0
4
m
j cos(P)PFr2^CD(S(e))5(g) 2
w
1
1
cos(P)pR
2 1
^CD(S(/))8(/)
2
cos(P)rcos(a)
p F?2ssin(p)C }'o w
/w
m
^p ^ssin(P) bCYpp
^
2P^25sin(P)CY(p)P
+
+
+
^
p Vt
s
sin^) b CYrr m
m
m
1pFr25sin(P)CY(5(a))5(a)
\
Vt2
p
s
sin(P)
Cy(6(r)) 5(r )
+ W
7W
+
g cos( P ) cos( 9 ) cos( (|)
)
sin( a )
-
g cos( P ) sin( 0 ) cos( a )
+ gcos(9) sin((j))sin(P)
(4.8)
61
4.1.8
Angle OfAttack:
Nonlinear Differential Equation
alphadot
=
gR
+
q
-
of Attack of
Attack is
tan( P ) (/? cos( a )
+
by
qbarsRCL
sin( a ) )
+ r
(cos(8)cos((|))cos(a)
represented
Vt cos( P )
m
rSin(a)i? mVt
cos( P )
sin(0)sin(a))
Frcos(p)
(4.9)
Substituting the
equation
(4.1) in the
above equation and
4
wcos(P) cos(oc)
~
4 4
m
m
cos(p) +
cos(
~
p)
4mcosi$)
4
mgR
tan (
psRc
p)
r
4
CLalpkadM
m
cos(P) + p
iAmcos(:)
(4
+ psRcCLalphadot)Vt
4
+
+
psRcCLalphadol
cos(P)
+
sin(0) sin(a) p
sR c
CLalphadol)
Vt
m
cos(P) + p
s
R
c
CLautdot
2psRCH5{e))5je)Vt
psRcC^q
4mcosi^)
m
wgi?
2psRCUa)aVt
2p sRCLoVt 4mcosi^)
+ pSRcCLalphadot)Vt
4
cos(0) cos(
)
by
r sin(
-
)
(4.19) 4.1.14 Roll Angle:
Nonlinear Differential Equation
of Roll
phidot
:=p
+
Angle is
represented
tan( 0 )
cos( )
r
+
by
tan( 0 ) q sin(
)
(4.20) Where
m
mass
P
rolling
q
pitch rate
r
yaw rate
q
Dynamic
rate
pressure
R
conversion
s
reference area
a
Angle
of attack
P
Angle
of
?
Roll
9
Pitch
Consider the
sideslip
angle
angle
equations
nonlinear matrix
factor
(4.8), (4.10), (4.12), (4.14), (4.16)
[14]
67
and
(4.18)
and solve
in the form
of
fej-
i
1
I 0 o
8
S _g
bo
CO
-%.
+ CO
8
O O
-H
co CO
O
co
O o
O co
o CO
o
o
o
U
OS
o
OS
Cl
O O
CL
o
o x\
05
O
t*
5
-x
ai
.1
^^t-
? bo +
I
^ c -H
cl
co
(N
+
QS 8
CO
QS
O O
^x +
co
O
St-
o
ca,
t-x ca.
o
CO
O O
bo
CO >t-
O O
+
CO
O o -In
+
I
OS 03
O O
ca.
03
^
CO
bo +
Qi
u OS
CN
On
CN
B x]
05
1.
0
:x
0=L 'co
0 O
s
u
OS
OS
os
-0
S
03
-Ci
0
05
05
ex
03
-x
Conclusion:
and
The
simulation
perfect
>
tracking
Controller Attack trim
>
of
the
the aircraft
under parametric
was able to achieve
from its trim
their initial condition
Keeping
Angle
Velocity from 650(ft/sec)
>
an
and
Angle
of
their
other parameters at
condition of
(4.24)
50
of
stabilizing the
also
(4.9)
seconds
Attack,
of
respectively
the
when
(4.1)
to
within
other parameters
from
(4.8), keeping Velocity
to
trim a
final
(4.16)
time,
condition and
value of
shows
which
even when
condition at
robust even when
the
changing the
600(ft/sec)
is the desired
both
and
that the transients
demonstrate that the transients
50 seconds,
from their trim
of
of
condition.
the parameters
Velocity
and
Angle
of
the same time.
(4.48)
that the
Sliding
Mode Controller
coefficients of system parameter are varied
nominal values.
Mode Controller is
Angle
of
4.1
and
deviation
626.818 to
from the figures (4.25) to
the system
Sliding
to
3.0
in the figures from
results within
are changed
10% from their
and
Velocity
their trim conditions.
initial
(4.17)
observed
makes
minimal
of attack and other parameters at
their desired
Attack
by
keeping
3.6103 to
respectively, the figures from
Figures from
It is
for
results
variation,
condition of
parameters are reached within
reach
>
variations.
the desired transients for the Angle
as shown
and other parameters at
>
desired
achieve
(initial) conditions.
was varied
the
different parametric
achieve the
the desired 50 seconds time with
>
Mode Controller's ability to
Sliding
and robustness under
designed to
was
Controller it
demonstrates
Attack
when
system and
successful
they
in tracking the desired
are varied
making the
for
Velocity
from their initial conditions,
and also
results
system robust under parametric variation.
107
Suggestions for Future Work:
> Test for stability
and robustness of
under variation of pitch rate
> Test
of
stability
parameters yaw rate
and robustness
i.e., for
for the
input
variation
in
the sliding
signal.
for
variation
angle
of
in lateral
sideslip,
unmanned air vehicle system
108
mode controller
is
moment
roll rate
and
recommended.
REFERENCES
Gene
[1] Control
of Dynamic
F.Franklin, J.David Powell Systems"
4
Edition,
Prentice
and
Abbas Emami-Naeini, "Feedback
Hall, Upper Saddle River, New Jersey.
[2]
MATLAB User's Guide, 1997.
[3]
Kuo, B.C., 1991, Automation Control Systems, 6th Edition, Prentice Hall,
Englewood Cliff, New Jersey.
Romane M. DeSantis "PID/
[4] speed
drives
Sliding
Mode Controller for the high accuracy
and position servos".
[5]
Nagy
N. Benjiamin "the
Sliding
mode
Control
of
a
two
link Robot
Manipulator".
Cem Unsal
[6] Antilock
Braking
and
System"
Pushkin
kachroo, "Sliding Mode Measurement Control for
IEEE Transactions
Control Systems Technology, March
on
1999.
Philips, CL.
[7] Hall,
Englewood
Using Sliding Control, Vol.
Estimation
H.T., Digital Control Systems, 2ndEdition, Prentice
Cliffs, New Jersey.
Slotine, J. J., E.
[8]
[9]
andNagle,
Surfaces
with
and sastry.
1983, "Tracking
Application to Robot
control of
Nonlinear Systems
Manipulator", International Journal
of
38,No.2,pp.465-492.
Slotine, J. J., E., Hedrick, J.K.
Using Sliding Observers",
Control, Athens, Greece,
and
Misawa, E.A., 1986, "Nonlinear State
Proceedings
pp.332-339.
109
25th
of
Conference
on
Decision
and
[10]
Slotine, J.J.,
E
and
Li, W., 1991, Applied Nonlinear Control, Prentice Hall,
Englewood Cliffs, New Jersey.
[11]
Zribi, M., Ahmad, S.
and
Sira-Ramirez, H, 1 994, "Dynamical Sliding Mode
Control Approach for Vertical Flight Regulation in Helicopters", IEEE Proceedings, Control
Theory
[12]
Applications, Vol.141,
and
Roberts
L.Woods, Kent
pp.
19-24.
L. Lawrence 1997,
"Modeling
and
Simulation Of
Dynamics Systems", Prentice Hall, Upper Saddle River, New Jersey.
[13]
R.D.
Young
and
U.Ozguner, "Variable Structure Systems, Sliding Mode
and
Nonlinear Control", Springer.
[14] John
Etkin
and
Reid, "Dynamics
of
Flight-Stability
Control"
3rd
and
Edition,
Wiley & Sons, Inc., New York, New York.
[15]
Roger W. Pratt, "Flight Control Systems-Practical Issues in Design
and
Implementation.
[16]
Elbrous M. Jafarov
and
Ramazan Tasaltin, "Robust
Sliding
for the Uncertain MIMO Aircraft F-18", IEEE Transactions On Aerospace
Systems, Vol. 36, No.4 October 2000, ppl 127-1 141
[17] Motor Drive on
Alenka without
Speed
Electronics
.
Sensor"
Proceeding
of the
1998 IEEE International Conference
Triestle, Italy 1-4 September 1998.
Xiao-Yun
Nonlinear Systems:
and
Control
Hren, Karel Jezernik, "Robust Sliding Mode Control Of Induction
Control Application
[18]
-Mode
Lu, Sarah K. Spurgeon, "Dynamic Sliding Mode Control for
Stability Analysis.
110
Jian-Xin Xu, Ya-Jun Pan
[19]
"
Tong-Heng Lee,
and
On the
Sliding
Mode
Control For DC Servo Mechanism In the Presence Of Unmodeled Dynamics", Triennial World
[20] Control
Workshop
Congress, Barcelona, Spain.
Spurgeon, S.K., Edward, E.,
Using on
15th
Foeter, N.P., "Robust Model Reference
and
A sliding Mode Controller/ Observer
Variable Structure Systems, VSS'96;
Scheme", 1996 IEEE
proceedings
December
International
5-6, 1996, Vol.
19,pp.36-41.
Yuri
[21]
B.
Shtessel
Manifolds", Vol.332B, No.6,
Using Sliding
Surfaces" ,
Y Liu
[23]
Electro hydraulic Servo
H.
.S.S.,
"Tracking
of
Methods"
Sliding
and
Control
Sliding
of
proceeding
Nonlinear Systems pp.465-492.
Mode Control to
an
on
Mode With Model
Sliding
pp.1221-1235.
pp.850-858.
Slotine, "Sliding Controller Design For Non-Linear
Controller
of the
of
Gopalswamy, "Nonlinear Flight Control
Vol.13, Issue: 5, 1990,
Makota Yokoyama, Karl
Dampers"
Vol.57, 1993,
Swaminathan
Jean Jacques And E.
Following Sliding Mode
Sliding
Flexible Mechanical Load".
International Journal Of Control,
[27]
Dynamic
via
Control, Vol. 38, 2 1983,
Handroos, "Applications
system with
J. Karl Hedrick
[26] Systems"
Sastry
International Journal Of Control,
[25] Design Via
Tracking
AJ.Fossard, "Helicopter Control Law Based
[24] Following"
and
International Journal
and
Output
pp.735-748.
Slotine J.J-. E
[22]
"Nonlinear
Vol.40, 2, 1984,
Hedrick
for
and
Semi-Active
Ill
421-434.
Shiegehiro Suspension
American Control conference,
pg 2652-2657.
pp.
Toyama, "A Model Systems
with
MR
Arlington, VAJune25-27, 2001
APPENDIX
112
E:
\tnesisl\independent_study\crassidis_datafile.m
July 31,
1
Page
2003
9:21:51
PM
APPENDIX-1
CODE
%
FOR
SECOND ORDER NONLINEAR
SYSTEM
DATAFILE
Inertial
m=2;
damping
c=0.5,
k=l
.
3
mass coefficient
,
stiffness
f=5.0,
nonlinear
b=2;
input
mmin=l;
minimum
deviation
of
mass
mmax=3;
maximum
deviation
of
mass
4 ;
cmin=0
.
cmax=0
.75;
parameter
gain
deviation
mininmum
of
damping coefficient damping coefficient
maximun
deviation
of
kmin=l;
minimum
deviation
of
stiffness
kmax=l
maximun
deviation
of
stiffness
minimum
deviation
of
f (t)
5;
maximun
deviation
of
f (t)
95;
minimum
deviation
of
input
gain
maximum
deviation
of
input
gain
.75;
fmin=4 ;
fmax=6 bmin=l bmax=2
.
.
.
2;
(mmin*mmax) A0
.
ccap=
(cmin*cmax) A0
.
kcap=
(kmin*kmax) A0
.
bcap=(bmin*bmax) A0
.
mcap=
mue=
(mmax/mmin) A0
gamma=
.
5;
estimated
inertial
5;
estimated
damping
5;
estimated
stiffness
5;
estimated
input
5;
(cmax/cmin) A0
.
5;
kbar=
(kmax/kmin) A0
beta=
(bmax/bmin) A0. 5;
dcap=
(fmax+fmin) /2
.
;
5;
(mmax/mmin) A0
.
(cmax/cmin) A0
.
kbar=roman
lamda=100;
time
D=abs (dcap-f ) ;
actual
n=0.10;
constant
coefficient
gain
5 5
k
(bmax/bmin) A0 nonlinear
mass
.
5
gain
constant systems
nonlinear
positive
value
gain
behaviour
rr LU _l
_l
o a.
o o HI
Q
O O z
g _j
co
o z if) z> LU
H CO > CO
< LU
o z a: LU
Q cc
O Q z
o o LU CO
5 CO
r^ o CM
-o X
V
v
-\
o o
o X
+
111 i~~s~
I
o o T3 X
o X
X
"3 "O
CO
"3 "D
o CN X
D X
CL
CO
CO
o
o
T3 X
T3 X
r~\
\s
o CN
X
H
S CM
CD tn so rd
a,
O ..
r-
C\l en
co
2
2
C H
C
g
H
2
(I)
g co
CD G o\
o\
o\
23
G
x: +j
TO
-H
c
H
C
4-)
-H
4->
-H
H
3 TO
2 cm
a
o
(0
rd
H
IT)
-H
k
^ tr.
C
C
CU
tn
c
2 2
2
2
G
CU
a 3
0^
G
co
CO
CO
G O
4-1
O
x:
1 1
o
1
G
Cn
^
CO
O
s H
-H
co
(0
&j CO
C
g
D
a
co co
cu
>i
CD .G
4->
m o
0, CO
co
-H
+j
4->
4-1 o
4H o
O
CO
CU
i
4-4 O
"0
-o
G G
G G
O
3
CN
i-H
C\l
CO
CO
^
X o
u
rH
o\
o\
o\
o\
o\
o\
0\
4-1 O
TO C
G O 40
4-1 O
TO
G G O 40
i
CS]
r-\
X,
^
O
H
G
G o
TO
G
T3
t] Fh CO
Sh CU
Sh CU
G CU
(0
CO
4H O
CM
G CU
0)
CU
0)
CU
CD
+4
4->
4->
+J
4J
4-1
CO
CO
(0
CO
(0
CO
cd
2
H
M
g
g
g
g
g
g
CU
CU
H
-H
H
-H
-H
-H
44
4-1
4-1
4->
CO
CO
CO
CO
CO
CO
CO CO
H
o k
a 3 a O D kl
a 3 a O D k
a 3 a O D k
0^ 3 04 o D k
a, 3 a o D k
Oj O, CO D U
4-)
W
Cd
W
b4
W
2
o\
o\o
o\o
o\o
o\
0\
o\
o\
o\
o\
o\
o\o
o\
o\
4-1
D PQ
o\o
o\o
o\
o\
o\
o\
t] PC H
h o Li] CN 1
k
X
tj
M
h-l
Q S w
O
PQ
G
k
CQ
o\
i
.
l-H
CQ
04 3 04 O D k CQ
CQ
rH .
k
k
O
CQ
CQ
rH
-
'
^-\
O CQ
II
> G
PQ 1
'
II II II CQ 04 Cu II Cu rd rd a Cu Cu O O (0 tO D rH oo o O H
CN
PQ
CQ
CQ
Ch
l
ro
CN
O
CJl
CQ
rd
rd
o CQ
O
(0
O CQ 1
O
1
CQ
-
> G
CQ 1
04 a
Cu
Cu CQ
3
^-\
(0
*~~
-X
O
O
II
i
l
3
.
a a a
CQ
CN CQ
a
> G
2 -X
> C
^-^
COO
o o
II
II CU
II a
rH
rH
X,
+
.
k -X
> c
a CG a a G) D O
+
a CU a
.
.
u -x i
i
CN
o
> G h-
ro
CN
,
,
G 0
04
O
a a, ,
4H
fO
rd
O CJ
O
o
LG
2
1
"
'
tO
'
-H
^^
co co co II a x X X
rd
rd
rH
1
> c 1
1
co
co
X X
X
C
to
0 H tn
g
0
^^
0
O1
C
04
CO
TJ
II X
CO
X Cu H tO
..
_ ^
^
0 TO
4H
0 4-1
(0
"O
TO
O O
O o
+4
+4
4->
O O
O O
0 O O
4-J
-P
O H
II
X
3 (0
G O G rH
G 0 TO TO
H
G
0
rd
v
~
a
G
^^
^
rd
G TO
TO
TO
Cu \, \ \ \ G k k k k -H CJ O CJ CJ
O G 0
TO
TO
\
\ \
\ \
Q U TO
Q CJ TO
Q CJ TO
a CJ TO
o\
o\
o\
o\
H >H Lh Lh >H
TO
u
o\
G
G
0
0
4-1
g
g
g
o
O
o
O
O
G 0
g
g
g
g
g
g o
g
(0
tn
0 H 0
rd H 4H
II
II 0 TO
On
tn
On
tn
G
C
G
G
H
H
H
H
rH
rH
rH
H
H H
H H
H H
H
O G
O
O G
X O
~
44
H
H -
C
rH
H
H
H
H
CJ TO
CJ -a
CJ TO
CJ TO
CJ TO
rH
H
CO
fO
H fO
H (0
H (0
H
H
H
H
H
4-1
4-1
4-1
4-1
4-1
G
H rd
G
G
G
G
(0
(0
(0
H
-H
^"
H
Oh
TO
TO
TO
TO
04 Oh Oh Oh Oh r
fO
3
3
3
3
3
Oh
G CJ
G CJ
C CJ
C O
G CJ
44
4H
4H
4H
4H
O
O
O
O
O
o\
TO
0 TO
4h 4H
4H 4H
4H 4H
4H 4H
4H 4H
^
H
-H
H
H
H
.
TO
TO
TO
TO
TO
H (0
H (0
H (0
H CO
H CO
to
Cu X G X Oh H Oh
CJ
o\
On
C
to
>
G H
O
Oh
On
C
c 0
g
CJ -a
o\
X
0
-
_
o O
G
G
..
0 H tn
g
o G
Oh >i
.
TO
0 4->
4H 4H 0
c 0
tn
rd
(0
O1
TO
4H H 0
4H 4H 0
rH
4->
rH
G O
o 0
44 4H 0
4H 4H
4H 4H 0
tn
H (0
G H
\
Oh
TO
. ^~.
.
0 TO
4H TO
^
-
'
TO
TO
H
H
H
H
H
\ \
\
+4
4-1
4-1
4-1
4-1
g
g
g
g
g
G
G
G
G
G
CJ TO
(0
CJ
fO
CO
(0
(0
TO
CJ TO
CO
TO
CJ TO
a
Oh
Oh Oh Oh
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
TO TO
TO
CM
CM
G
M -X
00
TO CN S-l
TO
r-
CN
CD
U
140
TO
TO
TO
TO
CN
CN
CM
CN
G *
G
G -X
G
-X r-
OO
TO CN
TO
TO
G
CN
oo
TO
G
CN
G
^r
-X
-X
-X
CD
LfO
-X
-x r-
G
TO
TO
TO
TO
TO
TO
TO
CM
CN
oo
X5
-X
TO
OM
OO
CN
OO
OM
OM
G
G
G
oo
CO
CN
G
H
G
G
G
TO
oo
G
-x
OO
CD
-X
O
oo OM o
G
CO
r~
LO
yo
H CD CD
H
>H
>H
>H
>H
H
H
H
H
H
H
g
g
g
g
CJ
u
CJ
CJ
CJ
CJ
CJ
CJ
CJ
g
o
CJ
g
CJ
CJ
CJ
U
CJ
CJ
CJ
.
.
c CJ
-X
-X
140
o
OO
oo
OO oo
.
rH
r-
CO
o
TO
G
-X
140
00
a u
II
-X
TO OM G
lO
0 T3
fO
G
G
rH
o
II
TO
CN G
.
o 1
O
o o 1
.
o 1
II
II II (0 a G TO G G G CJ CJ CJ
rH
.
o
1 II G TO
G CJ
X
TO 0 X
-H
-H
4H
4H
TO 0
N
>1
N +4
G
G
G
rd
rd
>
>
0
0
0
0
CO
(0
O 0
H (0
co
TO
H to TO
TO
k CJ TO
0
0
k O
4-4
4H 4->
G O 4-4
X X Oh Cu
CN
>i 4-1
Oh Oh
-H
3 X
>1
3
N
X
X
>
o
_
CO
H
00
G tn
co
H co
O
o 0
o 0
4-J
>
>
G
G
0
G
G
G
G
O
O
H CO
TO
3 >,
CO
4H
4H
tn
~
TO G O
c
c
fO
CO
'
Oh Oh
X O
CO
>1
CO
co
4H
O
4H o
O
4-4
4-1
4-1
4H
44
O 4->
O
44 O
0 O
0 O
0 o
0 O
C 0
G
4->
G 0 G
G
4-J
4H
G
0
C 0
0
C 0
g
g
g
g
O
O
O
O
c
G
G
0
0
g
g
o
o
2 2
2
2
2
2
o\
o\
o\o
o\
o\
o\
0 4H 0 CC
0 G 0
k
G 0 4H 0 CG
o\
o\
44
0
0 H 0 4H 0
tn G H co '
CO
rd
G O H
co
-H
4->
X
CO
(0
H
C 0 TO
H 0
-
co
G H
rd
H
H
0 o o
G G
g
G
G
X
H
-H
-H
Eh
4->
i >i
Cl)
4H 4H 0
g
g
O
O
O
O 0
g
g +4
4-1
tn
tn
G
C
C
0
G 0
H
H
g
g
H
C)
()
H
H H
g
g
O G
O G
tn
tn
G
C
H
H
H H
O
CJ
CJ
H H
4H
4H
O
O
O G
4H
4H 4H
H
-H
TO
TO
H
H
to
rd
H C) TO
G H C)
TO
CO
ro 4-J
G rd
UCJ
CJU
CO
rd
Oh Oh
TOTO
CJ T3
CJ
TOTO
T3
Oh
Cu
0\
0\o
.^
,^
^
4->
4-1
o\
o\
o\
o\
.^
4-4
.
H
CO
CJ
O H
H
-X
3
^^
-X
G
COO
140
o
H
g
g
CO
r-
r
H
CJ
o o
o o
1
o
o 1
CJ
COO
00
oo
oo
00
=^
^r
OO
COO
G
3
r-
r-
O O O
TO
OM o o
oo o o
X>
O
>H
H
CG H Cu H G O
o
..
CJ
-X
X
H
o
X
o o
O
O
CJ o
0
o
0
o
O
1
H tn
I
II
H tn
II Cu
C
H
G
CO
G X
(0
^r
>H
H O o
^ OO
CO
G
o o
o o
o
>H
o
o
CJ
o
o
II
II
II Oh
H H
H
CO
>H
CJ
*"
'
.
-X
*
O
o
II
II Oh
o
II
II
II
II Cu
H H
H
CO
H
CO
II
II
|| Oh
G
O
G
ro
G TO
H H
CO
rd
O G TO
H
(0
O
G O
O O
>H
>H
H
H
H
H
CJ
CJ
u
O
U
CJ
Oh
||
II
(0
H
(0
1
G
o
o
o o
H H
G
G G
O G
TO
TO
>H
>H
>H
>H
>H
>H
>H
>H
>H
>H
>H
H H G T3 >H
CJ
o
CJ
CJ
CJ
U
CJ
CJ
CJ
CJ
o
CJ
T0-
II H H
H H
H
rH
o
1
CJ
oo
X
CJ
r-
00
CJ
oo
oo
Kf
r
00
>H
M
H
CM
T
CO
H
G 0
H
CJ
CN
CJ -X
O
H
H
>H
H
H
-x
CJ
-X
G 0
H H
.
rd
k Oh -H
i-
I
CJ
.-
.
X
H
1
COO
II
II
H H
H
r-l
H
H
CJ
CJ
CJ
o
X
Oh
G
-X
H
o
G o Oh Oh Oh
-X
-x
H
lO
>H
-X
-X
H H
O
G O X X X
G
>H
X
140
CO
G
CJ
H H
II
G X
H
^r
*
H
G
-H
o
00
II
CM
G
-H
CO
r>
H H
T3
CM
^
r-
1
TO
H
o
oo
II Cu
*
^
oo
-X
U
H H
CJ
-X
TO OI
H H co
CO
o
H
-X
CJ
X
LO
OO
o
G
0 O O
H
OM
o
4-1
G
G
o
4-J
4H 4H
44
OO
>H
-H
4H 4H
4H
GG TOTO
TOTO
H
H
CM
-X
GG
O
O
-
-
-
O G
0 H
TTjTO
H
-X
(0
G
O G
0 H
"V. \ >< >
H>H
TO
rH
-H
H
C
TOTO
4_)
Oh H Oh G o
i-\
cocrj
,-.-.
Oh CG
TO1
o
CO
(0
rO
4-1
C
\ \ >f >
H
H
H 0
a C OO
0
-{-{
to
fO
G
TOTO
,
_p
0
C
co
rd
^^
.
\ \ >H >H
4_J
-{
00 TOTO
140
+J
4-14-1
COCO
H
0 i-\
tn
C
coco
-H
0 -{
0 X
3
3 ,
Oh CG
G CU Oh
0 H
G
G
0 4-1
0 X
CO
ro
G
G
tn
0 H tn
C
G
tn
tn
rd
ro
G
G
ro
ro
G
C
o G 0
o G 0
G 0
H
H -H
G
G
O G 0
o G 0
>i
>i
X G
H
CJ
CO
(0
G
G
N
N
X
4-1
4-J
4-1
4->
4-1
4->
G
G
G
G
G
3
3
3
3
4H 4H
4H 4H
0 O O
0 O O
4H 4H 0
4H 4H 0
O O
O O
4H 4H 0 O
O
4H 4H 0 O O
4->
4->
4-1
X
4-1
4-1
C
C
G
G
C
0
0
C 0
0
0
g
g
g
g
o
o
O
O
g
g
g
g
tn G
tn C
o G
CJ
CJ
TO
TO
O G
c 0
C
H
H
O H
4H 44
44
0 O O
0 O O
0
4-J
4-1
g
g O
C 0
G
O
g
g
g
g
O G
tn
TO
4H
0
tn
tn
G
C
H
H
X o
X
X o
4-1
4-J
H
H
+4
4-1
H
H
0
0
G
c
rO H
Oh Oh X X Cu Oh H (0
G
G
G
G
G
ro
G G
G
rd
(0
(0
tO
H
H
a
St
X
-H
H
-H
X
4->
g
g
g
g
-H
-H
-H
-H
-H
-H
G 0
G 0
3
Oh Oh G
G 0
G 0
lo
3
Cu CG
3
Oh Oh G
O
4-J
dP
tn
G
4-J
rri
+4
CG
0
tn
>
CO
dP
0
G O
CO
4-1
o\
rd
G O
g
-H
Oh Oh
G
(0
g
TO
(0
tn
G
O
O
H
0
tn
o
G
O G
0
4-1
Oh
CJ T3
0
(0
o
CJ
4-J
H
-H
G
fO
H
O
tn C
G
rd
-H
II Oh
H
tn
O
CJ TO
I
CJ Oh
T5
3
G
Oh
to-
3
H
-X
(0
-H
o\
CJ
H
(0
ro
Oh Oh
H
H
3
4-1
G a
rd
(0
o G
4-1
4-1
G
G
G
3
3
3
3
G CJ
G CJ
G CJ
G CJ
rd
(0
CJ
CJ
rd
rd
rd
CO
CO
rd
-H
H
H
H
H
-H
4H O
44 O
4H
4H O
4H O
4H
4->
44
4-J
4->
4-J
4-1
O
G 0
G 0
G 0
G 0
G 0
4H 4H
4H 4H
4H 4H
4H 44
44 4H
4H 4H
4H 4H
4H 4H
44 44
44 4H
-H
-H
-H
H
-H
-H
H
H
-H
-H
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
(0
H (0
H fO
H
H
H
4-1
4-1
4-1
G
G
G
-H
-H
4-1
4-J
G
G
G (0
(0
CO
fO
O
.^
4-J H
LO
H
-H
G
G
G
C
G
G
4-1
4-1
4->
0
0
0
0
0
0
G
G
G
G
g
g
g
g
g
(0
O
O
O
O
O
O
2 2
2
2
G 0
G 0
3
Oh CG G
G 4H
,s
4-1
o
rH