Mar 13, 2018 - Francisco Rodolfo Barbosa-Anda, Frédéric Lerasle, Cyril Briand and. Alhayat Ali Mekonnen. LAAS-CNRS, Université de Toulouse, CNRS, UPS ...
Soft-Cascade Learning with Explicit Computation Time Considerations IEEE Winter Conf. on Applications of Computer Vision
Francisco Rodolfo Barbosa-Anda, Frédéric Lerasle, Cyril Briand and Alhayat Ali Mekonnen LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
March 13, 2018
Table of contents
1
Introduction and Motivations
2
A novel iterative search procedure for large scale problems
3
Evaluations
4
Conclusion and Contributions
1 / 10
Introduction and Motivations Soft-cascade
Samples
Weak Classifier 1
Weak Classifer 2
h1
Weight α1
S1
hL
S1 ≥ θ1 Weight α2
+
S2
···
S2 ≥ θ2
S1
Threshold θ1
Yes
Weak Classifier L
h2
S2
Threshold θ2
Weight αL
+
SL
SL ≥ θL
SL−1
Threshold θL
No
Figure: Soft-Cascade Detector
Existing threshold tuning strategies BIP-based approach of Barbosa-Anda et al. [1], Direct Backward Pruning (DBP) of Zhang and Viola [6], WaldBoost of Sochman and Matas [4], “soft-cascade” of Bourdev and Brandt [2], boosting chain of Xiao et al. [5], fixed vector of Dollár et al. [3]. Introduction and Motivations
2 / 10
Search Space
2
2
1.5
1.5 1
0
−0.5
1
2
3
4
Threshold
Score
1 0.5
0.5 0
−0.5
−1
−1
−1.5
−1.5
−2
Weak Classifier
(a) A score tree.
−2
1
2
3
4
Weak Classifier
(b) Its threshold graph.
A novel iterative search procedure for large scale problems
3 / 10
Graph local search
Algorithm 1 Graph local search (GLS)
2 1.5
Threshold
1 0.5 0
−0.5
1
2
3
4
−1 −1.5 −2
Weak Classifier
Figure: A neighborhood in the threshold graph.
Require: tpr (Θ0 ) ≥ TPR and δmax ≥ 1 α←1 better 1 ← true while better1 do δ←1 better 2 ← false Θα,0 ← Θα−1 while not better 2 and δ ≤ δmax do Θα,δ ← BIP (TΘα ,δ−1 , TPR) better 2 ← objfunc (Θα,δ ) < objfunc (Θα,δ−1 ) δ ←δ+1 end while Θα ← Θα,δ−1 better 2 ← objfunc (Θα ) < objfunc (Θα−1 ) α←α+1 end while return Θα−1
A novel iterative search procedure for large scale problems
4 / 10
A cascade reduction procedure Algorithm 2 Iterative search procedure
2 1.5
Threshold
1 0.5 0
−0.5
1
2
3
4
−1 −1.5 −2
Weak Classifier
Figure: A reduction in the threshold graph.
Require: tpr (Θ0 ) ≥ TPR and δmax ≥ 1 better ← true β←1 L0 ← L while better and lTPR < L0 do L0 ← lTPR 0 ΘLβ−1 ← {θ1 , . . . , θL0 } ∈ Θβ−1 0 0 L Θβ ← GLS ΘLβ−1 , TPR, δmax for all l|1 ≤ l ≤ L do if l ≤ L0 then 0 0 θl ∈ Θβ ← θlL ∈ ΘLβ else θl ∈ Θβ ← min{n|S 0 >θL0 ∈ΘL0 ,yn =1} Sn,l n,L
end if end for better ← objfunc (Θβ−1 ) β ←β+1 end while return Θβ−1
L0
β
objfunc (Θβ )