Concrete using Sliding Pipe Rheometer ... Sliper test. Viscometer test. Testing equipment and investigated parameters ... Flow rate Q (m3/h). 8. 11. 6. 5. 7. 10. 4.
Faculty of Civil Engineering Institute of Construction Materials
1st International RILEM Conference on Rheology and Processing of Construction Materials, Paris, 2 – 4 September, 2013
Experimental Study on Pumpability of Concrete using Sliding Pipe Rheometer Nerella Venkatesh Naidu M.Sc Institute of Construction Materials, TU Dresden Dr. Knut Kasten Putzmeister Engineering GmbH Prof. Dr. Viktor Mechtcherine Institute of Construction Materials, TU Dresden
Introduction Testing concrete pumpability
Pumpability
• Why? − To develop concrete compositions for reliable pumping − Discharge pressure estimation Selection of machines
Circuit
Aggregate grading, Shape
• Methods − Traditional methods have limitations − New, reliable and portable devices are needed
Admixtures
Super-plasticizer, Stabilizer…
Water-to-binder ratio
(Putzmeister) TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
2/16
Sliding Pipe Rheometer (Sliper) New approach for testing pumpability
Pipe
Weights
Pressure sensor
Pressure (P) B
Piston Displacementsensor Sliding Pipe Rheometer (Kasten et al.2010, Nerella 2012)
A Flow Rate (Q) d) Pumpability curve (A and B are related to yield stress and plastic viscosity, respectively)
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
3/16
Experimental program Testing equipment and investigated parameters Flow table test
Sliper test
Viscometer test
(DIN EN 12350-5, 1999)
Investigated parameters • • • • • •
Water-to-binder ratio Aggregate shape Addition of silica fume Addition of fly ash Consistency Cement type
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
4/16
Concrete composition schema
Parameter
Mix
Cement
CEM II
Concrete
CEM I
Ordinary
HPC
Aggregate shape
Rounded
W/B
0.45
0.6
Consistency
F3
F3
F3
F5
F3
Mineral admixture
-
-
-
-
-
Number
1
Crushed
2
0.45
3
4
Ordinary
Rounded
Crushed
Rounded
0.3
0.3
0.45
5
F3
-
6
Silica fume
7
F5
Fly ash
8
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
-
9
Silica fume
10
F3
Fly ash
11
-
12
5/16
Results Relation between concrete composition and pumpability 35
11
30
6
5 Pressure P (kPa)
25 20
8
7
10 w/b = 0.30
4 3
12
15
1
10
2
w/b = 0.45 5
w/b = 0.60 0 0
10
20
30
40 50 Flow rate Q (m3/h)
60
70
80
Parameter
Mixtures to compare
Aggregate shape W/B Silica Fume (SF) Fly Ash (FA) Cement type
1 (round) with 3 (crushed) | 5 (round) with 6 (crushed) 2 (0.6) with 3 or 6 (0.3) | 1 (0.45) with 5 (0.3) 6 (without SF) with 7 (with SF) 6 (without FA) with 8 (with FA) 1 (CEM II) with 12 (CEM I)
Consistency
3 (F3) with 4 (F5) | 7 (F3) with 10 (F5) | 8 (F3) with 11 (F5)
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
6/16
Pumpability – Effect of water-to-binder ratio 35 30
Crushed aggregates Consistency F3 CEM II no SF, no FA
w/b = 0.30
Pressure P (kPa)
25
6 20 w/b = 0.45 15
3 10
w/b = 0.60 5
2 0 0
10
20
30 40 50 Flow rate Q (m3/h)
60
70
80
Predominant influence – higher the w/b lower the pumping pressure
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
7/16
Pumpability – Effect of water-to-binder ratio 35
11 6
30
8
5
Pressure P (kPa)
25
w/b = 0.30
7
20
10
15
3
w/b = 0.45
4
12
1
10
2 w/b = 0.60
5 0 0
10
20
30 40 50 Flow rate Q (m3/h)
60
70
80
Predominant influence – higher the w/b lower the pumping pressure Grouping on P-Q Curve
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
8/16
Pumpability – Effect of aggregate shape 35
Consistency F3 CEM II no SF, no FA
6 30
5
Pressure P (kPa)
25 20
w/b = 0.30
1
3
15 10 w/b = 0.45
5 0 0
10
20
30 40 Flow rate Q (m3/h)
50
60
70
Round aggregate mixtures have higher pumpability
• Crushed aggregates − High surface area (more paste required) − Friction and interlocking TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
9/16
Pumpability – Effect of mineral admixtures 35
Crushed aggregates Consistency F3 W/B = 0.30 CEM II
Pressure P (kPa)
30 25
Ref
Ref + FA
20
Ref + SF
15 10 5 0
0
5
10
15
20
25
30
35
Flow rate Q (m3/h)
SF increased pumpability while FA decreased it (when added “on top”!) Many variables No general conclusions Cement Silica fume Fly ash Water W/B
6 - Ref 450
135 0.3
7 - SF 450 45
148.5 0.3
8 - FA 450
• Silica fume
100 147
• Fly ash (here counted with 40%)
− Reduced plastic viscosity
− Increased plastic viscosity
0.3
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
10/16
Pumpability – Effect of consistency 35
11 (FA)
Consistency F3 Consistency F5 Crushed aggregates CEM II
30
8 (FA)
Pressure P (kPa)
25
7 (SF) 10 (SF)
20 w/b = 0.30
3
15
4
10
(BASF, 2008)
w/b = 0.45
5 0
0
10
20
30
40 50 3 Flow rate Q (m /h)
60
70
80
• Higher SP lower plastic viscosity higher pumpability TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
11/16
Comparison – Plastic viscosity
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
12/16
Comparison – Yield stress
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
13/16
Validation Field measurements (full scale pumping) vs. Sliper estimations OC Field
14
OC Sliper
12 Pressure P (Mpa)
SCC Field 10
SCC Sliper
8 6 4 2 0 0
10 20 30 40 50 60 70 80 90 100 Flow rate Q (m3/h)
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
14/16
Summary • Sliper is a new, portable device to test pumpability of concrete • Sliper clearly demonstrated the influence of concrete composition on pumpability • Sliper results correlated well with viscometer results
• Pressure predictions using Sliper approach were validated with field measurements successfully
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
15/16
Outlook Time/Pumpability
Sliper wall – DEM
A cross-platform study on influence of time on concrete pumpability
Temperature/Pumpability A cross-platform study on influence of temperature on concrete pumpability
Numerical Model Computation Fluid Dynamics Method • Single fluid approach • Flow patterns of concrete flow in pipes
Viscosity contours – CFD
Distinct Element Method • Particle-flow approach • Micro-mechanical model • SIPM, lubricating layer … TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
16/16
Literature Mix-Compositions, experimental results and detailed analyses in
1.
V. N. Nerella “Experimental and Numerical Study on Pumpability of Concrete using Sliding Pipe Rheometer and ANSYS Fluent”, Master Thesis supervised by Uni. Prof. Dr.-Ing. V. Mechtcherine, Institute of Construction Materials, TU Dresden, 26. Sep. 2012.
2.
V. Mechtcherine, V. N. Nerella, and K. Kasten “Testing pumpability of concrete using Sliding Pipe Rheometer,” Construction and Building Materials, vol. 53, pp. 312–323, Feb. 2014.
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
17/16
Literature [1]
S. Jacobsen, J. H. Mork, S. F. Lee, and L. Haugan, “Pumping of concrete and mortar – State of the art,” 2008.
[2]
K. Kasten, “Gleitrohr – Rheometer, Ein Verfahren zur Bestimmung der Fließeigenschaften von Dickstoffen in Rohrleitungen [in German],” TU Dresden, 2010.
[3]
D. J. Seon, C. K. Park, J. H. Jeong, S. H. Lee, and S. H. Kwon, “A Computational Approach to Estimating a Lubricating Layer in Concrete Pumping,” vol. 27, no. 3, pp. 189–210, 2012.
[4]
“Testing fresh concrete- Part 5- Flow table test. DIN EN 12350-5; Prüfung von Frischbeton – Teil 5: Ausbreitmaß. Deutsche Fassung DIN EN 12350-5,” 1999.
[5]
T. C. Holland, “FHWA-IF-06-0106: Silica Fume User’s Manual,” 2005.
[6]
C. P. G. BASF, “Mode of Action of Superplasticizers for cement based construction materials - Technical Leaflet,” in in Construction Polymers, 2008, pp. 1–2.
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
18/16
THANK YOU
V. N. Nerella TU Dresden
Prof. Dr.-Ing. V. Mechtcherine, TU Dresden
TU Dresden, Institute of Construction Materials, V. N. Nerella, K. Kasten, V. Mechtcherine
Dr.-Ing. K. Kasten, Putzmeister Engineering GmbH
19/16