating real-life signals

ƒ Signal Generators ƒ Signal Simulation Solutions

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Signal Generators • Basic CW Signals • Block Diagram (RF and Microwave) • Specifications • Applications

• Analog Signals • Block Diagram (AM, FM, PM, Pulse) • Applications

• Vector Signals • Block Diagram (IQ) • Applications

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace Defense Symposium 2007 Basic 2007 CW Signals –and Block Diagram EuMw Agilent Workshop RF Source Synthesizer Section Frac-N

Output Section ALC Modulator

Output Attenuator

Phase Detector VCO

divide by X Reference Oscillator

Reference Section Beyond S-Parameters © Agilent Technologies, Inc. 2007

ALC Driver ALC Detector ALC = automatic level control

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Reference Section

Divide by X

Phase Detector Optional External Reference Input

Reference Oscillator (TCXO or OCXO)

Aging Rate

TCXO C O +/- 2ppm/year

OCXO +/- 0.1 ppm /year

Temp.

+/- 1ppm

+/- 0.01 ppm

Line Voltage

+/- 0.5ppm

+/- 0.001 ppm

Beyond S-Parameters © Agilent Technologies, Inc. 2007

To synthesizer section

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Synthesizer Section Front panel control

N = 93.1 Frac-N

Error signal

5MHz To output section Phase Detector

X VCO

5MHz From reference section

Beyond S-Parameters © Agilent Technologies, Inc. 2007

465 5 MHz 465.5

2

Multiplier

931 MHz

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Basic CW Signals – Block Diagram PLL/Fractional-N…suppress phase noise Overall phase noise of signal

Reference oscillator

Phase detector noise

20logN

VCO noise i

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Phase-locked-loop (PLL) bandwidth selected for optimum noise performance

Broadband noise floor

frequency

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Output Section • ALC •maintains level output ALC Modulator power by adding/subtracting From power as needed synthesizer

Output Attenuator

section Source S output

• Output Attenuator •mechanical or electronic •provides p attenuation to achieve wide output range (e.g. -136dBm to +17dBm)

ALC Driver

ALC Detector

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Microwave Source Reference Section Frac N

ALC Modulator

Phase Det VCO Sampler Ref Osc

YIG Oscillator Phase Detector

ALC Driver

Frac -N

Synthesizer Section

Beyond S-Parameters © Agilent Technologies, Inc. 2007

ALC D Detector t t

Output Section

Output p Attenuator

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Frequency z z z

Range -- Fmin to R t Fmax Resolution – smallest frequency increment Accuracyy – is it where it says y it is

Uncertainty Powerr

Accuracy = +_ f CW * t aging * t

f CW =

Frequency q y

t aging = t cal =

Accuracy = +_152 Hz

Beyond S-Parameters © Agilent Technologies, Inc. 2007

cal

CW frequency = 1 GHz aging rate = 0.152 ppm/year time since last calibrated = 1 year

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Amplitude Range ((-136dBm 136dBm to +17dBm) Accuracy (+/- 0.5dB) Resolution (0.02dB) Switching Speed (19ms) Reverse Power Protection

Source protected from accidental transmission from DUT

What is Pmax out?

How accurate is this number?

DUT Voltage

• • • • •

What is Pmin out? Frequency

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Frequency Sweep Ramp sweep • • •

f2

accuracy sweep time resolution f1 t2

t1

time

Step sweep • • •

accuracy number of points switching time

f4 f3 f2 f1 t1

Beyond S-Parameters © Agilent Technologies, Inc. 2007

t2

t3

t4

Aerospace Defense Symposium 2007 Basic 2007 CW Signals –and Specifications EuMw Agilent Workshop Frequency Sweep - Amplitude power

level accuracy spec

Frequency Sweep • Level Accuracy • Flatness • Source Match (SWR)

f1

P2 power sweep range g

P1

Beyond S-Parameters © Agilent Technologies, Inc. 2007

frequency

f2

po ower

Power Sweep • Power Sweep Range • Power Slope Range • Source Match (SWR)

flatness spec

t1

t2

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Spectral Purity • Phase Noise • Spurious

CW output

Phase noise

Non-harmonic spur ~65dBc

Harmonic H i spur ~30dBc

Sub-harmonics

0 5 f0 0.5 Beyond S-Parameters © Agilent Technologies, Inc. 2007

f0

2f0

Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Spectral Purity – Phase Noise CW output Measured as dBc/Hz Frequency

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Basic2007 CW Signals – Applications As a Local Oscillator DUT IF signal

transmitter output

LO signal

Key Specs: • • • • •

Frequency Range Accuracy Resolution Output Power Phase Noise

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Poor frequency P f accuracy and/or resolution will cause the transmitter output to be at the wrong frequency

poor phase noise spreads energy into adjacent channels

Aerospace and Defense Symposium 2007 EuMw Agilent Basic2007 CW SignalsWorkshop – Applications In-Channel Receiver Testing The smallest RF signal that will produce a desired baseband output from the receiver

Receiver Sensitivity IF signal

DUT Key Specs:

in-channel signal (cw signal) source

• Range (-136dBm ( 136dBm to +17dBm) 17dBm) • Accuracy (+/- 0.5dB) • Resolution (0.02dB) Level (d dBm)

p output

IF Rejection j Curve

-116 116 dB dBm tto – 126 dBm IF Channel Frequency

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw Agilent Basic 2007 CW SignalsWorkshop – Applications Out-of-channel Receiver Testing Receiver Selectivity Spurious Response Immunity IF signal out-of-channel signal (CW and/or modulated signal)

DUT source output IF Rejection Curve

Key Specs: Frequency Range Output Power Phase Noise Broadband noise Non-harmonic spurious

spur from source and/or high levels of phase noise can cause a good receiver to fail

Level ((dBm)

• • • • •

Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 Basic2007 CW SignalsWorkshop – Applications EuMw Agilent Non-linear Amplifier Testing - TOI f1

DUT output RF

f2 K S Key Specs: • • • • •

Frequency Range Frequency Accuracy Frequency q y Resolution Output Power Non-harmonic spurious

isolato r

Two tone Intermodulation Two-tone Distortion test system third order f f2

products will also fall here

1

spurious signals from source can corrupt measurement

fL = 2f1 - f2

fU = 2f2 - f1

frequency

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 Basic2007 CW Signals – Applications EuMw Agilent Workshop Out-of-channel Receiver Testing - IMD Intermodulation immunity

f1

IF signal

isolator

f2

Fmod = nF1 + mF2

DUT • • • • •

Frequency Range Frequency Accuracy Frequency Resolution Output Power Non-harmonic spurious

out-of-channel signals

sources output F1

F2

Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007

IF Rejection Curve

Intermodulation product Fmod = 2F2 – F1 spur from source

Level (d dBm)

Key Specs:

n= -1,2 , m= 2,-1

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Basic2007 CW Signals – Applications Stimulus-Response Testing

Detector

Sweeper Input

Detector

Fout

Fin

DUT

Fin

Fout

Key Specs:

LO Beyond S-Parameters © Agilent Technologies, Inc. 2007

• • • • • • •

Frequency Range Frequency Accuracy Frequency Ramp/step sweep P Power sweep Sweep speed Output Power accuracy Residual FM

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Generators • Basic CW Signals • Block Diagram (RF and Microwave) • Specifications • Applications

• Analog Signals • Block Diagram (AM, FM, PM, Pulse) • Applications

• Vector Signals • Block Diagram (IQ) • Applications

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Block Diagram Add AM, FM, PM, and Pulse Modulation

VCO

Output Attenuator

ALC Modulator Pulse Mod.

Freq. Freq Control

Reference Oscillator

Beyond S-Parameters © Agilent Technologies, Inc. 2007

ALC Driver

FM, PM input

AM input

Pulse Mod input

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Block Diagram Add internal modulation generator VCO

Output Attenuator

ALC Modulator Pulse Mod.

Freq. Control

ALC Di Driver

AM input FM, PM input

Reference Oscillator

Beyond S-Parameters © Agilent Technologies, Inc. 2007

FM AM Source Source

Pulse Mod input

Pulse Source

Aerospace Defense Symposium 2007 EuMw 2007 Agilent Workshop Analog Signals –and Applications Receiver Baseband Distortion

Receiver In channel signal In-channel (modulated signal)

Key Specs: • Frequency Range • Modulation rate/deviation • Modulation Distortion =

Receiver Distortion %

( i (dB)/20) x 10-(margin(dB)/20)

Example: For a receiver distortion of 5% and a 10 dB test margin, the SG must have < 1.58% mod distortion

Distortio n

Lev vel (dBm)

Required SG M d l ti Modulation distortion

Non-linear distortion is characterized by the appearance of harmonics other than the fundamental component in the baseband output

Frequency q y

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Applications Pulsed Radar Testing with Chirps RF Si Signall Injection

Key Specs:

FM during the pulse = chirp

• Frequency Range • FM Modulation rate/deviation • Pulse rate, width, rise time

LNA 1st LO

Signal Processor (range and Doppler)

2nd IFA

IF BPF 2nd LO

Beyond S-Parameters © Agilent Technologies, Inc. 2007

ANTENNA

1st IFA

IF BPF

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Generators

• Basic CW Signals • Block Diagram (RF and Microwave) • Specifications • Applications

• Analog a og Signals Sg as • Block Diagram (AM, FM, PM, Pulse) • Applications

• Vector Signals • Block Diagram (IQ) • Applications

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Block Diagram IQ Modulation 01

I :

Q

00

Carrier

I

p/ 2

Q :

11 z z z

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Good Interface with Digital Signals and Circuits Can be Implemented with Simple Circuits F t accurate Fast, t state t t change h

10

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Vector Signals – Workshop Block Diagram Adding the IQ modulator Synthesizer VCO

I-Q Modulator

Output

p/2

Freq. C t l Control

ALC Driver

Q Reference

Beyond S-Parameters © Agilent Technologies, Inc. 2007

I

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Block Diagram Baseband IQ signal generation Analog Reconstruction Filters

Symbol y Mapping and Baseband Filters

Pattern RAM

00 -> 1 1+j1 j1 11000101101 01001011100 10101010

01 -> -1+j1 10 -> -1-j1 11 -> 1-j1

Beyond S-Parameters © Agilent Technologies, Inc. 2007

DAC

I

DAC

Q

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Vector Signals Block Diagram Baseband Generator: Baseband Filters Fast Transitions Require Wide Bandwidths

Frequency

Frequency Filtering Slows Down Transitions and Narrows the Bandwidth Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Block Diagram Adding an internal Baseband Generator Synthesizer VCO

I-Q Modulator

Output

p/2

Freq. C t l Control

ALC Driver

Q DAC

I Reference

DAC

Pattern RAM and Symbol Mapping

Baseband Generator Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications

• • • •

Formatt Specific F S ifi Signal Si lG Generation ti Receiver Sensitivity Receiver Selectivity Component Distortion

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Vector Signals Applications Digital Format Access Schemes Different time - different Users One User

FDMA

Differ channel - different Users

CDMA Same channel – many users Beyond S-Parameters © Agilent Technologies, Inc. 2007

TDMA

OFDM

Different time - different Users

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Format Specific Modulation GSM: slots

multiple users, same frequency, different time

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Digital Receiver Sensitivity The smallest modulated RF signal that will produce a specified BER from the receiver

DUT RF DAC

Baseband DSP

Amp plitude

RF LO

Payload Data BER Spec Line frequency

Beyond S-Parameters © Agilent Technologies, Inc. 2007

BER

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Digital Receiver Sensitivity T ti Testing a -110 110 dB sensitivity iti it digital di it l receiver: i X= Failed unit O=Passed unit

-110 dB specification

X

X

X

-110 dB specification Set source to -111 dBm

X

X X X Actual output power= -114 dBm O

Set source to -115 115 dBm

Frequency Case 1: Source has +/-5 dB of output power accuracy at -100 to -120 dBm output power. Beyond S-Parameters © Agilent Technologies, Inc. 2007

O O O

Actual output power= -112 dBm

O

Frequency Case 2: Source has +/-1 dB of output power accuracy at -100 to -120 dBm output power.

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Receiver Sensitivity – Connected Solutions • Simulated portion RF

IF

I Demodulator

Q

A/D Converter

Baseband De-Coding

DUT

RF/IF BER

Signal Generator Beyond S-Parameters © Agilent Technologies, Inc. 2007

Simulation Software

Signal y Analyzer

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Receiver Selectivity (Blocking Tests) In-channel signal g (modulated signal) RF DAC

Out-of-channel O t f h l signal i l (CW or modulated signal)

Baseband DSP

RF LO

Lev vel (dBm)

IF Rejection Curve Spur from source and/or high levels of phase noise can cause a good receiver to fail

Sensitivity specification

F Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007

Payload Data

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Vector Signals – Workshop Applications Component Distortion – Adjacent Channel Power Ratio

DUT Spectral p Output p from amplifier p ACPR

Input from VSG

Spectral regrowth ACP Margin Margin (dB)

0

Error contribution (dB) 3.0

Beyond S-Parameters © Agilent Technologies, Inc. 2007

1

2

3

4

5

10

15

2.5

2.1

1.8

1.5

1.2

0.4

0.2

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Component Distortion – Error Vector Magnitude OFDM Si Signall 400 MHz Bandwidth

DAC

Q

Q Magnitude Error

Q (IQ error mag)

I

Error Vector Magnitude

Test Signal

f

Ideal (Reference) Signal Phase Error (IQ error phase)

I Beyond S-Parameters © Agilent Technologies, Inc. 2007

I

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Component Distortion – EVM

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Measured EVM = -30 dB, 3.3%

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agenda ƒ The need for creating test signals – Aerospace Defense to Communications

ƒ From Generating Signals… – No modulation – Analog Modulation – Composite Modulation

ƒ …To T Simulating Si l ti Si Signals l – Simulating real-life signals

ƒ Signal Generators ƒ Signal Simulation Solutions

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop

Simulating real signal environments Fading Baseband SW Waveform Capture and Playback Baseband SW

Signal Creation

Create Impairments

Import/export Custom Digital Data

Digital Signal Interface

Stream Data

I t Internal l BBG

Vector Baseband IQ generation Signal External BBG Generato r Si Signal l Create Standard Creation Signals SW

User H d Hardware

RF/Microwave Signals

Remove test signal imperfections pe ect o s

Vector Signal Analyzer

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Simulation Solutions Remove Test Signal Imperfections BBG

Add Predistortion (corrections) Signal Software

LAN/GPIB

VSG

Measurement Results

Measure Modulated Signal VSA

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Remove Test Signal Imperfections – IQ Flatness

Source of error – I/Q modulator, RF chain, IQ path Result – passband tilt, tilt ripple, ripple and roll off

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Signal2007 Simulation Solutions Remove Test Signal imperfections – IQ flatness Solution – measure vector signal generator and apply predistortion Tradeoff – calculation time, valid cal time Typical application – wideband, multitone, and multicarrier

500 MHz UWB

32 tones - 80 MHz 2.4 dB

Before

0.1 dB

< 3 dB After

Beyond S-Parameters © Agilent Technologies, Inc. 2007

6-8 dB

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Removing Test Signal Imperfections - IMD Before Predistortion Measured in-band IMD = -40 dBc

Beyond S-Parameters © Agilent Technologies, Inc. 2007

After Predistortion Measured in-band IMD = -84 dBc

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Removing Test Signal Imperfections – Group Delay Before Predistortion EVM -30 dB, 3.3%

Beyond S-Parameters © Agilent Technologies, Inc. 2007

After Predistortion EVM –34 dB, 2%

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Non-linear Amplifier Testing DUT output RF

Intermodulation Di t ti Distortion • Improved IMD suppression (typically > 80 dBc) • Correct generator with additional devices in the loop • Lower overall cost-of-test for large # tones Signal Studio – Enhanced Multitone

• Same hardware for ACPR/NPR distortion tests

Up to 1024 tones

Set relative tone power

Set relative tone phase

80 MHz correction BW

plot CCDF p

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Adding Impairments to Signals – Fading Faded signal

R Receiver i transmission channel

Interferers

SW and interface hw

Beyond S-Parameters © Agilent Technologies, Inc. 2007

ƒ Faded analog RF, IF, or IQ for receiver test ƒ Faded digital IQ baseband for digital subsystem test

BER/PER analysis

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop RF Capture & Playback RF Signal Injection

ANTENNA

LNA 1st LO

ƒ Record signals off the air ƒ Transfer files to a PC equipped with Baseband Studio and re-format ƒ Stream St them th iinto t th the V Vector t PSG signal i l generator t for f playback l b k Signal Processor (range and Doppler)

2nd IFA

IF BPF 2nd LO

Beyond S-Parameters © Agilent Technologies, Inc. 2007

1st IFA

IF BPF

Aerospace and Defense Symposium 2007 Signal2007 Simulation Solutions EuMw Agilent Workshop Digital Capture & Playback Capture p data from the digital g section of a transmitter Digital bus

Capture digital I/Q signals

DUT

Test stimulus to the digital section of a receiver Digital bus

Playback digital I/Q signals

DUT

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop

THANK YOU! Beyond S-Parameters © Agilent Technologies, Inc. 2007