Size Estimation - Statistical Models for Underreporting - R Project

2 downloads 0 Views 458KB Size Report
Jul 10, 2009 - Conditional Poisson in work. Testing competing models: in development. Testing parameters within models: done. Model diagnostics: done.
Size Estimation - Statistical Models for Underreporting Gerhard Neubauer, Gordana Djuraš & Herwig Friedl JOANNEUM RESEARCH and Technical University, Graz

useR! 2009, Rennes

8.-10. July 2009 – p. 1

1 Introduction

useR! 2009, Rennes

8.-10. July 2009 – p. 2

Underreporting Any sample of count data may be incomplete ■



■ ■

criminology: crimes with an aspect of shame (sexuality, domestic violence) or theft of low values goods public health: infectious (HIV) or chronic (diabetes) disease data production: error counts in a production process traffic accidents with minor damage

Estimation of total number of cases

useR! 2009, Rennes

8.-10. July 2009 – p. 3

Binomial Model Event reported Yes

No

R

1−R

R ∼ Bernoulli(π)

useR! 2009, Rennes

8.-10. July 2009 – p. 4

Binomial Model Event reported Yes

No

R

1−R

R ∼ Bernoulli(π) iid sample of size λ ⇒ Y = E(Y ) = µ = λπ,

useR! 2009, Rennes

P

i

Ri ∼ Binomial(λ, π)

var(Y ) = σ 2 = λπ(1 − π)

8.-10. July 2009 – p. 4

Binomial Model Event reported Yes

No

R

1−R

R ∼ Bernoulli(π) iid sample of size λ ⇒ Y = E(Y ) = µ = λπ, Y π λ U =λ−Y useR! 2009, Rennes

P

i

Ri ∼ Binomial(λ, π)

var(Y ) = σ 2 = λπ(1 − π)

the number of reported events the reporting probability the total number of events - size parameter the number of unreported events 8.-10. July 2009 – p. 4

Binomial Model Event reported Yes

No

R

1−R

R ∼ Bernoulli(π) iid sample of size λ ⇒ Y = E(Y ) = µ = λπ,

P

i

Ri ∼ Binomial(λ, π)

var(Y ) = σ 2 = λπ(1 − π)

Both λ and π have to be estimated No longer member of Exponential Family useR! 2009, Rennes

8.-10. July 2009 – p. 5

Estimation For T iid samples Yt

Method of Moments

For the binomial we have var(Y ) = µ − µ2 /λ ≤ µ Limitation to data with s2 < y¯ For s2 > y¯ 1. Regression approach using ML ind

Yt ∼ Binomial(λt , π) with λt = f (xt , β) Neubauer & Friedl (2006) 2. Mixed model approaches

useR! 2009, Rennes

8.-10. July 2009 – p. 6

2 Alternative Models

useR! 2009, Rennes

8.-10. July 2009 – p. 7

Beta-Binomial Random reporting probability P Yt |P ∼ Binomial(λ, p) P ∼ Beta(γ, δ) Yt ∼ Beta-Binomial(λ, γ, δ) Mean-variance relation 

2



µ φ var(Yt ) = µ − λ λ+γ+δ φ= ≥1 1+γ+δ

useR! 2009, Rennes

8.-10. July 2009 – p. 8

Poisson Random total number of cases L Yt |L ∼ Binomial(l, π) L ∼ Poisson(λ) Yt ∼ Poisson(λπ) Parameters not identified

useR! 2009, Rennes

8.-10. July 2009 – p. 9

Negative Binomial Additional randomness in E(L) L|K Yt |K K Yt

∼ ∼ ∼ ∼

Poisson(kλ) Poisson(kλπ) Gamma(ω, ω) Negative Binomial(ω, 1 − π)

ω the number of unreported cases π the reporting probability Mean-variance relation µ2 ≥µ var(Yt ) = µ + ω useR! 2009, Rennes

8.-10. July 2009 – p. 10

Beta-Poisson Consider both binomial parameters as random Y |L, P ∼ Binomial(L, P ) L ∼ Poisson(λ) P ∼ Beta(γ, δ) Y

∼ Beta-Poisson(λ, γ, δ)

E(Y ) = λπ = µ var(Y ) = µφ with

useR! 2009, Rennes

where

γ π= γ+δ

λ(1 − π) φ=1+ ≥1 1+γ+δ

8.-10. July 2009 – p. 11

Generalized Poisson Distribution Consul(1989) Moments θ E(Y ) = (1 − τ )

useR! 2009, Rennes

θ var(Y ) = (1 − τ )3



τ = 0:

E(Y ) = var(Y ) ⇒ Poisson (θ)



0 < τ < 1: E(Y ) < var(Y ) ⇒ Neg. Binomial



τ < 0:

E(Y ) > var(Y ) ⇒ Binomial

8.-10. July 2009 – p. 12

Conditional Poisson Models Motivation: π → 1 leads to Y → λ in the binomial approach Assume Y |L ∼ P oisson(L) Choose p(L) such that E(Y ) = λπ

and

var(Y ) = λπφ

For example: L ∼ Binomial(λ, π) L ∼ N egative Binomial(λ, π)

useR! 2009, Rennes

1

Suggest Documents