ProcessNet-Jahrestagung und 30. DECHEMA-Jahrestagung der Biotechnologen 2012, 10. - 13. September 2012, Kongresszentrum Karlsruhe
Hanin Jildeh1, Matthias Mickler1, Menwer Attarakih2 and Hans-Jörg Bart1 1
TU Kaiserslautern, Lehrstuhl für Thermische Verfahrenstechnik, Centre of Mathematical and Computational Modelling 2 University of Jordan, Department of Chemical Engineering
Simulation of liquid extraction columns using PPBLAB Motivation
Mathematical Model
• Prediction of column behavior during:
• Droplet population balance model (DPBM) [1]:
• Steady state and dynamic response
u y f d ,c y ( ) c y f d ,c y ( ) f d ,c y ( ) Qyin in f y (d , c y ; t ) ( z z y ) Dy t z c y z z Ac f d ,c y ( )
• Scale-up • Process synthesis, design and control
Accumulation
• Reduction of experimental effort
External Convection
Internal Convection
Axial Dispersion
Droplet Entering Rate to LLEC
Source Term
B b (d , c y ; t , z ) D b (d , c y ; t , z ) B c (d , c y ; t , z ) D c (d , c y ; t , z ) Birth Death Birth Death
• Saving time and money by exploring different operational conditions
Source Term
Breakage
Coalescence
• Coulaloglou and Tavlarides coalescence model (1977) [2]:
Challenges:
4 C (dd ') 1/3 ( d d ') 2 ( d 2/3 d '2/3 )1/2 exp 22 x x 3 (1 ) (d d ') 1
Estimation of coalescence parameters
(d , d ',d ) C1
Parameter Estimation
Case Study
Optimal model parameters require fitting and solving the inverse problem-DPBM
1.8
1.6
• Optimization (Fig. 2&3):
1.4
Kühni extraction column (DN 150)
1.2
1
Test system: toluene-water
0.8
Operating conditions:
0.6
volumetric flow rate for o Conti. phase Qc = 170 l·h-1 o Disp. phase Qd = 7.5 l·h-1 at 140 rpm
0.4
Fig. 2: Optimization of coalescence parameters
C1 (-)= 9.00E-03 C2 (m-2)= 1.33E+10
Fig. 3: PPBLAB [4] simulation using the optimized coalescence parameters
Fig. 1: Schematic flow chart for the mathematical algorithm
Validation
Summary • Estimation of coalescence parameters with inverse DPBM successful
• Validation I: “Steady state” (Fig. 4) Kühni extraction column (DN 80)
• Good accord with experimental data.
Test system: toluene-acetone-water
OUTLOOK: Solving inverse DPBM problem for other breakage and coalescence correlations to be used with • CFD Simulation • Online prediction/control
Operating conditions: volumetric flow rate for o Conti. phase Qc = 40 l·h-1 o Disp. phase Qd = 48 l·h-1 at 150 rpm
References: Fig. 4: Validation of the optimized coalescence parameters using PPBLAB [4] for 4.4 m Kühni column
• Validation II: “Dynamic state” (Fig. 5) Kühni extraction column (DN 150) Test system: toluene-water Operating conditions: volumetric flow rate for o Cont. phase Qc = 170 l·h-1 o Disp. phase Qd = 11.2 l·h-1 at rpm step changes: 80 – 160 – 80 rpm
[1] M. Attarakih et al. (2006), Chem. Eng. Sci., 61(1): 113-123. [2] C. A. Coulaloglou and L. L. Tavlarides (1977), Chem. Eng. Sci., 32(11): 1289–1297. [3] D. Garthe (2006), Fluiddynamics and mass transfer of single particles and swarms of particles in extraction columns, Verlag Dr Hut, TU München. [4] M. Attarakih et al. (2012), Procedia Eng., 42: 1574– 1591.
Acknowledgment: The authors wish to thank the following foundations for the financial support
Fig. 5: Validation of the optimized coalescence parameters for dynamic step change
Email:
[email protected]
http://www.uni-kl.de/tvt/