Simulating the Shift Towards Semantic Gender in

0 downloads 0 Views 359KB Size Report
•Syntactic strategy – lexical gender of the noun (old opaque strategy) ... concrete, countable – uncountable, animate – inanimate, ontological category (none ...
Simulating the Shift Towards Semantic Gender in Dutch A Multi-Agent Language Game Approach Promotor: Prof. Dr. Katrien Beuls

Roxana Rădulescu

Advisor: Dr. Remi van Trijp

Introduction – Gender in Dutch

Methods – Language Game Description

• Nominal

Anaphoric Reference Language Game

gender: common (‘de’), neuter (‘het’) • Pronominal gender: masculine (‘hij’), feminine (‘zij’), neuter (‘het’)

• Population

turnover: turnover fraction, transmission rate • World: Dutch nouns distributed over the semantic space: abstract – concrete, countable – uncountable, animate – inanimate, ontological category (none – animal – collective) • Construction based vocabulary: V = {Ck |1 ≤ k ≤ n} • Gender mapping: random, best representative, history

(1) De hond achtervolgde de kat, maar The-SG.C dog-SG.C chased the-SG.C cat-SG.C, but hij kon haar niet vangen. he-SG.M could her-SG.F not catch. ‘The dog chased the cat, but he could not catch her.’

• Construction similarity, with X and Y binary feature vectors of Cx, Cy ∈ V :

X ·Y = sim(Cx, Cy ) = ||X|| · ||Y ||

• Syntactic

strategy – lexical gender of the noun (old opaque strategy) • Semantic strategy – map gender onto the semantic properties of the noun (new transparent strategy)

• Competitor

n P X i × Yi i=1 v v u u u n u n u P u P 2 u u (X ) × (Yi)2 t t i i=1 i=1

selection: random, highest score, probability (τ ) P robability(Ck ) =

score(Ck ) exp( τ ) score(Ci) n exp( τ ) i=1 P

• Scoring

Results

Conclusion masculine

0.9 0.7 0.6 0.5 0.4

0

500

1000

1500

2000

2500

3000

3500

4000

Games/agent Highest score Probability (0.1) Probability (0.3)

masculine

neuter

agents with the necessary cognitive abilities for dealing with gender knowledge loss and mapping the system to the semantic space

80

• Formed

60

clusters lack in quality and mapping does not correspond to real world observed results

40

• Future

feminine

Best representative

'milk'

A-C-I 'day'

History 50

neuter

A-U-I

'help'

History 100

Random

References

Figure 3: Gender distribution for mapping strategies

C-C-A-A 'dog'

Semantic space division by gender - probability (0.1)

Figure 2: Mapping gender onto the semantic space

Audring, J. (2006). Pronominal gender in spoken Dutch. Journal of Germanic Linguistics, 18(02):85–116. De Vos, L. (2013). On variation in gender agreement: The neutralization of pronominal gender in Dutch. Synchrony and Diachrony: A dynamic interface, 133:237.

brief 100 Usage percentage

'letter'

C-U-I

History 5

Lexicon division by gender

80 60 40

Contact Information

20 0

C-C-I

work: extend semantic space, introduce salient semantic dimensions, individuation hierarchy, impose constraints to improve local clustering for each agent

20 0

Probability (0.5) Probability (1.0) Random

Tangibility (C/A) - Countability (C/U) - Animacy (A/I) - Ontological category (-/A/C) Composition percentage

language game to simulate the shift from a syntactic gender agreement system to a semantic one

• Equip

Figure 1: Solving competition

18 16 14 12 10 8 6 4 2 0

feminine

• Stochastic

100 Composition percentage

Alignment success

1 0.8

strategies: lateral inhibition, success rate, frequency

0

500

1000

1500

2500

3000

3500

Games/agent

A-C-I-C 'army'

2000

masculine

feminine

neuter

Figure 4: Gender competition at word level

unknown

4000

• Web:

http://ai.vub.ac.be/members/roxana-radulescu • Email: [email protected]

Suggest Documents