Soft b-open sets and soft b-continuous functions, Math ...

49 downloads 1383 Views 493KB Size Report
the original work is cited. You may self- archive this article on your own website, an institutional repository or funder's repository and make it publicly available ...
Comments on “Soft b-open sets and soft b-continuous functions, Math. Sci. (2014) 8:124” A. Ghareeb

Mathematical Sciences ISSN 2008-1359 Math Sci DOI 10.1007/s40096-016-0174-0

1 23

Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may selfarchive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately.

1 23

Math Sci DOI 10.1007/s40096-016-0174-0

COMMENT

Comments on ‘‘Soft b-open sets and soft b-continuous functions, Math. Sci. (2014) 8:124’’ A. Ghareeb1

Received: 26 May 2015 / Accepted: 7 January 2016  The Author(s) 2016. This article is published with open access at Springerlink.com

F1 ðe1 Þ ¼ fh1 ; h2 g; F1 ðe2 Þ ¼ fh1 ; h2 g;

In Example 1 of [1], the authors concluded that ðX; s; EÞ is a soft topological space over the universe X ¼ fh1 ; h2 ; h3 ; h4 g and the set of parameters E ¼ fe1 ; e2 ; e3 g. Actually, their conclusion is not correct where ðF1 ; EÞ, ðF2 ; EÞ 2 s leads to ~ 2 ; EÞ 62 s and ðF1 ; EÞ[ðF ~ 2 ; EÞ 62 s. Also, this is ðF1 ; EÞ\ðF achieved for another soft sets like ðF1 ; EÞ and ðF14 ; EÞ. As a result of this flaw, Examples 2, 6, 7 and 8 in [1] are not correct. Examples 1 and 2 achieve the goal of Examples 1 and 2 in [1]. Example 1 (1)

~ X; ~ ðF1 ; EÞ; ðF2 ; EÞ; ðF3 ; EÞg is a soft If s1 ¼ f;; topology where ðF1 ; EÞ, ðF2 ; EÞ, ðF3 ; EÞ and (F, E) are soft sets over X defined by: F1 ðe2 Þ ¼ fh1 g; F2 ðe2 Þ ¼ fh2 g;

F3 ðe1 Þ ¼ fh1 ; h2 g; F3 ðe2 Þ ¼ fh1 ; h2 g: and Fðe1 Þ ¼ fh1 ; h3 g;

Fðe2 Þ ¼ fh1 ; h3 g:

Then (F, E) is sb-open set but not sp-open set. ~ X; ~ ðF1 ; EÞ; . . .; ðF7 ; EÞg is a soft topology If s2 ¼ f;; where ðF1 ; EÞ, …, ðF7 ; EÞ and (H, E) are soft sets over X defined by:

This comment refers to the original article with article doi:10.1007/ s40096-014-0124-7 (Math Sci (2014) 8:124). & A. Ghareeb [email protected]; [email protected] 1

F4 ðe1 Þ ¼ fh2 g;

Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt

F4 ðe2 Þ ¼ fh1 g;

F5 ðe1 Þ ¼ fh1 ; h2 g; F5 ðe2 Þ ¼ X; F6 ðe1 Þ ¼ X; F6 ðe2 Þ ¼ fh1 ; h2 g; F7 ðe1 Þ ¼ fh2 ; h3 g; F7 ðe2 Þ ¼ fh1 ; h3 g: and

Let X ¼ fh1 ; h2 ; h3 ; h4 g and E ¼ fe1 ; e2 g.

F1 ðe1 Þ ¼ fh1 g; F2 ðe1 Þ ¼ fh2 g;

(2)

F2 ðe1 Þ ¼ fh2 g; F2 ðe2 Þ ¼ fh1 ; h3 g; F3 ðe1 Þ ¼ fh2 ; h3 g; F3 ðe2 Þ ¼ fh1 g;

Hðe1 Þ ¼ ;;

Hðe2 Þ ¼ fh1 g:

Then (H, E) is sb-open set but not ss-open set. Example 2 Let R be the set of the real numbers and E ¼ feg be the parameters set. Define the usual soft topology over R with respect to E. Let (F, E) be a soft set over R defined by FðeÞ ¼ ½0; 1Þ \ Q where Q is the set of rational numbers, then (F, E) is sb-open set but not sb-open set. The following two examples meet the purpose of Examples 6, 7 and 8 in [1]. Example 3 Let X¼fh1 ;h2 ;h3 ;h4 g, Y ¼fm1 ;m2 ;m3 ;m4 g, E¼fe1 ;e2 g and K¼fk1 ;k2 g. 1.

If ðX; s1 ; EÞ is a soft topological space defined as in Example 1(1), ðY; m1 ; KÞ be a soft topological space ~ Y; ~ ðL1 ; KÞg and ðL1 ; KÞ defined over Y where m1 ¼ f;; is a soft set on Y defined by: L1 ðk1 Þ ¼ fm1 ; m2 g;

L1 ðk2 Þ ¼ fm1 ; m2 g:

Let f : ðX; s1 ; EÞ ! ðY; m1 ; KÞ be a soft function defined by uðh1 Þ ¼ m2 ; pðe1 Þ ¼ k2 ;

uðh2 Þ ¼ m4 ;

uðh3 Þ ¼ m1 ;

uðh4 Þ ¼ m3 ;

pðe2 Þ ¼ k1 :

123

Math Sci

2.

Then f is soft b-continuous function but not soft precontinuous. If ðX; s2 ; EÞ is a soft topological space defined as in Example 1(2), ðY; m2 ; KÞ is a soft topological space ~ Y; ~ ðL2 ; KÞg and ðL2 ; KÞ defined over Y where m2 ¼ f;; is a soft set on Y defined by: L2 ðk1 Þ ¼ fm2 g;

L2 ðk2 Þ ¼ ;:

Let f : ðX; s1 ; EÞ ! ðY; m2 ; KÞ be a soft function defined as in (1), then f is soft b-continuous function but not soft semi-continuous. Example 4 Let R be the set of real numbers, E ¼ feg, K ¼ fkg, ðR; U; EÞ be the usual soft topology and ðR; V; KÞ be a soft topology over R such that V ¼ ~ R; ~ ðM; KÞg where (M, K) is a soft set defined over R by f;; MðkÞ ¼ ½0; 1Þ \ Q. Define the maps u : R ! R and p : E ! K by  x; if x 2 ½0; 1Þ \ Q; uðxÞ ¼ 0; otherwise.

123

where and pðeÞ ¼ k. Then f 1 ðM; KÞ ¼ ðH; EÞ HðeÞ ¼ ½0; 1Þ \ Q. Thus f is soft b-continuous function but not soft b-continuous. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://crea tivecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References 1. Akdagˇ, Metin, Ozkan, Alkan: Soft b-open sets and soft bcontinuous functions. Math. Sci. 8, 124 (2014)

Suggest Documents