ECSE 2100 Fields & Waves I. Load Matching. What if the load cannot be made
equal to Zo for some other reasons? Then, we need to build a matching network
...
SmithChart & MatchingNetwork James Lu
JamesJ.Q.Lu
ECSE2100Fields&WavesI
1
NonmatchedImpedance(*z0) • ReflectionsleadtoZin variationswithline lengthandfrequency • Poweriswastedbecauseofreactivepower, whichcanalsodamageequipmentduring shortcircuit(forexample) • Onlypartialpowerisdeliveredtotheload. • SWR>1:therewillbevoltagemaximaon theline,voltagebreakdownathighpower levels • Noises(bouncesorechoes)
JamesJ.Q.Lu
ECSE2100Fields&WavesI
2
BenefitsofMatching(*=0) • Zin =ZO, independentoflinelength, andfrequency(overthebandwidth ofthematchingnetwork) • Maximumpowertransfertotheload isachieved • SWR=1:novoltagepeaksontheline • Nobounces(echoes)
JamesJ.Q.Lu
3 UQ
ECSE2100Fields&WavesI
LoadMatching What if the load cannot be made equal to Zo for some other reasons? Then, we need to build a matching network so that the source effectively sees a match load. Ps
M
Z0
ZL
* 0 Typically we only want to use lossless devices such as capacitors, inductors, transmission lines, in our matching network so that we do not dissipate any power in the network and deliver all the available power to the load.
JamesJ.Q.Lu
ECSE2100Fields&WavesI
4
NormalizedImpedance It will be easier if we normalize the load impedance to the characteristic impedance of the transmission line attached to the load. Z
z
Zo
z
r jx
1 * 1 *
Since the impedance is a complex number, the reflection coefficient will be a complex number
*
r
u jv
1 u 2 v2
1 u
2
JamesJ.Q.Lu
v
2v
x
1 u 2 v 2
2
ECSE2100Fields&WavesI
5
SmithCharts The impedance as a function of reflection coefficient can be re-written in the form:
r
x
1 u 2 v2
1 u 2 v 2 2v
1 u
2
v2
2
r · § 2 ¨u ¸ v 1 r ¹ ©
u 1 §¨ v 1 ·¸ x¹ © 2
1
1 r 2 2
1 x2
These are equations for circles on the (u,v) plane
x xo 2 ( y yo ) 2
JamesJ.Q.Lu
ECSE2100Fields&WavesI
a2
6
SmithChart– RealCircles Im^*` 1
*
1 Circle
0.5
r=0
r=1/3 r=1
1
0.5
0
Re^*`
r=2.5 0.5
1
0.5
1
JamesJ.Q.Lu
ECSE2100Fields&WavesI
7
SmithChart– ImaginaryCircles Im^*` 1
x=1/3
x=1
x=2.5
0.5
1
0.5
0
x=-1/3
0.5
0.5
x=-1
1
Re^*`
x=-2.5
1
JamesJ.Q.Lu
ECSE2100Fields&WavesI
8
SmithChart
Impedances, voltages, currents, etc. all repeat every half wavelength
zL zl
WT G
Inductive R SW
Pmin
L WT
S
*e j 2 E l
1 * 1 *
j
4S
O
l
ro (at P max)
Open (z=f) *=1
Pmax
Capacitive
Purely imaginary impedances along the periphery
Purely real impedances along the horizontal centre line
JamesJ.Q.Lu
*l
ro *=0
y=1/(1+j) =0.5-j0.5
1 *l 1 *l
*e
z=1+j z=1
Short (z=0) *=1
z L 1 z L 1 1 * r L jx L 1 *
* *L
ECSE2100Fields&WavesI
9
SmithChartExample1 Given:
Zo
0.545q
50:
WT G
*L
What is ZL? ZL
50:1.39 j1.35
L WT
69.5: j 67.5:
JamesJ.Q.Lu
ECSE2100Fields&WavesI
10
SmithChartExample2 Given: ZL 15: j25:
50:
Zo
WT G
What is *L? 15: j25: 50: 0.3 j0.5
zL *L
0.6 123q
L WT
z1 = 2 + j z2 = 1.5 -j2 z3 = j4 z4 = 3 z5 = infinity z6 = 0 z7 = 1 z8 = 3.68 -j18 JamesJ.Q.Lu
ECSE2100Fields&WavesI
11
SmithChartExample3 ZL
Zo
50:
W
6.78ns
50: j50:
WT G
Given:
What is Zin at 50 MHz? 50: j50: 50: 1.0 j1.0
*L *in l
0.44564q
*L e j 2 El fOW
*L e j 4S l / O 9
50 10 6.78 10 O 6
*L e j 2ZW 0.339O
L WT
zL
2ZW 244q
-in 180q *in 0.445180q Z in
50:0.38 j 0.0 19:
JamesJ.Q.Lu
ECSE2100Fields&WavesI
12
Admittance A matching network is going to be a combination of elements connected in series AND parallel. Z1 Impedance is well suited when working Z2 with series configurations. For example:
V
ZI
Z1 Z2
ZL
Impedance is NOT well suited when working with parallel configurations.
For parallel loads it is better to work with admittance.
I
1 Z1
YV
JamesJ.Q.Lu
Z2
Y1
Y2
Z1Z2 Z1 Z2
ZL
Y1
Z1
YL
Y1 Y2
ECSE2100Fields&WavesI
13
NormalizedAdmittance y
Y Yo y
g
1 u 2 v 2 2v
1 u
2
v
1 * 1 * 2
1 u 2 v2
b
g jb
YZo
2
§ g · ¨¨ u ¸¸ v 2 1 g ¹ ©
u 1 §¨ v 1 ·¸ b¹ © 2
1
1 g 2 2
1 b2
These are equations for circles on the (u,v) plane JamesJ.Q.Lu
ECSE2100Fields&WavesI
14
AdmittanceSmithChart Conductance Circles 1
Susceptance Circles
Im^*`
1
Im^*`
b=-1/3
b=-1 b=-2.5
0.5
g=2.5 1
g=f
g=1/3
g=1 0.5
0
g=0
0.5
Re^*`1
0.5
b=f 1
0.5
0
Re^*`
0.5
1
b=1/3
b=2.5 0.5
0.5
b=1 1
1
JamesJ.Q.Lu
ECSE2100Fields&WavesI
15
ImpedanceandAdmittanceSmithCharts • For a matching network that contains elements connected in series and parallel, we will need two types of Smith charts ¾ impedance Smith chart ¾ admittance Smith Chart
• The admittance Smith chart is the impedance Smith chart rotated 180 degrees. – We could use one Smith chart and flip the reflection coefficient vector 180 degrees when switching between a series configuration to a parallel configuration.
JamesJ.Q.Lu
ECSE2100Fields&WavesI
16
AdmittanceSmithChartExample1 Given:
y 1 j1 WT G
Find * z • Procedure:
Plot y
•Plot 1+j1 on chart •vector = 0.44564q
Flip 180 degrees
•Flip vector 180 degrees
z
L WT
* 0.445 116q
0.5 j 0.5
JamesJ.Q.Lu
Read *&z
ECSE2100Fields&WavesI
17
AdmittanceSmithChartExample2 Given:
Find Y • Procedure:
WT G
* 0.5 45q Zo 50:
• Plot *
Plot *
• Flip vector by 180 degrees Read y
y 0.38 j0.36 Y
L WT
• Read coordinate
Flip 180 degrees
1 0.38 j 0.36 50:
7.6 j 7.2 10 3 S JamesJ.Q.Lu
ECSE2100Fields&WavesI
18
MatchingExample Ps
Z0
50:
M
100:
* 0 Match 100: load to a 50: system at 100MHz A 100: resistor in parallel would do the trick, but ½ of the power would be dissipated in the matching network. We want to use only lossless elements such as inductors and capacitors so we don’t dissipate any power in the matching network
JamesJ.Q.Lu
ECSE2100Fields&WavesI
19
MatchingExample
We won’t get any closer by adding series impedance so we will need to add something in parallel.
WT G
We need to go from z=2+j0 to z=1+j0 on the Smith chart
L WT
We need to flip over to the admittance chart
Impedance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
20
MatchingExample
L WT
Before we add the admittance, add a mirror of the r=1 circle as a guide.
WT G
y=0.5+j0
Admittance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
21
MatchingExample Before we add the admittance, add a mirror of the r=1 circle as a guide
WT G
y=0.5+j0
L WT
Now add positive imaginary admittance.
Admittance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
22
MatchingExample Before we add the admittance, add a mirror of the r=1 circle as a guide
WT G
y=0.5+j0
Now add positive imaginary admittance jb = j0.5
j0.5 50:
j0.5
j2S100MHz C
L WT
jb
C 16pF 16pF
100:
JamesJ.Q.Lu
Admittance Chart ECSE2100Fields&WavesI
23
MatchingExample Flip to the impedance Smith Chart
WT G
We will now add series impedance
L WT
We land at on the r=1 circle at x=-1, i.e. z = 1 – j1
Impedance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
24
Add positive imaginary admittance to get to z=1+j0
jx
j1.0 50:
WT G
MatchingExample
j1.0 j2S100MHz L
L 80nH
L WT
80nH
16pF
100:
JamesJ.Q.Lu
ECSE2100Fields&WavesI
Impedance Chart 25
MatchingExample
WT G
This solution would have also worked
L WT
32pF
160nH
JamesJ.Q.Lu
100:
ECSE2100Fields&WavesI
Impedance Chart 26
MatchingBandwidth 0
80 nH 5
16 pF
100 :
WT G
Reflection Coefficient (dB)
10
150 MHz
15 20 25 30 35
50
60
70
80
90 100 110 Frequency (MHz)
120
130
140
150
L WT
40
50 MHz
Because the inductor and capacitor impedances change with frequency, the match works over a narrow frequency range JamesJ.Q.Lu
Impedance Chart
ECSE2100Fields&WavesI
27
SingleStubTuner yl1
l1
yl2
Z0
Goal: *
Z0
0
zin=1 (yin=1)
ZL
Z0
l2
Open or Short
yin = yl1 + yl2 = 1 = (gl1 + jbl1) + jbl2
1 *l 1 *l
yl
1 zl
*l
*e 2 E l
gl1 = 1 (real-part condition) Stub length l = W up=fOW bl1 = -bl2 (imaginary-part condition) Phase shift: TJ=2El=2(2S/O)l=4S(l/O) (2 Degrees of freedom) Open: Zin = -jZocotEl, or zin = -jcotEl Short: Zin = jZotanEl, or zin = jtanEl JamesJ.Q.Lu
ECSE2100Fields&WavesI
28
SingleStubTuner Match 100: load to a 50: system at 100MHz using two transmission lines connected in parallel WT G
Flip to Admittance chart y=0.5+j0
L WT
Adding length to Cable 1 rotates the reflection coefficient clockwise to g=1. l1 = 0.152O
y1l=1+j0.72
JamesJ.Q.Lu
Admittance Chart ECSE2100Fields&WavesI
29
L WT
The stub has to add a normalized admittance of -0.72 to bring the trajectory to the center of the Smith Chart
WT G
SingleStubTuner
Admittance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
30
SingleStubTuner
L WT
By adding enough cable to the short stub, the admittance of the stub will reach to -0.72
WT G
An short stub of zero length has an admittance=jf
l2 = (0.401-0.25)O = 0.151O
Admittance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
31
SingleStubTuner l1 = 0.152O
0
L WT
l2 = 0.151O
100:
WT G
*
Admittance Chart JamesJ.Q.Lu
ECSE2100Fields&WavesI
32
SingleStubTuner l1 = 0.347O
100:
0 WT G
*
l2 = 0.097O
L WT
This solution would have worked as well.
An open stub of zero length has an admittance=j0
Admittance Chart
JamesJ.Q.Lu
ECSE2100Fields&WavesI
33
SingleStubTunerMatchingBandwidth *
l1 = 0.347O
0
100: WT G
l2 = 0.097O 0 5
15 20
50 MHz
25
L WT
Reflection Coefficient (dB)
10
30 35 40
150 MHz 50
60
70
80
90 100 110 Frequency (MHz)
120
130
140
15
Because the cable phase changes linearly with frequency, the match works over a narrow frequency range JamesJ.Q.Lu
ECSE2100Fields&WavesI
Impedance Chart 34
Summary • Impedance matching is necessary to: – reduce VSWR – obtain maximum power transfer
• Lump reactive elements and a single stub can be used. • A quarter-wave line can also be used to transform resistance values, and act as an impedance inverter. • These matching network types are narrow-band: they are designed to operate at a single frequency only. JamesJ.Q.Lu
ECSE2100Fields&WavesI
36