Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples
Hermann Singer
FernUniversität in Hagen,
[email protected]
References
presented at the
9th International Conference on Social Science Methodology (RC33) 11.-16. September 2016, Leicester, UK
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples
Session: Estimation of Stochastic Differential Equations with Time Series, Panel and Spatial Data.
References
Nonlinear continuous/discrete state space model
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
dY (t) = f (Y (t), t)dt + g (Y (t), t)dW (t) Zi
= h(Yi , ti ) + i
State Space Models Nonlinear continuous/discrete state space model Linear stochastic differential equations (LSDE)
Parameter Estimation
i
= 0, ..., T
Langevin Sampling Simulated Likelihood
nonlinear drift and diffusion functions f , g f = f (Y (t), t, x(t), ψ) nonlinear diffusion g (Y ): Itô calculus Spatial models: Yn (t) = Y (xn , t), xn ∈ Rd : Random field Y (x, t, ω)
Examples References
Linear stochastic differential equations (LSDE) (exact ML, Singer; 1990, Kalman filter)
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
dY (t) = AY (t)dt + GdW (t) Z t Y (t) = e A(t−t0 ) Y (t0 ) + e A(t−s) GdW (s) t0
State Space Models Nonlinear continuous/discrete state space model Linear stochastic differential equations (LSDE)
Parameter Estimation
W (t, ω): Wiener process: continuous time random walk (Brownian motion)
Langevin Sampling
Itô stochastic differential equations: dW /dt = ζ(t) = Gaussian white noise
Examples
A: drift matrix G : diffusion matrix
Simulated Likelihood
References
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Wiener process and stock index DAX
DAX-Zuwachs
8000
400
7000 6000
Out[467]=
200
5000
Out[454]=
Hermann Singer
0
4000
-200
State Space Models
3000
Nonlinear continuous/discrete state space model Linear stochastic differential equations (LSDE)
-400
2000
1995
2000
1995
2005
2000
2005
Figure : German stock index (DAX) Simulierter Wiener-Prozeß
Parameter Estimation Langevin Sampling
Zuwächse: Simulierter Wiener-Prozeß 0.2
3
Simulated Likelihood
2
Out[503]=
Examples
0.1
1
Out[504]=
References
0.0
0 -0.1 -1
0
1000
2000
3000
4000
5000
6000
7000
0
1000
2000
3000
4000
5000
Figure : Simulated Wiener process (random walk)
6000
7000
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Simulated Wiener processes Simulierte Wiener-Prozesse 4
3
0.5 0.0
2
3
1
2
Hermann Singer
-0.5 -1.0 0
-1.5 -2.0
1
State Space Models
-1 0
-2.5
0
1000
2000
3000
4000
5000
6000
7000
0
1000
2000
3000
4000
5000
6000
7000
0
5
7
4
6
1000
2000
3000
4000
5000
6000
7000
0
-1
5 3
Out[501]=
4
-2
Nonlinear continuous/discrete state space model Linear stochastic differential equations (LSDE)
2 3 -3
Parameter Estimation
1 2
-4
0
1000
2000
3000
4000
5000
6000
0
1
-1
0
7000
0
1000
2000
3000
4000
5000
6000
7000
0
1000
2000
3000
4000
5000
6000
7000
Langevin Sampling
3 2
Simulated Likelihood
1 2 1
Examples
0
1 0
-1
0 -1
References
-2
-1 -2
-3
-2 0
1000
2000
3000
4000
5000
6000
7000
0
1000
2000
3000
4000
5000
6000
7000
0
1000
2000
Figure : Simulated Wiener processes
3000
4000
5000
6000
7000
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Exact discrete model (EDM) Bergstrom (1976, 1988)
Hermann Singer
Yi+1 = e
A(ti +1 −ti )
Z Yi +
ti +1
e A(ti +1 −s) GdW (s)
ti
restricted VAR(1) model
State Space Models Nonlinear continuous/discrete state space model Linear stochastic differential equations (LSDE)
Parameter Estimation Langevin Sampling
Yi+1 = Φ(ti+1 , ti )Yi + ui
Simulated Likelihood Examples References
Φ: fundamental matrix of the system Yi := Y (ti ): sampled measurements
dt = 0.5
Dt = 2
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
accumulated interaction Dt = 2
State Space Models Nonlinear continuous/discrete state space model Linear stochastic differential equations (LSDE) accumulated interaction Dt = 4
Parameter Estimation Langevin Sampling Simulated Likelihood Examples References
Figure : 3 variable model: Product representation of matrix exponential within the measurement interval ∆t = 2. Latent states ηj , discretization interval δt = 2/4 = 0.5 (Singer; 2012)
Maximum Likelihood Parameter Estimation likelihood function of all observations
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
Z p(zT , ..., z0 ) =
p(zT , ..., z0 |yT , ..., y0 )p(yT , ..., y0 )dy
State Space Models Parameter Estimation Langevin Sampling
High dimensional integration over latent variables smooth dependence on parameter vector ψ: L(ψ) = p(z; ψ) Problem: p(yT , ..., y0 ) not known Sampling interval ∆ti Transition density p(yi+1 , ∆ti |yi ) difficult to compute Use additional latent variables yT = ηJ , ..., η0 = y0 , y (ti ) = yi = ηji
Simulated Likelihood Examples References
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Integration latent states ηj Z p(zT , ..., z0 |ηJ , ..., η0 )p(ηJ , ..., η0 )d η h i = E p(zT , ..., z0 |ηJ , ..., η0 )
p(zT , ..., z0 ) =
Hermann Singer State Space Models Parameter Estimation Langevin Sampling
ηji = y (ti ) = yi , ti = measurement times even higher (infinite) dimensional integration over latent variables: Markov Chain Monte Carlo: simulate η Euler density (discretization interval δt) p(ηj+1 , δt|ηj+1 ) ≈ φ(ηj+1 ; ηj + fj δt, Ωj δt) fj = f (ηj , τj ), Ωj = (gg 0 )(ηj , τj )
Simulated Likelihood Examples References
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Importance Sampling
Z p(zT , ..., z0 ) =
p(η) p(z|η) p2 (η)d η p2 (η)
Hermann Singer State Space Models Parameter Estimation
p2 : importance density
Langevin Sampling Simulated Likelihood
p2,optimal =
p(z|η)p(η) p(z)
= p(η|z)
however, p(z) is unknown η → η(t, u): random field, u = simulation time
Examples References
Langevin Sampling Langevin (1908); Roberts and Stramer (2002)
Langevin equation d η(u) = ∂η log p(η(u)|z)du +
√
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
2dW (u)
State Space Models Parameter Estimation
stationary distribution of conditional latent states pstat (η) = e −Φ(η) = p(η|z) drift = −gradient of potential Φ(η) −∂η Φ(η) = ∂η [log p(z|η) + log p(η) − log p(z)] sample from p(η|z), p(z) not needed! optimal nonlinear smoothing η(u) ∼ p(η|z) in equilibrium u → ∞
Langevin Sampling Simulated Likelihood Examples References
Simulated Likelihood Variance reduced MC-integration pˆ(zT , ..., z0 ) = L−1
X
p(ηl ) p(z|ηl ) p2 (ηl )
ηl ∼ p(η|z) in equilibrium
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood
draw optimal ηl = η(ul ) from discretized Langevin equation (including Metropolis-Hastings mechanism) p2,optimal =
p(z|η)p(η) p(z)
= p(η|z) is unknown
Idea: estimate p2 = p(η|z) from ηl ∼ p(η|z)
Examples References
Estimation of importance density
use known (suboptimal) reference density p2 = p0 (η|z) = p0 (z|η)p0 (η)/p0 (z)
Hermann Singer State Space Models Parameter Estimation
kernel density estimate pˆ(η|z) = L−1
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Langevin Sampling
X
k(η − ηl ; smooth)
l
Problem: – high dimensional state, – no structure imposed on p(η|z)
Simulated Likelihood Examples References
Estimation of importance density use Markov structure of state space model ηj+1 = f (ηj )δt + g (ηj )δWj zi
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
= h(yi ) + i
p(η|z) = p(ηJ |ηJ−1 , ..., η0 , z) ∗ p(ηJ−1 , ..., η0 |z)
State Space Models Parameter Estimation Langevin Sampling
Conditional Markov process
Simulated Likelihood Examples
p(ηj+1 |ηj , ..., η0 , z) = p(ηj+1 |ηj , z)
References
use conditional independence of past z i = (z0 , ..., zi ) and future z¯i = (zi+1 , ...zT ) given η j : j
i
i
p(ηj +1 |η , z , z¯ ) i
i
p(ηj +1 |ηj , z , z¯ ) ji ≤
j
i
i
=
p(ηj +1 |η , z¯ ) = p(ηj +1 |ηj , z¯ )
=
p(ηj +1 |ηj , z¯ )
j
< ji +1
i
Euler transition kernel Euler density (discretization interval δt)
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
p(ηj+1 , δt|ηj ) ≈ φ(ηj+1 ; ηj + fj δt, Ωj δt) modified drift and diffusion matrix
conditional Euler density p(ηj+1 , δt|ηj , z) ≈ φ(ηj+1 ; ηj + (fj + δfj )δt, (Ωj + δΩj )δt) nonlinear regression for δfj and δΩj (parametric and nonparametric) draw data ηjl = η(τj , ul ) ∼ p(η|z)
State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples References
Kernel density
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
conditional transition density p(ηj+1 , ηj |z) p(ηj+1 , δt|ηj , z) = p(ηj |z)
State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood
estimate joint density p(ηj+1 , ηj |z) and p(ηj |z) with kernel density estimates variant: use φ(ηj+1 , ηj |z) and φ(ηj |z)
Examples References
Examples: Geometrical Brownian motion
dy (t) = µy (t)dt + σy (t) dW (t)
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models
nonlinear model (multiplicative noise) y ∗ dW
Parameter Estimation
exact solution: set x = log y , use Itô’s lemma
Langevin Sampling Simulated Likelihood
dx = dy /y + 1/2(−y −2 )dy 2 = (µ − σ 2 /2)dt + σdW
Examples References
exact discrete model y (t) = y (t0 )e (µ−σ
2 /2)(t−t
0 )+σ[W (t)−W (t0 )]
���� μ = �����σ = ����
���(���)
����
����
����
����
����
����
����
����
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
��� ������� ����� ����� ����� ����� -����� -�����
����
���� �
��
���
���
���
���
���
���
�
��
���
���
���
���
���
���
-�����
�
��
���
���
���
���
���
���
Hermann Singer
Figure : Trajectory and log returns.
State Space Models Parameter Estimation
��������
����
Langevin Sampling
����
��� ����
���� ���
Simulated Likelihood
����
���� ���
����
����
���
����
����
���
���� �
���
���
���
���
���
���
���
���
���
���
���
���
���
�
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���� ����
References
���� �
����
����
Examples
����
���
����
���
���� ���
����
���� ���� ����
����
���
����
���
���� �
��
���
���
���
���
���
���
��� �
���
���
���
���
Figure : Langevin sampler, pˆ2 =
���
Q
���
j
���
�
���
φ(ηj+1 , ηj |z)/φ(ηj |z) .
���
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
�� ��� ��
��� ���
��
��� �� ��� ��
Hermann Singer
���
�� - �����
- ��� �����
�����
�����
�����
�����
-�����
�����
�����
�����
�����
Figure : likelihood and score, pˆ2 = conditional kernel density.
State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples
�
References
��� -� - �� ��� - �� - ��
���
- �� - ��
�� -�����
�����
�����
�����
�����
�����
- �����
�����
�����
�����
Figure : likelihood and score, pˆ2 = full kernel density.
�����
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
�� ��� ��
��� ���
��
��� �� ��� ��
Hermann Singer
���
�� -�����
- ��� �����
�����
�����
�����
�����
-�����
�����
�����
�����
�����
Figure : likelihood and score, pˆ2 = conditionally Gaussian.
State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples
�� ��� ��
References
��� ���
��
��� �� ��� ��
�� - �����
��� - ��� �����
�����
�����
�����
�����
-�����
�����
�����
�����
Figure : likelihood and score, pˆ2 = linear GLS.
�����
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
�� �
��
�
State Space Models
�
Parameter Estimation
�� �
Langevin Sampling
�
Simulated Likelihood
�� - �����
�����
�����
�����
�����
�����
-�����
�����
�����
�����
�����
Examples
Figure : likelihood and score, pˆ2 = linear GLS, constant diffusion matrix.
References
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Examples: Cameron-Martin formula p λ2 R T 2 E e − 2 0 W (t) dt = 1/ cosh(T λ) Cameron and Martin (1945); Gelfand and Yaglom (1960)
Hermann Singer State Space Models
�������� ���
�
�
���
�
Parameter Estimation
�
��� �
� ���
-�
-�
��� �
���
���
���
���
���
Langevin Sampling
-�
���
-�
�
���
���
���
Simulated Likelihood
���
�
�
�
�
��
Examples
���
�
���
���
�
References
��� ��� -�
���
���
��� -�� ���
��� �
���
���
���
���
�
���
���
���
���
�
���
���
���
���
Figure : Cameron-Martin formula. Simulation using a conditionally gaussian importance density. Tp = 1, λ = 1, dt = 0.1 and L = 500 replications. Exact value 1/ cosh(1) = 0.805018
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Examples: Cameron-Martin formula
Hermann Singer �������-������ �������� �������� ��������� �� = ����
�������-������ �������� �������� ��������� �� = ����
���
���
���
���
���
���
���
State Space Models Parameter Estimation
���
��������
Langevin Sampling
��������
���
���
���
���
���
���
���
Simulated Likelihood Examples
��� �
�
� �
�
�
�
�
�
�
�
�
Figure : Expectation value as a function of T . Right: Ω = fix.
References
Examples: Feynman-Kac-formula Schrödinger Equation (imaginary time t = iτ ) ut
=
1 2 uxx
− φ(x)u
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models
u(x, t = 0) = δ(x − z) φ(x) =
1 2 2 2γ x
Parameter Estimation Langevin Sampling Simulated Likelihood Examples
Feynman-Kac-formula h γ2 R t i 2 u(x, t) = Ex e − 2 0 W (u) du δ(W (t) − z) = r γ × 2π sinh(γt) γ 2 2 exp 2xz − (x + z ) cosh(γt) 2 sinh(γt)
References
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling.
Feynman-Kac-formula ������� ���
���
���
���
���
���
���
��� ���
��� ���
���
���
���
���
��� ��� ��� ���
���
- ��� ���
���
���
���
�
���
���
���
����
�
���
���
����
��
��
��
��
���
�
State Space Models
���
�
���� ���
����
Parameter Estimation
�
����
��
����
� ��
���� ����
Hermann Singer
-��� �
Langevin Sampling �
���
���
���
���
�
���
���
���
���
�
���
���
���
���
Simulated Likelihood �������-������ �������� �������� ��������� �� = ����
Examples
����
References ����
����
����
���� -���
-���
���
���
���
���
���
�
Figure : Expectation value as a function of z, x = 1, t = 1, γ = 1.
Conclusion
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer
smooth likelihood simulation for nonlinear continuous-discrete state space models.
State Space Models Parameter Estimation
Nonlinear smoothing of latent variables between measurements.
Langevin Sampling Simulated Likelihood Examples References
Variance reduced MC estimation of functional integrals in finance, statistics and quantum theory (Feynman-Kac formula).
Bergstrom, A. (1988). The history of continuous-time econometric models, Econometric Theory 4: 365–383. Bergstrom, A. (ed.) (1976). Statistical Inference in Continuous Time Models, North Holland, Amsterdam. Borodin, A. and Salminen, P. (2002). Handbook of Brownian Motion – Facts and Formulae, second edn, Birkhäuser-Verlag, Basel. Cameron, R. H. and Martin, W. T. (1945). Transformations of Wiener Integrals Under a General Class of Linear Transformations, Transactions of the American Mathematical Society 58(2): 184–219. Feynman, R. and Hibbs, A. (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, New York. Gelfand, I. and Yaglom, A. (1960). Integration in Functional Spaces and its Application in Quantum Physics, Journal of Mathematical Physics 1(1): 48–69. Langevin, P. (1908). Sur la théorie du mouvement brownien [on the theory of brownian motion], Comptes Rendus de l’Academie des Sciences (Paris) 146: 530–533. Oud, J. and Singer, H. (2008). Special issue: Continuous time modeling of panel data. Editorial introduction, Statistica Neerlandica 62, 1: 1–3. Roberts, G. O. and Stramer, O. (2002). Langevin Diffusions and Metropolis-Hastings Algorithms, Methodology And Computing In Applied Probability 4(4): 337–357.
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples References
Singer, H. (1990). Parameterschätzung in zeitkontinuierlichen dynamischen Systemen [Parameter estimation in continuous time dynamical systems; Ph.D. thesis, University of Konstanz, in German], Hartung-Gorre-Verlag, Konstanz. Singer, H. (2012). SEM modeling with singular moment matrices. Part II: ML-Estimation of Sampled Stochastic Differential Equations., Journal of Mathematical Sociology 36(1): 22–43.
Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling. Hermann Singer State Space Models Parameter Estimation Langevin Sampling Simulated Likelihood Examples References