Soil management: Carbon and Beyond

0 downloads 0 Views 58MB Size Report
Técnico, da Universidade de Lisboa. Doctor Fausto Miguel Cereja Seixas Freire, Professor Auxiliar da Faculdade de. Ciências e Tecnologia da Universidade de ...
  UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO        

Soil management: Carbon and Beyond An analysis of selected Portuguese cultivated systems including direct and indirect effects Tatiana Raquel Alves Valada Supervisor: Doctor Tiago Morais Delgado Domingos Thesis approved in public session to obtain the PhD Degree in Environmental Engineering Jury final classification: Pass with merit Jury Chairperson: Chairman of the IST Scientific Board Members of the Committee: Doctor António Jorge Gonçalves de Sousa Doctor Fausto Miguel Cereja Seixas Freire Doctor Gabriel Paulo Alcântara Pita Doctor Tiago Morais Delgado Domingos Doctor Maria da Conceição Pinto Baptista Gonçalves Doctor Maria de Fátima de Sousa Calouro

2014

 

 

  UNIVERSIDADE DE LISBOA INSTITUTO SUPERIOR TÉCNICO    

Soil management: Carbon and Beyond An analysis of selected Portuguese cultivated systems including direct and indirect effects Tatiana Raquel Alves Valada Supervisor: Doctor Tiago Morais Delgado Domingos Thesis approved in public session to obtain the PhD Degree in Environmental Engineering Jury final classification: Pass with merit Jury Chairperson: Chairman of the IST Scientific Board Members of the Committee: Doctor António Jorge Gonçalves de Sousa, Professor Catedrático do Instituto Superior Técnico, da Universidade de Lisboa Doctor Fausto Miguel Cereja Seixas Freire, Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Doctor Gabriel Paulo Alcântara Pita, Professor Auxiliar do Instituto Superior Técnico, da Universidade de Lisboa Doctor Tiago Morais Delgado Domingos, Professor Auxiliar do Instituto Superior Técnico, da Universidade de Lisboa Doctor Maria da Conceição Pinto Baptista Gonçalves, Investigadora Auxiliar do Instituto Nacional de Investigação Agrária e Veterinária, I.P. Doctor Maria de Fátima de Sousa Calouro, Investigadora do Instituto Nacional de Investigação Agrária e Veterinária, I.P.

Instituição Financiadora FCT - Fundação para a Ciência e a Tecnhologia

2014

 

                                      Para  os  meus  pais    

   

I  

RESUMO   O   solo   constitui   o   mais   importante   reservatório   de   carbono,   tendo   a   gestão   dos   sistemas   cultivados  um  papel  crucial  no  balanço  do  seu  impacto  para  as  alterações  climáticas.  Estes  sistemas   requerem  o  uso  de  factores  de  produção,  como  fertilizantes,  pesticidas  e  maquinaria,  implicando  o   uso  direto  e  indireto  de  recursos  e  emissão  de  resíduos  para  o  ecossistema  global.   Assim,   o   principal   objectivo   aqui   proposto   é   a   análise   do   impacto   ambiental   de   sistemas   cultivados   incluindo   efeitos   diretos   e   indiretos.   Três   questões   de   investigação   são   analisadas:   (1)   Pode  o  uso  de  corta-­‐mato  em  pastagens  naturais  contribuir  para  o  sequestro  de  carbono  no  solo?   (2)  Será  a  prática  de  regadio  em  Portugal  uma  opção  ambientalmente  favorável?  (3)  É  o  eucalipto   um  bom  substituto  para  o  carvão  na  geração  de  energia  eléctrica?   A   abordagem   metodológica   proposta   considera   a   análise   de   impactos   ambientais   diretos   e   indiretos,  uma  produção  constante  de  bens  alimentares,  e  o  efeito  da  alteração  direta  e  indireta  do   uso   de   solo.   Esta   mostrou-­‐se   eficaz,   integrada   e   inovadora,   permitindo   responder   às   questões   de   investigação.  No  que  respeita  à  gestão  de  pastagens,  para  além  do  sequestro  de  carbono  no  solo,   foram   identificados   outros   impactos   em   ciclo   de   vida,   representando   um   avanço   neste   tipo   de   análise.   Na   avaliação   da   agricultura   de   regadio,   o   pressuposto   da   produção   constante   de   bens   alimentares   permitiu   um   aumento   do   conhecimento,   rejeitando   a   conclusão   difundida   do   seu   balanço   negativo   de   impacto   ambiental.   Para   a   análise   da   substituição   de   carvão   por   eucalipto,   a   inclusão  do  efeito  indireto  de  alteração  de  uso  do  solo  permitiu  uma  avaliação  mais  conservadora   dos  impactos  ambientais,  contrariando  a  abordagem  da  sua  exclusão,  a  mais  comum  na  literatura.     Palavras-­‐chave:  sistemas  cultivados,  sequestro  de  carbono  no  solo,  impactos  ambientais,  efeitos   indiretos,  pastagem,  sistema  de  regadio,  produção  de  eucalipto      

  III    

ABSTRACT   Soils  are  the  most  important  reservoirs  of  carbon,  with  the  management  of  cultivated  systems   playing   a   major   role   on   the   climate   change   impact   balance.   Moreover,   cultivated   systems   require   the  use  of  input  factors  such  as  fertilizers,  pesticides  and  machinery,  implying  a  direct  and  indirect   use  of  resources  and  emission  of  residues  into  the  global  ecosystem.   Here,   our   main   goal   is   to   analyse   the   environmental   impact   from   agricultural   based   systems,   including   direct   and   indirect   effects.   Three   research   questions   are   considered:   (1)   Can   no-­‐tillage   contribute   to   soil   sequestration   in   Portuguese   natural   grasslands?   (2)   Is   Portuguese   irrigated   agriculture   a   good   environmental   option?   and   (3)   Is   eucalyptus   a   good   substitute   for   coal   in   electricity  generation?     The   proposed   methodological   approach   considers   a   set   of   direct   and   indirect   environmental   impacts,   constant   food   production   as   well   as   direct   and   indirect   land   use   change   effects.   The   approach   proved   to   be   effective,   integrative   and   innovative,   allowing   us   to   answer   the   research   questions.  For  the  grassland  analysis,  besides  the  quantified  soil  carbon  sequestration,  other  direct   and   indirect   impacts   were   identified,   representing   an   advance   in   this   sort   of   analysis.   For   the   assessment   of   irrigated   agriculture,   the   assumption   of   constant   food   production   allowed   a   new   insight,  rejecting  the  most  perceived  conclusion  of  its  negative  environmental  impact  balance.  For   the   analysis   of   eucalyptus   as   a   substitute   for   coal,   the   quantification   of   indirect   land   use   change,   allows   a   more   accurate   assessment   of   environmental   impacts,   lower   than   the   ones   obtained   excluding  it,  the  most  common  approach  in  literature.     Keywords:   Cultivated  systems,  soil  carbon  sequestration,  environmental  impact,  indirect  effects,   grasslands,  irrigated  systems,  eucalyptus  production        

  V    

ACKNOWLEDGMENTS   I  thank  my  advisor,  Tiago  Domingos.  Without  his  orientation,  bright  ideas,  motivation,  patience   and  friendship  this  thesis  would  not  have  been  possible.   I   thank   Ricardo   Teixeira.   His   support   and   knowledge,   right   from   the   beginning   determined   my   path.  He  was  a  mentor,  a  friend  and  the  companion  of  many  laughs.   I  thank  Helena  Martins.  She  was  like  a  fresh  breeze,  teaching  me  how  to  be  a  better  professional   and  also  a  better  person.   I   thank   the   Terraprima   team,   Nuno   Calado,   Nuno   Ribeiro,   Alfredo   Gonçalves   Ferreira,   Pedro   Silveira,  António  Gonçalves  Ferreira,  Manuel  Ribeiro,  Ricardo  Vieira,  Cristina  Marta  Pedroso,  Carlos   Teixeira,   Nuno   Sarmento,   Margarida   Gonçalves   and   Lúcio   do   Rosário.   Their   help   contributed   to   a   better  work  in  a  decisive  way.   I  thank  the  FCT  –  Fundação  para  a  Ciência  e  a  Tecnologia  for  the  financial  support,  through  the   doctoral  scholarship  SFRH/BD/40104/2007,  funding  program  PIDDAC.   The   work   was   also   supported   by   the   projects   PETE   -­‐   Physical   Approaches   to   an   Improved   Economic   Theory   of   the   Environment   (FCT,   PTDC/AMB/64762/2006);   Energy   Wars   (QREN   7929);   and   Agridiag   -­‐   Environmental   farm   diagnostic   tool   "Dialecte"   in   vocational   training   (LLP-­‐LdV-­‐ AGRIDIAG   TOI-­‐2012-­‐HU,   Agreement   number   12/0034-­‐L/4850);   and   by   Fenareg,   the   Portuguese   farmers  federation  for  irrigation.   Thanks  to  you  all,  it  was  a  great  journey.      

  VII    

FULL  TABLE  OF  CONTENTS   RESUMO  .....................................................................................................................................................  III   ABSTRACT  ..................................................................................................................................................  V   ACKNOWLEDGMENTS  ..........................................................................................................................  VII   FULL  TABLE  OF  CONTENTS  ..................................................................................................................  IX   LIST  OF  FIGURES  ..................................................................................................................................  XIII   LIST  OF  TABLES  .....................................................................................................................................  XV   LIST  OF  NOTES  ....................................................................................................................................  XVII   ACRONYMS  AND  ABBREVIATIONS  .................................................................................................  XIX   CHAPTER  1.   INTRODUCTION  ..........................................................................................................  21   1.1.   THE  WORLD  AS  IT  IS  .....................................................................................................................................  21   1.2.   STATE  OF  THE  ART  &  CONTRIBUTION  .......................................................................................................  26   CHAPTER  2.   METHODOLOGICAL  OVERVIEW  ............................................................................  29   2.1.   OVERALL  APPROACH  ....................................................................................................................................  29   2.2.   SOIL  &  CARBON  .............................................................................................................................................  35   2.3.   CARBON  &  BEYOND  ......................................................................................................................................  37   CHAPTER  3.   CAN  NO-­‐TILLAGE  CONTRIBUTE  TO  SOIL  CARBON  SEQUESTRATION  IN   PORTUGUESE  NATURAL  GRASSLANDS?  ...............................................................................................  39   3.1.   INTRODUCTION  .............................................................................................................................................  40   3.2.   METHODS  .......................................................................................................................................................  45   3.2.1   Sampling  design  .....................................................................................................................................  45   3.2.2   Statistical  analysis  of  SOM  differences  .........................................................................................  50   3.2.2.1   TWO  SAMPLE  MEAN  HYPOTHESIS  APPROACH  .......................................................................................................................  50   3.2.2.2   MULTIPLE  LINEAR  REGRESSION  APPROACH  .........................................................................................................................  52  

3.2.3   Carbon  sequestration  factor  .............................................................................................................  53   3.3.   RESULTS  &  DISCUSSION  ...............................................................................................................................  54   3.3.1   Statistical  analysis  of  SOM  differences  .........................................................................................  54   3.3.1.1   3.3.1.2  

TWO  SAMPLE  MEAN  HYPOTHESIS  APPROACH  .......................................................................................................................  54   MULTIPLE  LINEAR  REGRESSION  APPROACH  ..........................................................................................................................  60  

3.3.2   Carbon  sequestration  factor  .............................................................................................................  62   3.4.   CONCLUSIONS  ................................................................................................................................................  67   CHAPTER  4.   IS  PORTUGUESE  IRRIGATED  AGRICULTURE  A  GOOD  ENVIRONMENTAL   OPTION?.................  .........................................................................................................................................  69   4.1.   INTRODUCTION  .............................................................................................................................................  69   4.2.   METHODOLOGY  .............................................................................................................................................  73   4.2.1   Overview  ....................................................................................................................................................  73   4.2.2   The  counterfactual  scenario  .............................................................................................................  73   4.3.   CHARACTERIZATION  OF  THE  AGRICULTURAL  SYSTEM  ...........................................................................  76   4.3.1   Input  resources  .......................................................................................................................................  76   4.3.2   Output  flows  and  emissions  ...............................................................................................................  79     IX    

4.4.   RESULTS  AND  DISCUSSION  ..........................................................................................................................  81   4.4.1   Water  ..........................................................................................................................................................  81   4.4.1.1   4.4.1.2   4.4.1.3  

USE  ..........................................................................................................................................................................................  81   EUTROPHICATION  ...................................................................................................................................................................  85   QUALITY  ..................................................................................................................................................................................  89  

4.4.2   Land  .............................................................................................................................................................  94   4.4.2.1   4.4.2.2   4.4.2.3  

SALINIZATION  .........................................................................................................................................................................  94   ACIDIFICATION  ........................................................................................................................................................................  95   PRODUCTIVE  LAND  USE  ..........................................................................................................................................................  98  

4.4.3   Atmosphere  ...............................................................................................................................................  99   4.4.3.1   4.4.3.2   4.4.3.3  

MICROCLIMATE  CHANGE  ........................................................................................................................................................  99   CLIMATE  CHANGE  ...................................................................................................................................................................  99   OZONE  DEPLETION  ..............................................................................................................................................................  103  

4.4.4   Energy  ......................................................................................................................................................  106   4.4.4.1  

FOSSIL  FUEL  DEPLETION  .....................................................................................................................................................  106  

4.5.   CONCLUSIONS  .............................................................................................................................................  109   CHAPTER  5.   IS  EUCALYPTUS  A  GOOD  SUBSTITUTE  FOR  COAL  IN  ELECTRICITY   GENERATION?......  ......................................................................................................................................  113   5.1.   INTRODUCTION  ..........................................................................................................................................  113   5.2.   METHODOLOGY  ..........................................................................................................................................  115   5.2.1   General  approach  ...............................................................................................................................  115   5.2.2   Modelling  tools  .....................................................................................................................................  115   5.3.   CHARACTERIZATION  OF  THE  ANALYSED  SYSTEM  .................................................................................  116   5.3.1   Goal  and  scope  .....................................................................................................................................  116   5.3.2   Inventory  ................................................................................................................................................  119   5.4.   RESULTS  AND  DISCUSSION  .......................................................................................................................  121   5.4.1   Partial  analysis  ....................................................................................................................................  121   5.4.2   Integrated  analysis  ............................................................................................................................  122   5.4.3   Further  analysis  of  the  ILUC  effect  ..............................................................................................  126   5.5.   CONCLUSION  ...............................................................................................................................................  130   CHAPTER  6.   CONCLUSIONS  AND  FUTURE  WORK  .................................................................  131   BIBLIOGRAPHY  ....................................................................................................................................  135   ANNEX  I.   CHAPTER  3:  FIELD  FORM  .................................................................................................  I   ANNEX  II.   CHAPTER  3:  AUXILIARY  FORM  ..................................................................................  III   ANNEX  III.   CHAPTER  3:  DETAILED  DATA  .....................................................................................  V   ANNEX  IV.   CHAPTER  3:  CAOF  DATA  ........................................................................................  XXXI   ANNEX  V.   CHAPTER  4:  DETAILED  RESULTS  ......................................................................  XXXIII   WATER  USE  ........................................................................................................................................................  XXXIII   EUTROPHICATION  ..............................................................................................................................................  XXXIV   ACIDIFICATION  .....................................................................................................................................................  XXXV   PRODUCTIVE  LAND  USE  .....................................................................................................................................  XXXVI   CLIMATE  CHANGE  .............................................................................................................................................  XXXVII   OZONE  DEPLETION  ..........................................................................................................................................  XXXVIII   FOSSIL  FUEL  DEPLETION  ...................................................................................................................................  XXXIX   X    

COMPARISON  WITH  SIMAPRO  DEFAULT  AGRICULTURAL  PRODUCTS  ........................................................  XXXIX   ANNEX  VI.   CHAPTER  5:  DETAILED  RESULTS  ........................................................................  XLIII   MAIZE  .....................................................................................................................................................................  XLIII   TOMATO  .................................................................................................................................................................  XLIII   BROCCOLI  ................................................................................................................................................................  XLIV   ANNEX  VII.   CHAPTER  6:  PROCESS  BASED  MODELS  ..............................................................  XLV      

  XI    

LIST  OF  FIGURES   FIGURE  1  –  EUROPEAN  TOPSOIL  ORGANIC  CARBON  (EEA  AND  JRC,  2010)  ..................................................................................  21   FIGURE  2  –  EUROPEAN  NITROGEN  SURPLUS  (EEA  AND  JRC,  2010)  ...............................................................................................  24   FIGURE  3  –  SOC  STOCK  CHANGE  DUE  TO  THE  SHIFT  IN  CULTIVATED  SYSTEM  .................................................................................  29   FIGURE  4  –  CULTIVATED  SYSTEMS  AS  A  SOURCE  OF  EMISSIONS  INTO  THE  GLOBAL  ECOSYSTEM  ...................................................  30   FIGURE  5  -­‐  OVERALL  METHODOLOGICAL  APPROACH  ...........................................................................................................................  31   FIGURE  6  –  CASE  STUDY  #1:  NATURAL  GRASSLANDS  ..........................................................................................................................  31   FIGURE  7  –  CASE  STUDY  #2:  IRRIGATED  SYTEM    (1/2)  .....................................................................................................................  32   FIGURE  8  –  CASE  STUDY  #2:  IRRIGATED  SYTEM  (2/2)  ......................................................................................................................  32   FIGURE  9  –  CASE  STUDY  #3:  EUCALYPTUS  AS  A  RAW  MATERIAL  TO  ELECTRICITY  GENERATION  .................................................  33   FIGURE  10  –  PHASES  OF  A  LCA  AS  PRESENTED  BY  REBITZER  ET  AL.  (2004)  ................................................................................  37   FIGURE  11  –  ELEMENTS  OF  LCIA  AS  PRESENTED  BY  PENNINGTON  ET  AL.  (2004)  ......................................................................  38   FIGURE  12  –  MAP  OF  PORTUGAL,  WITH  THE  INDICATION  OF  THE  SAMPLING  SITES  .......................................................................  47   FIGURE  13  –  FIELD  WORK  .......................................................................................................................................................................  48   FIGURE  14  –  FIELD  FORM  ........................................................................................................................................................................  48   FIGURE  15  –  HISTOGRAM  OF  THE  YEARS  PASSED  SINCE  LAST  MOBILIZATION  FOR  THE  NO-­‐TILLED  PLOTS  ................................  51   FIGURE  16  –  SOM  LEVELS  VERSUS  YSLM  FOR  THE  ALL  DATA  ..........................................................................................................  53   FIGURE  17  –  SCHEMATIC  REPRESENTATION  OF  SOM  EVOLUTION  ACCORDING  TO  THE  MANAGEMENT  SYSTEM  ......................  53   FIGURE  18  –  BOX  PLOT  FOR  SOM  DATA  BY  SYSTEM  AND  SAMPLING  YEAR  .....................................................................................  54   FIGURE  19  –  BOX  PLOT  FOR  SOM  DATA  BY  SYSTEM  AND  SAMPLING  YEAR  AND  ORIGINAL  MATERIAL  ........................................  55   FIGURE  20  –  DISTRIBUTIONAL  DOTPLOT  FOR  2011  (LEFT)  AND  2012  (RIGHT)  SOM  DATA  ....................................................  55   FIGURE  21  –  COMPARISON  WITH  NORMAL  QUARTILE  FOR  NO-­‐TILLAGE  (LEFT)  AND  TILLAGE  (RIGHT)  SOM  DATA,  2011  ...  56   FIGURE  22  –  COMPARISON  WITH  NORMAL  QUARTILE  FOR  NO-­‐TILLAGE  (LEFT)  AND  TILLAGE  (RIGHT)  SOM  DATA,  2012  ...  56   FIGURE  23  –  DISTRIBUTIONAL  DOTPLOT  FOR  2011  (LEFT)  AND  2012  (RIGHT)  LN(SOM)  DATA  ............................................  56   FIGURE  24  –  COMPARISON  WITH  NORMAL  QUARTILE  FOR  NO-­‐TILLAGE  (LEFT)  AND  TILLAGE  (RIGHT)  LN(SOM),  2011  .....  57   FIGURE  25  –  COMPARISON  WITH  NORMAL  QUARTILE  FOR  NO-­‐TILLAGE  (LEFT)  AND  TILLAGE  (RIGHT)  LN(SOM),  2012  .....  57   FIGURE  26  –  SCHEMATIC  REPRESENTATION  OF  T-­‐TEST  RESULT  FOR  LN(SOM)  DATA  (95%  CI),  2011  .................................  58   FIGURE  27  –  SCHEMATIC  REPRESENTATION  OF  T-­‐TEST  RESULT  FOR  LN(SOM)  DATA  (95%  CI),  2012  .................................  58   FIGURE  28  –  SCHEMATIC  REPRESENTATION  OF  T-­‐TEST  RESULT  FOR  SOM  DATA  (95%  CI),  2011  ..........................................  59   FIGURE  29  –  SCHEMATIC  REPRESENTATION  OF  T-­‐TEST  RESULT  FOR  SOM  DATA  (95%  CI),  2012  ..........................................  59   FIGURE  30  –  PREDICTED  VERSUS  OBSERVED  DATA,  2011  (LEFT)  AND  2012  (RIGHT)  RESULTS  ...............................................  61   FIGURE  31  –  RESIDUALS  VERSUS  FITTED  VALUES,  2011  (LEFT)  AND  2012  (RIGHT)  RESULTS  ..................................................  61   FIGURE  32  –  COMPARISON  WITH  NORMA  L  QUANTILE  FOR  RESIDUALS,  2011  (LEFT)  AND  2012  (RIGHT)  RESULTS  .............  62   FIGURE  33  –  10-­‐YEAR  MODEL  FOR  THE  EVOLUTION  OF  SOM  IN  SOWN  BIODIVERSE  GRASSLANDS  .............................................  64   FIGURE  34  –  BULK  DENSITY  DATA  DISTRIBUTION  ...............................................................................................................................  65   FIGURE  35  –  BOX  PLOT  DISTRIBUTION  OF  THE  BULK  DENSITY  DATA  ...............................................................................................  65   FIGURE  36  –  PRINCIPAL  AREAS  OF  IRRIGATION  (JONES  ET  AL.,  2012)  ...........................................................................................  70   FIGURE  37  –  SCHEMATIC  REPRESENTATION  OF  THE  ANALYSED  SYSTEM  .........................................................................................  74   FIGURE  38  –  WATER  FOOTPRINT  FOR  RICE,  MAIZE,  TOMATO,  BROCCOLI  AND  ORANGE  ................................................................  82   FIGURE  39  –  WATER  FOOTPRINT  CONSIDERING  NATIONAL  INFORMATION  FOR  BLUE  AND  GREEN  WATER  ESTIMATE  ............  82   FIGURE  40  –  NATIONAL  WATER  SCARCITY  ASSESSMENT  (INAG,  2002)  ........................................................................................  84   FIGURE  41  –  POTENTIAL  EUTROPHICATION  BY  CROP  AND  SCENARIO  ..............................................................................................  86   FIGURE  42  –  IMPACT  OF  INTERNATIONAL  TRANSPORT  ON  POTENTIAL  EUTROPHICATION  (SEE  NOTE  6)  .................................  86   FIGURE  43  –  EFFECT  OF  INPUT  DATA  ON  THE  EUTROPHICATION  AI  ................................................................................................  87   FIGURE  44  –  OVERALL  STATTUS  OF  SURFACE  WATER  FOR  2011,  2003  AND  1995  ....................................................................  90   FIGURE  45  –  SCHEMATIC  REPRESENTATION  OF  THE  METHOD  USED  FOR  SURFACE  WATER  QUALITY  ASSESSMENT  ..................  92   FIGURE  46  –  OVERALL  PROCEDURE  OF  CLASSIFICATION  TESTS  FOR  GROUNDWATER  STATUS  (COMMISSION,  2009)  .............  94  

  XIII    

FIGURE  47  –  POTENTIAL  ACIDIFICATION  BY  CROP  AND  SCENARIO  ...................................................................................................  96   FIGURE  48  –  IMPACT  OF  INTERNATIONAL  TRANSPORT  ON  POTENTIAL  ACIDIFICATION  RESULTS  (SEE  NOTE  6)  ......................  96   FIGURE  49  –  EFFECT  OF  INPUT  DATA  ON  THE  POTENTIAL  ACIDIFICATION  AI  ................................................................................  97   FIGURE  50  –  LAND  OCCUPATION  FOR  RICE,  MAIZE,  TOMATO,  BROCCOLI,  ORANGE  AND  OLIVE  .....................................................  99   FIGURE  51  –  GHG  EMISSION  BY  CROP  AND  SCENARIO  ......................................................................................................................  100   FIGURE  52  –  IMPACT  OF  INTERNATIONAL  TRANSPORT  ON  GHG  RESULTS  (SEE  NOTE  6)  ..........................................................  101   FIGURE  53  –  EFFECT  OF  INPUT  DATA  ON  THE  GHG  AI  .....................................................................................................................  102   FIGURE  54  –  OZONE  DEPLETION  POTENTIAL  BY  CROP  AND  SCENARIO  ...........................................................................................  103   FIGURE  55  –  IMPACT  OF  INTERNATIONAL  TRANSPORT  ON  OZONE  DEPLETION  RESULTS  (SEE  NOTE  6)  ..................................  104   FIGURE  56  –  EFFECT  OF  INPUT  DATA  ON  THE  OZONE  DEPLETION  AI  .............................................................................................  105   FIGURE  57  –  FOSSIL  FUEL  DEPLETION  POTENTIAL  BY  CROP  AND  SCENARIO  .................................................................................  106   FIGURE  58  –  IMPACT  OF  INTERNATIONAL  TRANSPORT  ON  FOSSIL  FUEL  DEPLETION  RESULTS  (SEE  NOTE  6)  .........................  107   FIGURE  59  –  EFFECT  OF  INPUT  DATA  ON  THE  FOSSIL  FUEL  DEPLETION  AI  ...................................................................................  108   FIGURE  60  –  GEOGRAPHICAL  LOCATION  OF  THE  PRODUCTIVE  REGION  AND  POWER  PLANT  .......................................................  117   FIGURE  61  –  SYSTEM  DEFINITION  ........................................................................................................................................................  118   FIGURE  62  –  AI  EXCLUDING  AND  INCLUDING  ILUC  ..........................................................................................................................  125   FIGURE  63  –  AI  CONSIDERING  TOMATO  PRODUCTION  IN  THE  ILUCF  ............................................................................................  127   FIGURE  64  –  AI  CONSIDERING  BROCCOLI  PRODUCTION  IN  THE  ILUCF  .........................................................................................  129   FIGURE  65  –  TREE  COVER  AUXILIARY  FORM  (FERREIRA  ET  AL.,  2009)  ...........................................................................................  III   FIGURE  66  –  COMPARISON  OF  THE  SYSTEM  ANALYSED  WITH  DEFAULT  SIMAPRO  DATA  FOR  RICE  .............................................  XL   FIGURE  67  –  COMPARISON  OF  THE  SYSTEM  ANALYSED  WITH  DEFAULT  SIMAPRO  DATA  FOR  MAIZE  .........................................  XLI  

XIV    

LIST  OF  TABLES   TABLE  1  –  CARBON  SEQUESTRATION  POTENTIAL  (SMITH,  2004A)  ................................................................................................  26   TABLE  2  –  SCOPE  OF  THE  ANALYSED  CASE  STUDIES  ............................................................................................................................  34   TABLE  3  –  MEASURED  GRASSLAND  CARBON  SEQUESTRATION  FACTORS  ..........................................................................................  42   TABLE  4  –  SAMPLING  EFFORT  BY  MANAGEMENT  TECHNIQUE  AND  ROCK  MATERIAL  .....................................................................  46   TABLE  5  –  DISTRIBUTION  OF  SAMPLED  PLOTS  BY  FARM  AND  MUNICIPALITY  ..................................................................................  46   TABLE  6  –  DESCRIPTION  OF  “LABORATORY  VARIABLES”  ....................................................................................................................  49   TABLE  7  –  DESCRIPTION  OF  “FIELD  VARIABLES”  .................................................................................................................................  49   TABLE  8  –  DESCRIPTION  OF  “OFFICE  VARIABLES”  ...............................................................................................................................  50   TABLE  9  –  MEAN  AND  STANDARD  DEVIATION  STATISTICS  OF  YSLM  VARIABLES,  PER  YEAR  .......................................................  51   TABLE  10  –  SOM  AVERAGE  AND  STANDARD  DEVIATION  ...................................................................................................................  54   TABLE  11  –  TWO  SAMPLE  T-­‐TEST  RESULTS  FOR  LN(SOM)  DATA  (95%  CI)  .................................................................................  57   TABLE  12  –  HIGHER  AND  LOWER  ΔSOM  FROM  THE  T-­‐TEST  RESULTS  (95%  CI)  .........................................................................  60   TABLE  13  –  VARIABLES  NOT  HOMOGENEOUS  AMONG  MANAGEMENT  TECHNIQUES  (95%  CI)  ...................................................  60   TABLE  14  –  MULTIPLE  LINEAR  REGRESSION  ANALYSIS  RESULTS  (95%  CI)  ..................................................................................  61   TABLE  15  –  HIGHER  AND  LOWER  ΔSOM  OBTAINED  FROM  THE  MULTIPLE  LINEAR  REGRESSION  APPROACH  (95%  CI)  ........  62   TABLE  16  –  CARBON  SEQUESTRATION  FACTORS  .................................................................................................................................  63   TABLE  17  –  CHARACTERIZATION  OF  BULK  DENSITY  DATA  .................................................................................................................  65   TABLE  18  –  IMPACT  DUE  TO  THE  SHIFT  FROM  TILLAGE  TO  NO-­‐TILLAGE  .........................................................................................  67   TABLE  19  –  ANALYSED  TOPICS  ...............................................................................................................................................................  71   TABLE  20  –  GENERAL  APPROACH  ..........................................................................................................................................................  73   TABLE  21  –  COUNTERFACTUAL  SCENARIO  BY  CROP  ............................................................................................................................  73   TABLE  22  –  MAIN  COUNTRIES  OF  IMPORTS  FOR  RICE,  MAIZE,  TOMATO,  BROCCOLI  AND  ORANGE  ...............................................  75   TABLE  23  –  COMBINATION  OF  DATA  ASSUMED  IN  THE  ANALYSIS  .....................................................................................................  75   TABLE  24  –  PRODUCTIVITY  AND  FERTILIZER  INPUT  ...........................................................................................................................  77   TABLE  25  –  PESTICIDE  INPUT  .................................................................................................................................................................  78   TABLE  26  –  MECHANICAL  OPERATIONS  ................................................................................................................................................  78   TABLE  27  –  DISTANCE  OF  TRANSPORT  FOR  IMPORTED  CROPS  ..........................................................................................................  79   TABLE  28  –  EMISSIONS  FROM  FERTILIZER  APPLICATION  AND  FLOODED  RICE  ................................................................................  80   TABLE  29  –  NATIONAL  WATER  BALANCE  .............................................................................................................................................  84   TABLE  30  –  ASSESSMENT  OF  IRRIGATION  ON  THE  POTENTIAL  EUTROPHICATION  IMPACT  ...........................................................  88   TABLE  31  –  TEMPORAL  EVOLUTION  OF  SURFACE  WATER  QUALITY  ..................................................................................................  89   TABLE  32  –  EVALUATION  OF  THE  NATIONAL  SURFACE  WATER  QUALITY  ........................................................................................  91   TABLE  33  –  GROUNDWATER  QUALITY  ASSESSMENT  (1/2)  ..............................................................................................................  92   TABLE  34  –  CLASSIFICATION  SCALE  FOR  THE  GROUNDWATER  QUALITY  .........................................................................................  93   TABLE  35  –  GROUNDWATER  QUALITY  ASSESSMENT  (2/2)  ..............................................................................................................  93   TABLE  36  –  ASSESSMENT  OF  IRRIGATION  ON  THE  POTENTIAL  ACIDIFICATION  IMPACT  ................................................................  98   TABLE  37  –  ASSESSMENT  OF  IRRIGATION  ON  THE  POTENTIAL  GHG  IMPACT  ...............................................................................  102   TABLE  38  –  ASSESSMENT  OF  IRRIGATION  ON  THE  POTENTIAL  OZONE  DEPLETION  IMPACT  .......................................................  105   TABLE  39  –  ASSESSMENT  OF  IRRIGATION  ON  THE  POTENTIAL  FOSSIL  FUEL  DEPLETION  IMPACT  ..............................................  108   TABLE  40  –  PRODUCTION  VERSUS  CONSUMPTION  OF  ENERGY  ........................................................................................................  109   TABLE  41  –  IRRIGATED  VS  COUNTERFACTUAL  SCENARIO:  SUMMARY  OF  RESULTS  ......................................................................  111   TABLE  42  –  IMPACT  OF  IRRIGATION  ON  RESULTS  ..............................................................................................................................  111   TABLE  43  –  DESCRIPTION  OF  FIGURE  61  ...........................................................................................................................................  118   TABLE  44  –  FUELS  INFORMATION  AT  COAL-­‐FIRED  POWER  PLANT  PEGO  (FUNCTIONAL  UNIT:  1  KWHE)  ................................  120   TABLE  45  –  LCA  IMPACTS  AND  AI  FOR  THE  COMPARISON  BETWEEN  COMBUSTION  AND  CO-­‐FIRING  ........................................  121   TABLE  46  –  LCA  TOTAL  IMPACTS  OF  EUCALYPTUS  AND  MAIZE  .......................................................................................................  121  

  XV    

TABLE  47  –  COMPARISON  OF  THE  OBTAINED  AI  WITH  LITERATURE  .............................................................................................  122   TABLE  48  –  IMPACT  PER  KWHE  ...........................................................................................................................................................  123   TABLE  49  –  SUMMARY  OF  THE  AI  RESULTS  ........................................................................................................................................  130   TABLE  50  –  SUMMARY  OF  THE  CASE  STUDIES  ....................................................................................................................................  133   TABLE  51  –  SUMMARY  OF  RESULTS  .....................................................................................................................................................  134   TABLE  52  –  MAIN  DATA  USED  IN  THE  NATURAL  GRASSLND  ANALYSIS  ................................................................................................  V   TABLE  53  –  DATA  FOR  THE  “LABORATORY  VARIABLES”  .....................................................................................................................  IX   TABLE  54  –  DATA  FOR  THE  “FIELD  VARIABLES”  (1/2)  ....................................................................................................................  XIII   TABLE  55  –  DATA  FOR  THE  “FIELD  VARIABLES”  (2/2)  .................................................................................................................  XVIII   TABLE  56  –  DATA  FOR  THE  “OFFICE  VARIABLES”  .............................................................................................................................  XXII   TABLE  57  –  SOM  DATA  FOR  “QUINTA  DA  FRANÇA”  ......................................................................................................................  XXVII   TABLE  58  –  SOM  DATA  FOR  “COMPANHIA  DAS  LEZÍRIAS”  ...........................................................................................................  XXVII   TABLE  59  –  SOM  DATA  FOR  “OTHERS”  ..........................................................................................................................................  XXVIII   TABLE  60  –DATA  FOR  BULK  DENSITY  ANALYSIS  ..............................................................................................................................  XXIX   TABLE  61  –  WATER  FOOTPRINT  BY  CROP  AND  SCENARIO  ...........................................................................................................  XXXIII   TABLE  62  –  WATER  FOOTPRINT  BY  COUNTRY  OF  THE  COUTERFACTUAL  SCENARIO  ...............................................................  XXXIII   TABLE  63  –  WATER  FOOTPRINT  INCLUDING  DETAILED  INFORMATION  FROM  THE  NI  ...........................................................  XXXIV   TABLE  64  –  WATER  FOOTPRINT  INCLUDING  INFORMATION  FROM  THE  NATIONAL  GDARD  ................................................  XXXIV   TABLE  65  –  DETAILED  RESULTS  FOR  THE  EUTROPHICATION  TOPIC  ..........................................................................................  XXXIV   TABLE  66  –  RESULTS  FOR  THE  EUTROPHICATION  TOPIC  CONSIDERING  DIFFERENT  SETS  OF  DATA  ......................................  XXXV   TABLE  67  –  DETAILED  RESULTS  FOR  THE  ACIDIFICATION  TOPIC  ................................................................................................  XXXV   TABLE  68  –  RESULTS  FOR  THE  ACIDIFICATION  TOPIC  CONSIDERING  DIFFERENT  SETS  OF  DATA  ..........................................  XXXVI   TABLE  69  –  DETAILED  RESULTS  FOR  THE  PRODUCTIVE  LAND  USE  TOPIC  .................................................................................  XXXVI   TABLE  70  –  DETAILED  RESULTS  FOR  THE  CLIMATE  CHANGE  TOPIC  ........................................................................................  XXXVII   TABLE  71  –  RESULTS  FOR  THE  CLIMATE  CHANGE  TOPIC  CONSIDERING  DIFFERENT  SETS  OF  DATA  ....................................  XXXVII   TABLE  72  –  DETAILED  RESULTS  FOR  THE  OZONE  DEPLETION  TOPIC  .....................................................................................  XXXVIII   TABLE  73  –  RESULTS  FOR  OZONE  DEPLETION  TOPIC  CONSIDERING  DIFFERENT  SETS  OF  DATA  .........................................  XXXVIII   TABLE  74  –  DETAILED  RESULTS  FOR  THE  FOSSIL  FUEL  DEPLETION  TOPIC  ...............................................................................  XXXIX   TABLE  75  –  RESULTS  FOR  THE  FOSSIL  FUEL  DEPLETION  TOPIC  CONSIDERING  DIFFERENT  SETS  OF  DATA  ..........................  XXXIX   TABLE  76  –  DETAILED  RESULTS  FOR  THE  NATIONAL  PRODUCTION  OF  MAIZE  ............................................................................  XLIII   TABLE  77  –  DETAILED  RESULTS  FOR  THE  PRODUCTION  OF  MAIZE  IN  FOREIGN  COUNTRIES  .....................................................  XLIII   TABLE  78  –  DETAILED  RESULTS  FOR  THE  NATIONAL  PRODUCTION  OF  TOMATO  ........................................................................  XLIII   TABLE  79  –  DETAILED  RESULTS  FOR  THE  PRODUCTION  OF  TOMATO  IN  FOREIGN  COUNTRIES  .................................................  XLIV   TABLE  80  –  DETAILED  RESULTS  FOR  THE  NATIONAL  PRODUCTION  OF  BROCCOLI  .....................................................................  XLIV   TABLE  81  –  DETAILED  RESULTS  FOR  THE  PRODUCTION  OF  BROCCOLI  IN  FOREIGN  COUNTRIES  ..............................................  XLIV   TABLE  82  –  OVERVIEW  OF  SOM  MODELS  (FALLOON  AND  SMITH,  2009)  ..................................................................................  XLV   TABLE  83  –  ROTHC  VERSUS  CENTURY:  A  SYSTEMATIC  COMPARISON  .....................................................................................  XLVII  

XVI    

LIST  OF  NOTES   NOTE  1  –  SOM  DEFINITION  .....................................................................................................................................................................  22   NOTE  2  –  ENVIRONMENTAL  IMPACT  DEFINITION  ................................................................................................................................  22   NOTE  3  –  DIRECT  AND  INDIRECT  ENVIRONMENTAL  IMPACT  DEFINITION  ........................................................................................  23   NOTE  4  –  DLUC  AND  ILUC  DEFINITION  ...............................................................................................................................................  25   NOTE  5  –  WATER  FOOTPRINT  DEFINITION  ...........................................................................................................................................  83   NOTE  6  –  HOW  TO  READ  FIGURE  42  ......................................................................................................................................................  88   NOTE  7  –  AI  DEFINITION  .........................................................................................................................................................................  88   NOTE  8  –  IRRIGATION  IMPACT  ................................................................................................................................................................  89   NOTE  9  –  AGRICULTURAL  SIMULATION  DATA  ....................................................................................................................................  123  

 

 XVII    

ACRONYMS  AND  ABBREVIATIONS   AI   CI  

   Avoided  impact      Confidence  interval  

DLUC   d.m.  

Direct  land  use  change  

EEA  

European  Environment  Agency  

EU  

European  Union  

FAO  

Food  and  Agriculture  Organization  of  the  United  Nations  

FAOSTAT  

Statistics  division  of  the  FAO    

FCs  

Foreign  countries  

GDARD  

General  Directorate  for  Agriculture  and  Rural  Development    

GHG  

Greenhouse  gas  

HWSDB  

Harmonized  World  Soil  Data  Base  

IFA  

International  Fertilizer  Industry  Association  

ILUC  

Indirect  land  use  change  

ILUCF  

Indirect  land  use  change  factor  

IPCC  

Intergovernmental  Panel  on  Climate  Change  

ISO  

International  Organization  for  Standardization  

JRC  

Joint  Research  Centre  

LCA  

Life  cycle  assessment  

LCI  

Life  cycle  inventory  

LCIA  

Life  cycle  impact  assessment  

LQARS  

Laboratório  Químico  Agrícola  Rebelo  da  Silva  

LULUCF  

Land  Use,  Land  Use  Change  and  Forestry  

NFI  

National  Forest  Inventory  

NI  

National  inventory  

NILUC  

Neglecting  indirect  land  use  change  

NR  

Nutrient  removal  

o.d.t.  

Oven  dry  tonnes  

OECD  

Organisation  for  Economic  Cooperation  and  Development  

PCF  

Portuguese  Carbon  Fund  

KP  

Kyoto  Protocol  

RO  

Ribatejo  e  Oeste  

SOM  

Soil  organic  matter  

SOC  

Soil  organic  carbon  

SRC  

Short  rotation  coppice  

UNFCCC  

United  Nations  Framework  Convention  on  Climate  Change  

Dry  matter  

 

 

XIX  

Chapter  1. I NTRODUCTION   1.1.

T H E  W O R L D  A S  IT  IS  

World’s  soils  contain  about  1500  Pg  of  organic  carbon  (Batjes,  1996),  three  times  the  amount   of   carbon   in   vegetation   and   twice   the   amount   in   atmosphere   (Smith   et   al.,   2009).  According  to  an   estimate   from   2004,   since   industrial   revolution   depletion   of   soil   organic   carbon   (SOC)   pool   have   globally  contributed  with  78  ±  12  PgC  to  the  atmosphere,  comparing  with  270  ±  30  PgC  from  fossil   fuel   combustion   (Lal,   2004).   Some   cultivated   soils   have   lost   one   half   to   two   thirds   of   the   original   SOC  pool  with  a  cumulative  loss  of  20  -­‐  40  MgC.ha-­‐1  (Lal,  2004).     Since  depletion  of  soil  C  is  exacerbated  by  land  misuse  and  soil  mismanagement,  the  adoption  of   restorative  land  use  and  recommended  management  practices  may  contribute  to  SOC  restoration   (Lal,  2004;  Wollenberg  et  al.,  2012).  Global  potential  of  SOC  sequestration  through  the  adoption  of   recommended  management  practices  is  0.9  ±  0.3  PgC.yr-­‐1,  which  may  offset  one-­‐fourth  to  one-­‐third   of  the  annual  increase  in  atmospheric  CO2,  estimated  at  3.3  PgC.yr-­‐1  (Lal,  2004).       In  generic  terms,  the  most  direct  way  to  achieve  soil  carbon  sequestration  is  by  increasing  soil   organic  matter  (SOM)  inputs  (see   Note  1)  or  by  slowing  SOM  decomposition  (Smith  et  al.,  2009).  As   for   management   techniques,   literature   options   runs   from   zero/reduced   tillage   and   conversion   to   permanent  crops,  to  improved  management  to  reduce  wind  and  water  erosion  (Smith,  2004b).  In   order  to  maximize  sink  potential,  the  best  options  are  to  increase  carbon  stocks  in  soils  that  have   been  depleted  in  carbon  (Smith  et  al.,  2009).  According  to  Figure  1  Portugal  presents  a  low  topsoil   organic  carbon,  with  a  high  potential  of  improvement.    

  F IGURE   1   –   E UROPEAN  TOPSOIL  ORGANIC  CARBON   (EEA  AND   JRC,   2010)  

   

 

21  

These   facts   put   soil   management   at   the   center   of   the   climate   change   policy   discussion,   as   a   way   to   reduce   environmental   impact   (see   Note   2).   This   was   already   recognized   by   the   United   Nations   Framework  Convention  on  Climate  Change  (UNFCCC)  (Schlamadinger  et  al.,  2007;  UNFCCC,  1992).   In   the   Kyoto   Protocol   (KP),   although   there   are   strict   stipulations   as   to   how   a   country’s   emissions   inventory  is  made,  there  are  some  items  related  to  the  agro-­‐forestry  sector  that  remain  optional  for   each   signatory   country.   These   options   are   the   so-­‐called   Land   Use,   Land   Use   Change   and   Forestry   (LULUCF)   activities,   under   the   framework   of   Article   3.4   of   the   KP.   Portugal   plays   a   leading   role   in   its   KP   accounts,   since   it   decided   to   elect,   in   the   framework   of   these   voluntary   activities,   the   ones   regarding  “Grassland  management”,  “Cropland  Management”  and  “Forest  Management”.   Although  soil  carbon  sequestration  can  be  achieved  through  the  increase  of  SOM  concentration,   there   is   much   more   about   SOM   than   only   carbon   sequestration.   SOM   concentration   affects   the   chemical  and  physical  properties  of  soil  and  its  overall  health.  Its  composition  and  breakdown  rate   affects   soil   structure   and   porosity,   water   infiltration   rate   and   moisture   holding   capacity   of   soils,   diversity   and   biological   activity   of   soil   organisms   and   plant   nutrient   availability   (Bot   and   Benites,   2005).   Restoring   soil   carbon   is   essential   to   enhance   soil   quality,   sustain   and   improve   food   production  and  maintain  clean  water.  Given  the  above,  the  increase  in  SOM  contributes  to  decrease   the  risk  of  desertification,  soil  erosion,  floods  and  soil  biodiversity,  answering  to  some  of  the  main   threats  to  soil  identified  by  Communities  (2006).     N OTE   1   –   SOM  DEFINITION  

SOM  can  be  defined  as  “the  plant  and  animal  remains  at  different  stages  of  decomposition  and   the  substances  derived  from  the  biological  activity  of  the  soil-­‐living  population”  (Soil  Science  Society   of  America,  1984  in  Rodeghiero  et  al.,  2009).  SOC  is  the  carbon  content  of  the  SOM.   SOC  content  of  SOM  is  mostly  around  50  to  60%  (Rodeghiero  et  al.,  2009),  with  58%  as  the  most   common   value   in   literature   (Costa,   2011;   Guo   and   Gifford,   2002;   Post   et   al.,   2001).   Commonly,   soils   are  characterized  by  a  SOM  rich  topsoil  with  decreasing  soil  organic  content  down  the  soil  profile,   its  thickness  determined  by  soil  mixing  (Rodeghiero  et  al.,  2009).       N OTE   2   –   E NVIRONMENTAL  IMPACT  DEFINITION  

According   to   the   International   Organization   of   Standardization   (ISO)   14001   Environmental   Systems  Handbook,  and  quoting  the  original  ISO  manuscript,  an  environmental  impact  correspond   to  (Whitelaw,  2004):   “Any   change   to   the   environment,   whether   adverse   or   beneficial,   wholly   or   partially   resulting   from  an  organization’s  activities,  products  or  services”     When   regarding   cultivated   systems,   soil   carbon   sequestration   is   not   the   only   contributor   to   climate   change.   Direct   impacts   from   greenhouse   gas   (GHG)   emissions   occur   along   all   the   cultivation  process  (for  example  through  the  use  of  machinery),  and  not  only  in  the  form  of  CO2   (see   Note   3).   While   N2O   emissions   occur   from   addition   of   N   to   soil   (for   example   in   the   form   of  

22    

synthetic  fertilizer  or  residues),  CH4  emissions  take  place  associated  with  flooded  rice,  cattle  enteric   fermentation   and   animal   residues.   As   an   indirect   effect,   the   production   and   transport   of   input   factors   to   the   cultivation   site,   as   fertilizers,   pesticides,   seeds   and   machinery   also   implies   the   emission  of  GHG.     N OTE   3   –   D IRECT  AND  INDIRECT  ENVIRONMENTAL  IMPACT  DEFINITION  

According   to   Whitelaw   (2004),   environmental   impacts   can   be   categorized   into   two   groups,   namely,  direct  and  indirect  impacts.  Quoting  the  author:   “A   direct   impact   is   a   change   arising   as   a   direct   result   of   an   activity   under   the   control   of   the   organization.  An  indirect  impact  is  a  change  that  arises  as  a  result  of  someone  else’s  activities;  these   activities  are  connected  to  the  organization  in  some  way  but  are  less  easily  controlled  as  they  can   only  be  influenced  indirectly”.     According   to   Bellarby   et   al.   (2008),   for   the   year   of   2005,   agriculture   contributed   with   direct   emissions  of  5.1  -­‐  6.1  PgCO2eq  (10  -­‐  12%)  to  global  GHG  emissions.  These  emissions  were  mainly  in   the  form  of  methane  (3.3  PgCO2eq.yr-­‐1)  and  nitrous  oxide  (2.8  PgCO2eq.yr-­‐1)  whereas  the  net  flux  of   carbon   dioxide   was   very   small   (0.04   PgCO2eq.yr-­‐1).   Considering   the   average   global   emissions,   nitrous   oxide   emissions   from   soils   and   methane   from   enteric   fermentation   of   cattle   constituted   the   largest   sources,   38%   and   32%   of   total   non-­‐CO2   emissions   from   agriculture,   respectively.   Biomass   burning   (12%),   rice   production   (11%),   manure   management   (7%),   accounted   for   the   rest   (Bellarby   et   al.,   2008).   From   these   accounts   were   excluded   farm   machinery,   fertilizer   and   pesticide   production,   which  were  responsible  for  the  emission  of  0.2  PgCO2eq.yr-­‐1,  0.4  PgCO2eq.yr-­‐1  and  0.07  PgCO2eq.yr-­‐1,   respectively  (Bellarby  et  al.,  2008).  The  magnitude  and  relative  importance  of  the  different  sources   and   emissions   vary   widely   among   regions.   Globally,   agricultural   methane   and   nitrous   oxide   emissions   have   increased   by   17%   from   1990   to   2005,   and   are   projected   to   increase   by   another   35   -­‐ 60%   by   2030,   driven   by   growing   nitrogen   use   and   increased   livestock   production   (Bellarby   et   al.,   2008).   As   presented   by   the   European   Environment   Agency   (EEA) 1 ,   at   the   European   level,   GHG   emissions   from   agriculture   have   declined   since   1990.   For   the   27   countries   of   the   European   Union   (EU)   GHG   emissions   from   agriculture   have   decreased   by   120   MtCO2eq   (-­‐20%)   between   1990   and   2008.   GHG   emissions   from   agriculture   accounted   for   10%   of   total   GHG   emissions   in   2008   (+0.2%   compared  to  2007).  As  in  the  global  assessment,  N2O  (57%)  and  CH4  (43%)  were  the  predominant   GHGs   in   agriculture.   Half   of   the   emissions   derived   from   microbiological   activities   in   agricultural   soils,  30%  from  enteric  fermentation  and  nearly  20%  from  manure  management.   At  the  national  scale,  and  for  the  year  of  2011,  agricultural  sector  was  responsible  for  about  11%   of  total  national  emissions,  7.5  MtCO2eq  (excluding  LULUCF  and  international  bunkers).  The  enteric   fermentation   was   responsible   for   2.8   MtCO2eq  (37%);   manure   management   for   1.3   MtCO2eq  (17%);   rice  cultivation  for  0.5  MtCO2eq  (7%)  and  direct  soil  emission  due  to  the  use  of  synthetic  fertilizer  for  

                                                                                                                        1

 Information  available  at  http://www.eea.europa.eu/themes/agriculture/intro  

 

23  

0.6   MtCO2eq   (8%)   (APA,   2013).   In   comparison   with   1990   there   was   a   decrease   in   importance   and   total  emissions,  which  were,  respectively,  13.4%  and  8.2  MtCO2eq  (APA,  2013).       Given   the   above,   and   as   already   pointed   out   by   Schlamadinger   et   al.   (2007),   there   are   other   ways   to   reduce   net   GHG   emissions,   and   therefore,   also   contributing   to   the   achievement   of   the   UNFCCC’s  goals.  The  proposed  ways  include  bioenergy  production,  reduction  of  emissions  of  non-­‐ CO2  gases,  and  substitution  for  less  carbon  intensive  products  (Schlamadinger  et  al.,  2007).   According   to   the   EEA1,   although   farmers   represent   only   4.7%   of   the   working   population   in   the   EU,  they  are  responsible  for  the  management  of  about  half  of  the  land,  with  a  big  influence  on   landscapes   and   quality   of   its   environment   and   not   only   on   the   climate   change   topic.   The   main   resources   under   pressure   are   soil,   air,   water   and   biodiversity.   As   for   impacts,   soil   degradation,   including  soil  erosion;  water  pollution  and  excessive  use;  and  biodiversity  decrease,  are  among  the   most  discussed1.   Soil   erosion   by   water   and   wind   affects   almost   15%   of   EU   land,   with   specific   problems   concentrated   in   the   Mediterranean   and   Eastern   European   region.   As   for   water   pollution,   agriculture  is  responsible  for  a  major  pressure  on  the  quality  of  ground  and  surface  water  in  the  EU,   particularly   relevant   on   the   north-­‐western   countries.   Agricultural   nitrogen   surplus   (the   difference   between   all   nutrient   inputs   and   outputs   on   agricultural   land),   although   positive   for   all   European   countries   (see   Figure   2),   show   a   declining   trend,   thereby   potentially   reducing   environmental   pressures  not  only  in  water,  but  also  on  soil  and  air.  In  Portugal,  and  for  2011,  N  balance  was  about   11  kgN.ha-­‐1,  also  with  a  declining  trend  (INE,  2009).    

  F IGURE   2   –   E UROPEAN  NITROGEN  SURPLUS   (EEA  AND   JRC,   2010)  

  Environmental   problems   associated   with   the   excessive   use   of   water   include   lowered   water   tables,   salinization   and   damage   to   terrestrial   and   aquatic   habitats.   The   Mediterranean   area   is   particularly   sensitive   due   to   the   occurrence   of   droughts   (Walls,   2006).   Europe’s   biodiversity   is   linked  to  agricultural  practices  through  the  creation  of  agro-­‐ecosystems.  A  large  number  of  highly   valuated  wildlife  species  and  semi-­‐natural  habitats  types  are  dependent  on  continuing  low-­‐intensity   agricultural  practices.  Of  the  231  habitat  types  of  European  interest  targeted  by  Annex  I  of  the  EU  

24    

Habitats   Directive,   55   depend   on   extensive   agricultural   practices   or   can   benefit   from   them.   Similarly,   11   targeted   mammal   species,   7   butterflies   species   and   10  orthoptera   species,   as   well   as   28   vascular   plant   species   depend   on  the  continuation   of   extensive   agriculture.   However,   as   the   agricultural   production   has   intensified,   all   levels   of   biological   diversity   (genetic,   species,   and   habitats)  have  declined  in  farming  environments1.     In  addition,  the  use  of  farm  machinery  releases  to  the  atmosphere  not  only  GHG  but  also  other   residues   with   an   environmental   impact.   The   production   and   transport   of   input   factors   to   the   cultivation   place,   as   fertilizers,   pesticides,   seeds   and   machinery   also   implies   an   indirect   environmental  impact  linked  to  the  agricultural  production.   The   need   to   include   environmental   impact   categories   other   than   climate   change   is,   therefore,   clear,  as  already  exposed  by  Smith  et  al.  (2009).     According   to   Gerber   et   al.   (2013),   “supportive   policies,   adequate   institutional   frameworks   and   more   proactive   governance   (…)”   are   needed   to   fulfil   the   potential   of   environmental   impact   reduction.  As  presented  by  Baudron  and  Giller  (2014)  and  Odegard  and  van  der  Voet  (2014)  global   demand  for  agricultural  products  is  expected  to  double  in  the  next  decades  pressing  the  ecosystems   to  produce  more.  Policy  makers  face  the  challenge  to  focus  on  mitigation  strategies  that  serve  both   development  and  environmental  goals  (Gerber  et  al.,  2013).     The   comparative   assessment   of   environmental   impacts   from   substitute   scenarios   of   cultivated   systems  facilitates  policy  makers’  decision  towards  more  sustainable  options  of  production.  When   developing  substitute  scenarios,  we  assumed  that  land  currently  used  to  agricultural  production  is   likely   to   remain   productive   and   that,   at   least,   the   substitute   cultivated   systems   must   be   conservative   in   terms   of   the   amount   of   goods.   In   order   to   answer   to   these   requisites   both   direct   land  use  change  (DLUC)  and  indirect  land  use  change  (ILUC)  are  assessed  (see  Note  4).     N OTE   4   –   DLUC  AND   ILUC  DEFINITION  

Following  the  reasoning  by  Overmars  et  al.  (2011),  the  area  used  by  a  given  cultivated  system   could  be  productive  or  unproductive  in  the  absence  of  that  system.  The  land  use  change  from  the   current  use  to  the  considered  cultivated  system  is  called  DLUC.  In  the  case  of  using  productive  land,   the   original   production   will   have   to   be   realized   elsewhere,   either   through   the   conversion   of   land   into   agricultural   use   or   through   intensification   of   agriculture   to   increase   yields.   This   is   called   ILUC   effect.    

 

25  

1.2.

S T A T E  O F  T H E  A R T   &  C O N T R IB U T IO N  

For   the   assessment   of   soil   carbon   sequestration,   as   proposed   by   Post   et   al.   (2001),   there   are   both   direct   and   indirect   methods   to   quantify   soil   carbon   stocks   and   changes.   Direct   methods   use   measurements  of  C  stocks  or  fluxes  to  determine  changes  in  soil  C  amounts.  Indirect  methods  use   information   from   previous   studies   combined   with   auxiliary   information,   such   as   cartography.   Freibauer  et  al.  (2004)  presented  a  collection  of  values  regarding  the  potential  carbon  sequestration   as   a   response   to   management   techniques.   Smith   (2004a)   provided   an   interpretation   of   graphical   representations   from   Freibauer   et   al.   (2004),   with   the   results   shown   in   Table   1.   These   values   represent   the   carbon   sequestration   potentials   achievable   by   2012,   limited   only   by   availability   of   land,   biological   resources   and   land   suitability   (Smith,   2004a).   As   discussed   by   Smith   et   al.   (2009),   although  the  considerable  potential,  lack  of  policy  incentives  jeopardizes  its  fulfilment.     T ABLE   1   –   C ARBON  SEQUESTRATION  POTENTIAL   (S MITH ,   2004 A )   Management  technique   Zero  tillage   Reduced  tillage   Set-­‐aside   Permanent  crops   Deep-­‐rooting  crops   Animal  manure   Cereal  straw   Sewage  sludge   Bioenergy  crops   Extensification   Convert  cropland  to  grassland  

Soil  carbon  sequestration  potential   -­‐1 -­‐1 (tCO2.ha .yr )   1.39   <  1.39   <  1.39   2.27   2.27   1.39   2.53   0.95   2.27   1.98   4.40  –  6.20  

Estimated  uncertainty   (%)   >50   >>50   >>50   >>50   >>50   >>50   >>50   >>50   >>50   >>50   >>50  

  Worldwide   there   are   case   studies   assessing   soil   carbon   sequestration   factors   related   to   particular  management  techniques.  Portugal  is  not  an  exception  and  examples  are   the  analysis  of   the   role   of   natural   grassland   biodiversity   by   Teixeira   et   al.   (2011)   and   the   role   of   tillage   on   cropland   by  Carvalho  et  al.  (2012).   The   assessment   of   GHG   emissions   from   cultivated   systems   has   been   extensively   done   in   the   context   of   the   KP   national   accountings.   As   for   the   analysis   of   other   impact   categories,   several   studies   have   been   developed.   Institutions   such   as   the   EEA   and   Joint   Research   Centre   (JRC)   regularly   publish   reports   on   the   state   of   resources   and   the   influence   of   agricultural   practices.   Examples   of   environmental   impact   analysis   from   cultivated   systems   are   the   assessment   of   agri-­‐environmental   relationships  in  the  EU-­‐15  presented  by  EEA  (2005);  the  10  main  messages  regarding  the  effect  of   agricultural  ecosystems  on  biodiversity  by  EEA  (2010a);  and  an  overview  of  the  main  environmental   impacts  from  agriculture  by  Walls  (2006).  As  for  the  analysis  of  resources,  with  a  link  to  the  role  of   agricultural  practices,  soil  assessment  can  be  found  in  EEA  and  JRC  (2010)  and  Jones  et  al.  (2012);   water   assessment   is   presented   by   Commission   (2009),   EEA   (2009)   and   OECD   (2006);   biodiversity   assessment   can   be   found   in   EEA   (2010b)   and   Gardi   and   Jeffery   (2009).   Although   these   studies   present  quantitative  and  qualitative  results,  usually  they  are  not  focused  on  the  direct  and  indirect   impact   from   a   particular   systems   or   good.   The   inclusion   of   direct   and   indirect   impacts   on   the   analysis  of  cultivated  systems  can  be  found  in  studies  such  as  the  one  by  Ruviaro  et  al.  (2012)  and   Roy   et   al.   (2009).   The   assessment   of   direct   and   indirect   impacts   from   alternative   production   systems,   for   a   given   agricultural   product,   can   be   found   in   studies   such   as   the   ones   by   Patil   et   al.  

26    

(2014)   and   Cederberg   and   Mattsson   (2000).   The   inclusion   of   DLUC   and   ILUC   is   a   recommended   practice   in   the   bioenergy   assessment   context.   However,   its   reasoning   applies   to   any   productive   system,  of  which  Dumortier  et  al.  (2011)  is  an  example.     The  analysis  of  both  carbon  sequestration  and  other  direct  and  indirect  impacts  is  presented  by   Gerber  et  al.  (2013).  The  mentioned  study  regards  livestock  production  systems,  but  only  assesses   the  impact  in  terms  of  climate  change  and  regardless  ILUC.   In  the  present  thesis  we  aim  to  analyse  the  environmental  impacts  from  substitute  cultivated   systems.   The   designed   general   approach   includes   a   set   of   direct   and   indirect   environmental   impacts,  constant  food  production  as  well  as  direct  and  indirect  land  use  change  effects.   The   developed   approach   is   applied   to   Portuguese   cultivated   systems.   Within   the   Portuguese   cultivated  area  (including  temporary  crops,  permanent  crops,  domestic  production  and  permanent   grassland),  the  two  main  occupations  are  permanent  grasslands,  with  47%  of  the  area  (according  to   2009  data),  and  temporary  crops,  with  23%2.   Regarding   the   occupation   by   natural   grasslands,   it   is   of   particular   relevance   the   fact   that   Portugal,   as   a   signatory   country   of   the   KP,   elected   the   Article   3.4   within   the   LULUCF   sector,   regarding   grassland   management.   As   presented   in   Figure   1,   Portuguese   soil   carbon   stocks,   translated   into   SOM,   are   low   when   compared   with   the   European   average,   suggesting   a   relevant   potential   for   carbon   sequestration.   The   first   case   study   addresses   this   issue,   aiming   to   assess   if   there   is   a   difference   in   SOM   concentration   between   tilled   and   no-­‐tilled   plots,   both   in   areas   occupied   by   natural   grasslands.   The   two   substitute   scenarios   differ   on   the   shrub   management   technique,  but  not  the  agricultural  product,  in  this  case,  cattle.  This  allows  us  to  focus  only  on  the   role  of  the  management  technique  on  SOM  concentration.  In  addition,  since  no  tillage  management   requires  more  time  of  operation  per  ha,  we  also  estimate  direct  and  indirect  environmental  impacts   from  mechanical  operation,  assuming  all  the  remaining  input  factors  constant.    In  Portugal,  and  for  the  year  of  2009,  irrigated  area  represented  13%  of  total  used  agricultural   area  (about  22%  if  pastures  are  excluded).  Between  1989  and  2009,  the  proportion  of  irrigated  area   relative   to   the   irrigable   area   increased   from   72   to   87%2.   According   to   EEA,   the   increase   of   irrigation   constitutes   a   severe   potential   problem.   The   major   identified   issues   are   overexploitation   and   consequent   severe   water   shortages   during   dry   periods,   decrease   in   water   quality   and   the   risk   of   salt-­‐water   intrusion   into   groundwater.   The   second   case   study   regards   the   environmental   assessment   of   Portuguese   irrigated   systems.   The   analysis   is   performed   in   comparison   with   the   most  likely  substitute  system  (rainfed  production  or  imports)  and  covers  six  agricultural  products,   namely  rice,  maize,  tomato,  broccoli,  orange  and  olive.   The   need   to   fulfil   the   European   bioenergy   targets   has   triggered   Portuguese   regulation   to   consider  electricity  generation  using  energy  crops  as  raw  material.  However,  as  already  explained  in   Van   Stappen   et   al.   (2011),   some   concerns   have   been   raised   regarding   the   possibility   that   bioenergy   is  actually  worse  than  its  fossil  equivalent,  not  only  in  terms  of  GHG  emissions,  but  also  in  a  broader   environmental   perspective.     Also,   the   production   of   the   energy   crops   may   occupy   land   previously   used  to  the  production  of  agricultural  products  that  have  to  be  produced  elsewhere.  The  third  case   study   considers   the   environmental   impact   analysis   of   dedicated   production   of   eucalyptus   to   be   used  as  a  raw  material  in  electricity  co-­‐generation,  in  comparison  with  the  electricity  generation                                                                                                                           2

 Information  available  at  www.ine.pt  

 

27  

using   exclusively   coal   as   raw   material.   It   is   assumed   that   eucalyptus   production   takes   place   in   land  previously  used  for  temporary  crop  production,  namely  maize,  tomato  and  broccoli.   The   chosen   case   studies   answer   to   relevant   national   questions,   with   impact   on   the   context   of   policy  making.  While  the  Portuguese  Carbon  Fund3  (PCF)  promoted  the  implementation  of  a  project   regarding  the  control  of  shrub  encroachment  at  grasslands  through  the  use  of  no-­‐tillage  techniques,   substituting   areas   subject   to   tillage   management,   the   analysis   of   irrigated   production   systems   is   used  in  European  negotiations  aiming  the  promotion  of  Portuguese  agriculture.                

                                                                                                                        3

 PCF  is  an  operational  instrument  that  intends  to  finance  initiatives  that  decrease  GHG  emissions  in  Portugal.  

28    

Chapter  2. M ETHODOLOGICAL  OVERVIEW   2.1.

O V E R A L L  A P P R O A C H  

As  already  discussed,  soil  management,  with  correspondent  SOC  stock  change,  is  presented  as   an   important   climate   change   mitigation   strategy   (Schlamadinger   et   al.,   2007;   UNFCCC,   1992).   According  to  Figure  3,  SOC  change  may  occur  due  to  a  change  in  the  cultivated  system.      

SOC$stock$change$

Cul1vated$ system$A$

Agricultural$ product$A$

Subs1tutes$

Subs1tutes$

Cul1vated$ system$B$

Agricultural$ product$B$

 

F IGURE   3   –   SOC  STOCK  CHANGE  DUE  TO  THE  SHIFT  IN  CULTIVATED  SYSTEM  

  The  here  designated  “Cultivated  system  A”  and  “Cultivated  system  B”  may  represent:   •

a  complete  change  in  land  use  characteristics  and  in  agricultural  product,  such  as  from   cropland  to  grassland;  or  



a   change   in   a   particular   management   technique,   without   changing   the   main   product  

(“Agricultural   product   A”   equal   to   “Agricultural   product   B”),   such   as   adoption   of   no-­‐ tillage  techniques.     With  this  approach  only  climate  change  direct  impacts  from  SOC  stock  change  are  considered.  In   general   terms,   cultivated   systems,   besides   land   occupation,   requires   input   factors,   such   as   water,   fertilizers,  pesticides  and  machinery  (see  Figure  4).  Its  use  in  the  cultivation  process  implies  not  only   the   depletion   of   resources   but   also   the   emission   of   residues   into   the   global   ecosystem,   with   a   correspondent   direct   environmental   impact.   The   emissions   into   global   ecosystem   have   an   impact   not  only  in  terms  of  climate  change,  but  also  in  other  environmental  impact  categories.   As   presented   in   Figure   4,   in   order   to   have   the   production   factors   available   at   the   cultivated   system  site,  there  was  the  extraction  of  raw  materials,  industrial  processing  and  transport  of  raw,   intermediate  and  final  products,  with  indirect  impacts  associated.    

 

29  

Water' Fer3lizers' Raw'material' extrac3on' Processing' Transporta3on'

Pes3cides'

Cul3vated' system''

Agricultural' product'

Machinery' …'

Emissions'into'the'global'ecosystem'

F IGURE   4   –   C ULTIVATED  SYSTEMS  AS  A  SOURCE  OF  EMISSIONS  INTO  THE  GLOBAL  ECOSYSTEM  

 

  The  analysis  of  direct  and  indirect  environmental  impacts  is  performed  considering   a  life  cycle   assessment  (LCA).  As  explained  in  ISO  14040,  LCA  allows  the  analysis  of  environmental  impacts  of   products   (goods   or   services),   from   raw   material   acquisition   to   final   disposal.   This   is   done   in   a   systematic   way   in   accordance   with   the   stated   goal   and   scope,   and   including   direct   and   indirect   impacts.  Quoting  Schmidt  (2008)  “Agricultural  LCAs  typically  regard  local  production  as  affected  and   they  only  include  the  interventions  related  to  the  harvested  area.  However,  as  changes  in  demand   and   production   may   affect   foreign   production,   yields   and   the   displacement   of   other   crops   in   regions   where   the   agricultural   area   is   constrained,   there   is   a   need   for   incorporating   the   actual   affected   processes  in  agricultural  consequential  LCA”.  Examples  of  consequential  LCA  applied  to  agricultural   systems  are  the  studies  by  Schmidt  (2008),  Dalgaard  et  al.  (2008)  and  Cederberg  and  Stadig  (2003).   As   defined   by   Ekvall   and   Weidema   (2004),   a   consequential   LCA   is   designed   to   generate   information   on   the   consequences   of   decisions.   LCA   can,   therefore,   be   very   useful   in   the   policy   making  context  through  the  comparison  of  substitute  scenarios  for  the  production  of  a  given  good   or  service  (Jensen  et  al.,  1997;  Tillman,  2000).  This  is  precisely  our  approach,  aiming  to  evaluate  the   best  scenario  of  production  considering  the  analysed  environmental  impact  categories.  By  assuming   both   inelastic   demand   for   agricultural   goods   and   that   productive   land   remain   in   production,   we   include  the  effects  of  DLUC  and  ILUC.  The  overall  approach  is  presented  in  Figure  5.   As  schematized  in  Figure  5,  a  given  cultivated  system  A  in  area  I  allows  the  production  of  A.  As   an  alternative,  area  I  can  be  used  to  produce  product  B  (for  example,  if  A  regards  a  new  product,   then   it   will   occupy   area   previously   used   to   the   production   of   B).   Therefore,   in   order   to   maintain   the   production   of   B   constant,   there   is   the   need   to   produce   it   elsewhere.   We   are   often   interested   in   compare  alternatives  to  the  production  of  A,  and  therefore,  if  area  I  is  allocated  to  the  production   of  B,  then  area  II  may  be  used  to  the  production  of  A.   Summing   up,   if   A   is   produced   in   area   I,   then   B   is   produced   in   area   II;   otherwise,   if   B   is   produced   in  area  I,  then  A  is  produced  in  area  II.  Both  scenarios  include  a  constant  production  of  A  and  B.  All   cultivated   systems   require   resources   and   releases   emission   into   the   global   ecosystem,   with   correspondent  direct  and  indirect  environmental  impacts.    

30    

Resources*consump4on* Agricultural* land*[ha]*

Agricultural* land*[ha]* Resources*consump4on*

Resources*consump4on* Agricultural* land*[ha]*

Agricultural* land*[ha]* Resources*consump4on*

Cul4vated* system*A*in* *area*I*

Cul4vated* system*B*in* *area*I*

Cul4vated* system*B’*in* area*II*

Cul4vated* system*A’*in* area*II*

Emissions* Agricultural* product*A*[t]*

Emissions* Agricultural* product*B*[t]*

Agricultural* product*B*[t]* Emissions*

Agricultural* product*A*[t]* Emissions*

 

F IGURE   5   -­‐   O VERALL  METHODOLOGICAL  APPROACH  

  The  simplification  of  Figure  5  to  reflect  the  first  case  study  is  presented  in  Figure  6.  In  this  case   we  are  interested  in  the  analysis  of  substitutes  to  the  service  “shrubland  control  in  1  ha  of  natural   grasslands”.  Here,  the  only  difference  between  “Cultivated  system  A”  and  “Cultivated  system  B”  is   the   shrub   management   control   technique.   Since   the   stocking   rate   is   assumed   constant,   “Agricultural   product   A”   is   equal   to   “Agricultural   product   B”   and   therefore,   no   ILUC   is   necessary.   Given  the  expected  importance  of  soil  management  in  SOC  change,  this  subject  is  here  analysed  in   detail.   Also,   it   is   considered   that   systems   differ   on   the   machinery   hours   per   ha,   with   the   correspondent  direct  and  indirect  environmental  impacts  estimated  through  a  LCA.     Resources&consump=on& Agricultural& land&[1&ha]&

Agricultural& land&[1&ha]& Resources&consump=on&

Natural&grasslands&in& Portugal& &(Tillage&management)&

Natural&grasslands&in& Portugal& &(No   2mm)   content   should   be   estimated   and   subtracted   from   the   soil   volume,   with   special   attention   to   non-­‐agricultural   soils   which   are   often   rockier   and   less   homogeneous  (Post  et  al.,  2001).  In  its  estimation,  one  common  method  is  by  excavation.  For  this   method,  a  soil  monolith  with  a  predefined  side  length  is  extracted  from  the  soil  and  the  excavated   volume  has  to  be  determined  accurately  together  with  the  stone  content  within  the  monolith.  An   alternative   to   the   volume   determination   is   to   try   to   excavate   an   exact   monolith   with   exact   side   length  and  right  angles.  This  method  is  very  laborious,  destructive  and  time  consuming  (although  it   may   be   the   only   option,   especially   in   stony   soils).   Other   possibilities   include   the   “rod   penetration   method”  and  the  use  of  visual  estimates.  The  first  one  has  only  been  calibrated  for  glacial  till  soils   and   its   application   in   other   geographical   areas   requires   evaluation;   the   second   is   very   subjective,   therefore  good  validation  training  is  essential  (Rodeghiero  et  al.,  2009).  A  study  for  arable  soils  by   Rytter   (2012)   shows   that,   at   most,   the   summed   stone   and   gravel   fraction   were   7.7%   of   the   investigated  soil  volume.  Arable  soils,  given  their  agricultural  use,  are  a  good  estimate  of  the  lower   stoniness  level.  An  upper  bound  can  be  given  for  forest  samples,  with  values  as  high  as  around  50%   (Rytter,  2012).   Root   biomass  (living  parts  only,  as  dead  roots  are  part  of  the  SOM)  can  represent  a  large  portion   (e.g.  10  to  40%)  of  the  total  biomass  of  an  ecosystem.  Usually,  the  determination  of  root  biomass  is   carried  out  by  either  (Rodeghiero  et  al.,  2009):   •

applying   analytical   functions,   linking   root   biomass   to   more   easily   measurable   biomass   variables  (such  as  root-­‐to-­‐shoot  ratios  or  stem  diameter);  



sampling  root  biomass  from  soil  excavation  pits  or  soil  corers.  

The  choice  of  the  method  will  depend  mostly  on  economic  constraints,  since  the  sampling  with   both   methods   is   quite   difficult   and   time   consuming.   Application   of   analytical   functions   is   quite   limited  as  they  are  usually  species,  site  and  age  specific.  

36    

2.3.

C A R B O N   &  B E Y O N D  

As   presented   before,   in   order   to   assess   both   direct   and   indirect   impacts,   together   with   a   broader   scope   of   environmental   categories,   a   LCA   is   considered.   The   analysis   is   performed   using   software   SimaPro   7.2,   developed   by   Pré   Consultants   of   the   Netherlands   (http://www.pre.nl/)   and   the  National  Reuse  of  Waste  Research  Programme.   As   summarized   by   Rebitzer   et   al.   (2004),   and   in   accordance   with   the   ISO   14040,     LCA   is   composed  of  4  phases,  that  interact  as  presented  in  Figure  10.       Goal%and%scope% defini.on%

Inventory% analysis%

Interpreta.on%

Impact% assessment% %

 

F IGURE   10   –   P HASES  OF  A   LCA  AS  PRESENTED  BY   R EBITZER  ET  AL .   (2004)  

  In   the   goal   and   scope   definition   it   is   aimed   to   describe   the   product   system   in   terms   of   boundaries   and   functional   unit   (Rebitzer   et   al.,   2004).   Starting   here   and   all   along   the   way   interpretation  of  the  intermediate  results  must  be  considered.     The   next   phase,   life   cycle   inventory   (LCI)   is   a   “methodology   for   estimating   the   consumption   of   resources   and   the   quantities   of   waste,   flows   and   emissions   caused   by   or   otherwise   attributable   to   a   product’s  life  cycle”  (Rebitzer  et  al.,  2004).     Life  cycle  impact  assessment  (LCIA)  “provides  indicators  and  the  basis  for  analysing  the  potential   contributions   of   the   resources   extraction   and   waste/emissions   in   an   inventory   to   a   number   of   potential   impacts”   (Rebitzer   et   al.,   2004).   The   result   of   the   LCIA   is   an   evaluation   of   a   product   life   cycle  in  terms  of  several  impacts  categories  and,  in  some  cases,  in  an  aggregated  way  (such  as  years   of  human  life  lost  due  a  given  impact).     As  presented  by   Pennington   et   al.   (2004),   there   are   both   mandatory   and   optional   elements   in   the  process  of  LCIA  (see  Figure  11).  Associated  with  the  defined  goal  and  scope,  there  is  the  need  to   select  impact  categories  of  interest.  The  inventory  data  must  then  be  assigned  to  the  chosen  impact   category   (classification   phase).   The   calculation   of   impact   categories   is   done   through   the   use   of   characterisation   factors   (characterisation   phase).   These   are   the   mandatory   elements.   After   them,   is   possible   to   recalculate   the   category   indicator   result   relative   to   reference   values   (normalisation   phase).  The  impact  categories  can  also  be  grouped  and/or  weighted.    

 

37  

Mandatory)elements) Selec%on(of(impact(categories,(category(indicators,( characterisa%on(models( ( ( Assignment(of(LCI(results( ( ( Calcula%on(of(category(indicator(results(

Category(indicator(result((

Op0onal)elements) Calcula%on(of(the(magnitude(of(category(indicator(rela%ve(to( reference(informa%on( ( ( Grouping( ( ( Weigh%ng(

  F IGURE   11   –   E LEMENTS  OF   LCIA  AS  PRESENTED  BY   P ENNINGTON  ET  AL .   (2004)  

  In  the  present  thesis,  only  the  mandatory  elements  are  considered.  By  excluding  normalization   and   weighting,   it   is   aimed   to   reduce   subjectivity   (Geodkoop,   1995).   The   impact   assessment   methods   considered   is   the   ReCiPe   (Goedkoop   et   al.,   2012).   According   to   the   explained   only   midpoint  results  are  considered.  Given  its  consensually,  the  hierarchist  perspective  is  assumed.     If  is  not  possible  to  apply  a  LCA,  we  consider  data  available  in  literature.    

38    

Chapter  3. C AN  NO -­‐ TILLAGE  CONTRIBUTE  TO  SOIL  CARBON   SEQUESTRATION  IN  PORTUGUESE  NATURAL  GRASSLANDS ?   Context   Under  the  Article  3.4  of  KP,  in  the  framework  of  voluntary  LULUCF  activities,  Portugal  elected  the   activities  “Grassland  Management”,  “Cropland  Management”  and  “Forest  Management”.  However,   even   using   such   additional   measures,   the   2006   National   Program   on   Climate   Change   pointed   to   excess   in   emissions.   As   presented   in   detail   by   Teixeira   (2010),   the   PCF   was   created   to   fund   and   promote   projects   with   innovative   approaches,   aiming   to   increase   carbon   sequestration   through   LULUCF   activities.   Within   this   context,   Terraprima   -­‐   Environmental   Services,   a   spin-­‐off   enterprise   from  Instituto  Superior  Técnico,  developed  a  project  regarding  the  control  of  shrub  encroachment  at   grasslands   through   the   use   of   no-­‐tillage   techniques,   substituting   areas   subject   to   tillage   management.  The  correspondent  carbon  sequestration  is  paid  to  farmers  as  an  ecosystem  service.   The  present  chapter  regards  the  estimate  of  carbon  sequestration  factors.       Previous  versions  of  this  work  were  already  presented  and/or  published,  namely:   •

Oral  presentation  entitled  “Shrubland  management  as  a  tool  to  sequester  carbon”  at  the   III  National  Congress  on  Climate  Change,  1-­‐2  June  2012,  Caparica,  Portugal.  



Oral   presentation   entitled   “The   role   of   grassland   and   shrubland   management   in   soil   carbon   sequestration”   (O   papel   da   gestão   de   pastagens   e   matos   no   sequestro   de   carbono  no  solo)  at  the  V  Iberian  Congress  of  Soil  Science  (V  Congresso  Ibérico  da  Ciência   do  Solo),  6-­‐10  September  2012,  Angra  do  Heroísmo,  Portugal.  



Oral  presentation  entitled  “Grazed  landscapes:  the  importance  of  land  management”  at   the   Cascais   World   Forum   2012   -­‐   Soil   Bioengineering   and   Land   Management   New   Challenges,  19-­‐22  September  2012,  Cascais,  Portugal.  



Oral  presentation  entitled  “Grassland  management  options  under  Kyoto  Protocol  Article   3.4  –  the  Portuguese  case  study”  at  the  14th  Meeting  of  the  FAO-­‐CIHEAM  Subnetwork  on   Mediterranean  Pastures  and  Fodder  Crops:  "New  Approaches  for  Grassland  Research  in   a  Context  of  Climate  and  Socio-­‐Economic  Changes”,  3-­‐6  October  2012,  Samsun,  Turkey.   There   was   a   correspondent   publication   with   international   peer   review   at   the   Options   Méditerranéennes,  A,  no.  102,  53-­‐56.  



Oral   presentation   entitled   “The   impact   of   tillage   versus   no-­‐tillage   on   soil   organic   matter:   the   case   of   shrub   management   at   Portugal”   (O   impacto   da   gestão   por   gradagem   versus   corta-­‐mato  no  teor  de  matéria  orgânica  do  solo:  o  caso  da  gestão  de  áreas  de  mato  em   Portugal)   at   the   Annual   Meeting   of   the   Soil   Science   by   the   Portuguese   Society   of   Soil   Science   (Encontro   Anual   da   Ciência   do   Solo   /   SPCS   2013),   26-­‐28   June   2013,   Oeiras,   Portugal.  



Oral   presentation   entitled   “The   role   of   grassland   management   in   the   climate   change”   at   the   10th   National   Environment   Conference   and   XII   National   Congress   of   Environmental   Engineering   (10.ª   Conferência   Nacional   do   Ambiente   e   XII   Congresso   Nacional   de   Engenharia  do  Ambiente),  6-­‐8  November  2013,  Aveiro,  Portugal.  

The  presented  work  counted  with  Manuel  Ribeiro  and  Helena  Martins  as  co-­‐authors.  

 

39  

The  chapter  in  a  nutshell   Tilling  soil  is  a  common  practice  in  shrub  encroachment  control  in  Portuguese  natural  grasslands.   However,  tilling  the  soil  is  disruptive  and  leads  to  SOM  loss.  In  this  study,  we  developed  a  sampling   design   including   145   plots   (81   subject   to   tillage   management   and   64   subject   to   no   tillage   management),   collected   in   2011   and   2012.   Our   main   goal   is   to   assess   if   there   is   a   difference   in   SOM   averages   between   tilled   and   no-­‐tilled   plots.   Parametric   and   non-­‐parametric   mean   test   hypothesis,   as  well  as  multiple  linear  regression,  is  considered  in  the  analysis.  The  results  indicate  that  the  null   hypothesis  of  equal  SOM  average  among  management  techniques  is  rejected  with  a  95%  confidence   interval   (CI),   indicating   higher   SOM   concentration   for   data   regarding   no-­‐tilled   plots.   The   obtained   values   regarding   the   difference   between   management   techniques   range   from   0.02   to   0.31   gSOM/gsoil.yr-­‐1  for  2011  and  0.01  to  0.25  gSOM/gsoil.yr-­‐1  for  2012.     Since   58%   of   SOM   is   SOC,   it   is   possible   to   estimate   the   carbon   sequestration.   For   2011   the   obtained   carbon   sequestration   factor   range   from   0.96   to   17.16   tCO2.ha-­‐1yr-­‐1.   For   2012,   the   carbon   sequestration   factor   range   from   0.52   to   13.71   tCO2.ha-­‐1yr-­‐1.   Regarding   critical   analysis   of   the   results,   the   estimate   of   bulk   density,   the   sampling   depth   and   the   SOM   laboratory   analysis   were   identified  as  key  issues  in  the  presented  analysis.  

3.1.

I N T R O D U C T IO N  

Historically,   natural   grasslands   are   the   most   common   type   of   grasslands   in   Portugal.   These   grasslands  are  located  in  regions  with  high  risk  of  desertification  and,  as  described  in  Teixeira  et  al.   (2011),  subject  to  shrub  control  through  the  use  of  tillage.  However,  and  as  pointed  out  by  Conant   et   al.   (2007),   soil   tillage   is   disruptive   of   soil   structure,   since   it   can   promote   soil   erosion   and   depletion  of  SOM.  Here,  we  focus  our  analysis  on  SOM  since  it  plays  a  crucial  role  in  maintaining  soil   functions  (due  to  its  influence  on  soil  structure  and  stability,  water  retention,  soil  biodiversity  and   as  a  source  of  plant  nutrients)  (EEA  and  JRC,  2010).     As   explained   by   Bot   and   Benites   (2005),   tillage   activities   decrease   SOM   concentration   by   increasing   mineralization   rates   and   decreasing   humus   production.   Tillage   increases   SOM   mineralization   rate   since   it   stimulates   the   heterotrophic   microbiological   activity   through   soil   aeration.  Through  breakdown  of  soil  structure,  it  also  decreases  upward  and  downward  movements   of   soil   fauna,   such   as   earthworms,   which   are   largely   responsible   for   “humus”   production.   On   literature  no-­‐tillage  practices  have  then  been  presented  as  an  option  to  stop  SOM  decline  or  even   recover   SOM   lost   during   tillage   (Blanco-­‐Canqui   and   Lal,   2008;   Conant   et   al.,   2007;   Paustian   et   al.,   1997;   Smith,   2008).   According   to   Bot   and   Benites   (2005),   no-­‐tillage   regulates   heterotrophic   microbiological   activity,   facilitates   the   activity   of   the   “humifiers”   and   allows   soil   fauna   to   resume   their   bioturbating   activities.   In   this   case,   the   action   of   soil   macrofauna   gradually   incorporates   the   biomass   from   the   soil   surface   down   into   the   soil.   Since   part   of   SOM   is   SOC   (Post   et   al.,   2001),   when   promoting  an  increase  in  SOM  there  is  a  correspondent  carbon  sequestration.     The   increase   of   SOC   through   the   pathway   of   atmospheric   CO2   sequestration   offsets   emissions   from  other  sources  (Conant  et  al.,  2010)  and  thus  falls  within  application  range  of  the  KP  (Smith  et   al.,   2009).   As   previously   stated,   Portugal   elected   the   voluntary   activity   “Grassland   management”,   in   the   framework   of   Article   3.4   of   the   KP.   Assuming   the   hypothesis   that   the   shift   from   tillage   to   no  

40    

tillage  in  Portuguese  natural  grasslands  allows  an  increase  in  SOM  levels,  a  proposal  of  project  was   made  to  the  PCF.     In   this   context,   the   main   goal   here   is   to   test   if   the   shift   in   shrub   control   from   tillage   to   no-­‐ tillage   is   a   relevant   measure   to   improve   SOM   concentration   in   Portuguese   natural   grassland.   If   that   is   the   case,   estimate   the   correspondent   carbon   sequestration.   In   order   to   do   so,   145   plots   were   sampled.   Samples   were   collected   in   2011   and   2012.   Although   SOM   levels   are   influenced   by   many   factors,   we   here   analyse   the   effect   of   soil   original   material.   The   used   method   consists   of   a   battery  of  statistical  tests  and  Stata  software  is  used.  Since  the  assumption  proved  to  be  valid,  FPC   supported  the  project,  which  is  currently  implemented  in  about  47  000  ha,  involving  191  farmers.   Regarding   the   state   of   the   art,   worldwide   studies   have   been   done   regarding   the   carbon   sequestration   due   to   reduce   or   no   tillage.   While   some,   like   the   one   by   Young   et   al.   (2009),   VandenBygaart   et   al.   (2008),   Luo   et   al.   (2010)   and   Loke   et   al.   (2012)   show   little   or   zero   carbon   sequestration  others,  like  the  ones  by  Sanderman  et  al.  (2010),  West  and  Post  (2002)  and  Boddey  et   al.   (2010)   show   carbon   sequestration   rates   with   a   upper   bound   of   5.6   tCO2.ha-­‐1.yr-­‐1.   As   for   the   analysis  of  carbon  sequestration  by  grasslands,  the  role  of  Portuguese  natural  and  sown  biodiverse   grasslands   has   already   explored   by   Teixeira   et   al.   (2011).   A   10   years   model   of   SOM   dynamic   was   obtained  with  an  average  carbon  sequestration  of  about  2.6  tCO2.ha-­‐1.yr-­‐1  and  6.5  tCO2.ha-­‐1.yr-­‐1  for   natural   and   sown   biodiverse   grasslands,   respectively.   A   higher   factor   of   sequestration,   7   tCO2.ha-­‐ 1 .yr-­‐1,   is   reported   by   Aires   et   al.   (2008).   The   study   regards   grazed   Mediterranean   C3/C4   grassland   in   southern   Portugal,   during   two   hydrological   years   (2004-­‐2005   and   2005-­‐2006).   Considering   global   temperate  grasslands  Conant  et  al.  (2001)  reports  a  range  from  1.10  to  11.50  tCO2.ha-­‐1.yr-­‐1.  In  Table   3  we  present  a  more  extensive  review  of  literature.  

 

41  

T ABLE   3   –   M EASURED  GRASSLAND  CARBON  SEQUESTRATION  FACTORS   Soil  carbon   potential   -­‐1 -­‐1 (tCO2  ha  yr )  

Land  use  /  land  use  change   -­‐1

Semi-­‐natural  calcareous  grasslands  (2  cuts  yr )   -­‐1

Sown  Trifolium  repens  (4  cuts  yr )   -­‐1 Sowm  Lolium  perenne  (4  cuts  yr )   -­‐1

Sowm  Trifolium  repens  (4  cuts  yr )   -­‐1

Sowm  Lolium  perenne  (10  cuts  yr ;  High  N,   -­‐1 -­‐1 800kg.ha yr )   -­‐1 Sowm  Lolium  perenne  (5  cuts  yr ;Low  N,  LN,   -­‐1 -­‐1 -­‐1 -­‐1 160  kgha yr ;High  N,  HN,  530  kgha yr )   Species-­‐rich  grassland  on  limestone  soil  in   -­‐1 solardome  (4-­‐5  cuts  yr )   Species-­‐poor  community  on  peaty  gley  in   solardome  (No  cutting/grazing)   Annual  grassland  on  serpentine  (No   cutting/grazing)   Annual  grassland  on  sandstone  (No   cutting/grazing)  

<  2.93   8.80  –  24.93   9.90  –  36.30   6.97     11.37   8.40   14.30   2.20  (LN),  2.93  (HN)   5.13  (LN),  6.97  (HN)   2.57  –  6.23  

Method  

Climate  

C  labelling  in  open  top  chambers     (OTC) 13 C  labelling  in  free  air  CO2  enrichment     (FACE) 13

C-­‐enriched  soil  (C4)  in  FACE C  balance   Soil  C  analysis  

C  balance  

21.27  –  25.67     31.17  –  32.63   13

C  labelling  in  OTC

 

 

600  ppm  CO2  

Niklaus  et  al.  (2001)  

600  ppm  CO2  

Switzerland  

Ambient  CO2   600  ppm  CO2   Ambient  CO2   2xambient  CO2   Ambient  CO2   2xambient  CO2   Ambient  CO2   Ambient  CO2  +   250ppm  CO2   Ambient  CO2   Ambient  CO2  +   250ppm  CO2  

Van  Kessel  et  al.  (2000)   Nitschelm  et  al.  (1997)  

Netherlands  

Schapendonk  et  al.  (1997)  

France  

Loiseau  and  Soussana  (1999)  

UK  

Fitter  et  al.  (1997)  

2xambient  CO2  

USA  (California)  

Soil  C  analysis  

 

USA  (Central   Texas)  

CESAR  model  

Commitment   period  (2008-­‐2012)  

Europe  

Hungate  et  al.  (1995)  

9.64  –  12.58  

Perennial  grassland  (from  arable  to  grassland)  

1.65  

European  grasslands  (average)   European  grasslands  (conversion  of  all  arable   land  to  grassland)   European  grasslands  (application  of  farmyard   manure)  

1.91   5.28   5.50  

   

42    

Reference  

13

8.43  –  10.63  

7.55  –  11.95  

Location  

 

Potter  et  al.  (1999)  

Vleeshouwers  and  Verhagen   (2002)  

  Land  use  /  land  use  change   Managed  grasslands  (reduction  in  N  fertilizer   inputs  in  intensive  leys)   Managed  grasslands  (conversion  of  arable   land  to  grass/legume)   Managed  grasslands  (intensification  of   permanent  grassland)   Managed  grasslands  (intensification  of   nutrient-­‐poor  grassland)   Managed  grasslands  (permanent  grassland  to   medium-­‐duration  leys)   Managed  grasslands  (increasing  duration  of   leys)   Managed  grasslands  (short  duration  leys  to   permanent  grassland)  

Soil  carbon   potential   -­‐1 -­‐1 (tCO2  ha  yr )  

Method  

Climate  

Location  

Simple  statistical  model  

Ambient  

France  

Soussana  et  al.  (2004)    

Global  

Parton  et  al.  (1995)  

Global  

Parton  et  al.  (1995)  

1.10   1.10  –  1.83   0.73   -­‐3.30  –  4.03   -­‐0.73   0.73  –  1.83   1.10  –  1.47   0.01  

Temperate  steppe  (C3/C4,  unfertilized)  

0.11  

CENTURY  model  

-­‐0.11   -­‐0.11   -­‐0.11  

Humid  temperate  (C4)  

0.11   -­‐0.22  

CENTURY  model  

-­‐0.10   -­‐0.20   -­‐0.11  

 

 

Reference  

350  ppm  CO2   +Climate  Change   (CC)   2  x  ambient   CO2+CC   +CC   2  x  ambient   CO2+CC   350  ppm  CO2   +CC   2  x  ambient   CO2+CC   +CC   2  x  ambient   CO2+CC  

 

43  

  Land  use  /  land  use  change   -­‐1

-­‐1

Temperate  grassland  (N  input,  20  kg  ha yr   for  the  upland  site,  US;  50  for  the  lowland  site,   LS)  

Soil  carbon   potential   -­‐1 -­‐1 (tCO2  ha  yr )  

Hurley  pasture  model  

0.33   0.55  

Temperate  grasslands  (fertilized)   Temperate  grasslands  (improved  grazing)   Temperate  grasslands  (conversion  from  arable   to  permanent  grassland)   Temperate  grasslands  (conversion  from  native   vegetation  to  grassland)   Temperate  grasslands  (introduction  of   legumes)   Temperate  grasslands  (earthworm   introduction)   Temperate  grasslands  (improved  grass   species)   European  grasslands  (conversion  from  arable   land  to  1:3  yr  ley:  arable  rotation)   Cool  temperate  grasslands  (conversion  from   arable  land  to  permanent  pasture)   Rangeland  (poorly  managed)   Rangeland  (well  managed)   Rangeland  (conservation  reserve  program)  

 

44    

Climate  

Location  

Reference  

UK  

Thornley  and  Cannell  (1997)  

Standard   conditions,  US  

0.29   0.18  

Temperate  grassland  (range  from  low,  5,  to   -­‐1 -­‐1 kigh,  100  kgNha yr  atmospheric  fixed  N  flux)    

Method  

1.10   1.28  

Standard   conditions,  LS   +5°C  +  700  ppm   CO2,  US   +5°C  +  700  ppm   CO2,  LS  

3.70   1.28   -­‐  

Ambient  

 

 

 

 

 

 

Global  

Conant  et  al.  (2001)  

Europe  

Smith  et  al.  (1997)  

2.75   8.62   11.15   5.87   0.99   0.37   1.1   2.2  

USA  

Post  and  Kwon  (2000)  

USA  

Schuman  et  al.  (2002)  

3.2.

M E T H O D S  

3 .2 .1 S A M P L I N G   D E S I G N   As  stated  before,  our  goal  is  to  assess  if  the  shift  in  shrub  control  from  tillage  to  no-­‐tillage  is  a   relevant   measure   to   improve   SOM   concentration   in   Portuguese   natural   grasslands.   In   terms   of   project   implementation,   as   approved   by   the   PCF,   the   goal   is   to   obtain   a   sequestration   factor   as   applicable  to  the  national  level  as  possible.   Here,   we   approach   the   problem   with   direct   methods,   through   measurement   of   C   stocks   in   designated   plots,   and   extrapolation   to   represent   a   given   geographic   area.   The   analysis   of   SOC   content   is   a   standard   laboratory   procedure   but   SOC   stocks   vary   as   a   function   of   soil   texture,   landscape   position,   drainage,   and   soil   density,   all   of   which   vary   spatially,   making   it   difficult   to   quantify  changes  in  SOC  stocks  (Conant  et  al.,  2010).  Therefore,  the  main  difficulty  in  documenting   plot   level   changes   in   SOC   stocks   is   not   with   measuring   the   SOC,   but   rather   in   designing   an   efficient,   cost   effective   sampling   and   SOC   stock   estimation   system   (Post   et   al.,   2001).   The   development   of   scaling   procedures   to   relate   soil   organic   C   changes   on   individual   plots   or   fields   to   a   regional   or   national  accounting  is  also  a  challenge.  The  fundamental  method  for  scaling  consists  of  subdividing   the  landscape  into  relatively  homogeneous  patches,  applying  field  measurements  or  model  results   for  each  subdivision  (Post  et  al.,  2001).  Here  we  considered  the  subdivision  in  soil  original  material.   Although  the  detection  of  SOM  changes  is  most  commonly  achieved  by  the  use  of  time  series,   we   here   assume   a   space-­‐for-­‐time   substitution   approach.   Space-­‐for-­‐time   substitution   regards   analyses   in   which   contemporary   spatial   phenomena   are   used   to   understand   and   model   temporal   processes   (Blois   et   al.,   2013).   Since   it   is   very   difficult   to   adequately   detect   a   small   change   in   SOC   stocks   over   time   periods   of   less   than   5   years   (VandenBygaart   and   Angers,   2006)   the   proposed   methodology   allow   us   to   obtain   useful   results   in   a   time   effective   way.   However,   “space-­‐for-­‐time”   substitution   approach,   while   useful,   can   produce   erroneous   results   if   soil   characteristics   differ   among  sites.  Selecting  sites  with  similar  parent  material,  soil  type,  landscape  position  and  prior  land   use  history  can  minimize  sources  of  error  (Lal,  2005).   Following   Schrumpf   et   al.   (2008),   we   set   up   a   regular   grid   sampling   protocol.   Grid   designs   are   often  easier  to  handle  than  random  sampling,  since  the  points  are  easier  to  locate  in  the  field,  for   the   first   inventory   as   well   as   for   the   re-­‐sampling   (Schrumpf   et   al.,   2008).   The   grid   was   chosen   considering   the   need   to   harmonise   the   current   procedure   with   the   one   from   the   Portuguese   National   Forestry   Inventory   (NFI).   This   harmonisation   aims   the   possibility   of   future   use   of   both   databases   in   a   compatible   way.   Within   the   NFI   grid,   sampled   plots   were   chosen,   taking   into   consideration   the   representativeness   of   data   points   for   both   shrub   control   techniques   and   soil   original   materials   (see   Table   4).   The   sampled   plots   are   not   experimental   and   controlled.   Instead,   there  are  under  current  management,  following  practical  needs.  The  choice  of  plots  started  with  an   interview  to  the  farmer  aiming  to  understand  both  the  current  management  and  the  availability  to   participate   in   the   study.   Our   goal   was   to   find   a   set   of   plots   as   balanced   as   possible   regarding   the   control   management   and   soil   original   material.   As   much   as   possible,   the   history   of   plots   was   gathered.   On   one   hand   this   design   allows   us   to   have   a   glimpse   of   what   is,   in   fact,   the   current   status   of  soil,  on  the  other  hand  it  does  not  allow  the  knowledge  and  control  of  management  techniques.  

 

45  

This   implies   the   ignorance   about   the   details   regarding   mobilization   execution   (depth   and   exact   machinery)  and  exact  date  of  occurrence.   We   were   able   to   collect   soil   samples   from   145   plots,   23   different   farms   and   10   municipalities   of   mainland   Portugal   (see   Table   5   and   Figure   12).   The   samples   were   collected   in   2011   and   2012   between  July  and  November  (before  the  heavy  rain  season).    Due  to  budget  and  human  resources   constraints   was   not   possible   to   shorten   the   time   frame.   This   time   frame   included   differences   in   climatic   conditions,   which   may   have   influenced   SOM   concentration   and   compromise   results.   The   annual   collection   of   data   continues,   aiming   to   collect   a   time   frame   long   enough   to   model   SOM   evolution  with  time.   T ABLE   4   –   S AMPLING  EFFORT  BY  MANAGEMENT  TECHNIQUE  AND  ROCK  MATERIAL   Soil  original  material   All   Granite   Sandstone   Schist  

Management   No-­‐till   Till   No-­‐till   Till   No-­‐till   Till   No-­‐till   Till  

Number  of  samples   2011   2012   64   63   81   82   6   5   29   30   26   26   41   41   32   32   11   11  

  T ABLE   5   –   D ISTRIBUTION  OF  SAMPLED  PLOTS  BY  FARM  AND  MUNICIPALITY   Farm   Barbas   Barradas  da  Serra   Biscaínho   Cascavel   Corte  Salva   Barrocal   Estreito   Fidalgos   Vale  Figueira  de  Baixo   Monte  Branco   Monte  Fidalgo   Pedras  Alvas   Quinta  da  Corona   Quinta  Grande   Santa  Cruz  e  Besteiros   Texugueira   Torre  do  Ferrador   Torrinha   Vale  Boi   Vale  Cão   Vale  Covo   Vale  das  Porcas   Vale  Feitoso  

 

46    

Municipality   Coruche   Grândola   Coruche   Coruche   Grândola   Évora   Grândola   Coruche   Montemor-­‐o-­‐Novo   Coruche   Castelo  Branco   Grândola   Santiago  do  Cacém   Coruche   Mora   Coruche   Coruche   Coruche   Coruche   Alcácer  do  Sal   Coruche   Alcácer  do  Sal   Idanha-­‐a-­‐Nova/Penamacor  

Number  of  samples   1   7   2   3   1   3   3   9   14   4   15   1   5   3   5   4   2   4   3   8   4   18   26  

  F IGURE   12   –   M AP  OF   P ORTUGAL ,  WITH  THE  INDICATION  OF  THE  SAMPLING  SITES  

  According   to   the   NFI   guidelines,   sampling   plots   were   circular,   with   an   area   of   about   500   m2,   reported  to  the  horizontal  plane.  The  plot  thus  defined  was  assumed  to  be  homogeneous  regarding   the   variables   of   interest.   Each   soil   sample   collected   in   each   plot   is   a   composite   mixture   of   5   sub-­‐ samples   (one   at   the   centre,   and   the   remaining   four   collected   in   the   direction   of   the   main   4   cardinal   points).  Sub-­‐samples  were  collected  with  a  metal  probe  and  afterwards  homogenised  and  labelled   (check  Figure  13).  Major  roots  or  other  residues  were  removed.  As  recommended  by  Stolbovoy  et   al.  (2007),  the  sampled  soil  depth  should  be  30  cm.  However  the  sampled  soils  are  shallow  and  in   order  to  guarantee  comparability  a  20  cm  depth  was  chosen.   The   soil   samples   were   sent   to   the   Agricultural   Chemical   Laboratory   of   the   University   of   Évora,   where  they  were  analysed  for  their  content  in  organic  carbon  using  a  SC-­‐144DR  (Leco)  device.   Although   the   focus   of   the   study   is   on   the   relation   between   the   control   technique   and   SOM   concentration,   other   variables   were   collected.   We   aimed   to   gather   information   that   might   help   explain  SOM  concentration.  Although  in  the  present  study  those  variables  play  a  minor  role,  as  the   database   grows   more   mature,   they   may   play   a   more   relevant   role   in   modelling.   The   collection   took   place   in   a   cost-­‐time-­‐effective   way,   with   the   possible   accuracy.   Variables   obtained   by   laboratory   analysis  of  soil  samples  are  presented  in  Table  6.  Variables  collected  in  the  field  (see  Figure  14  and   Annex  I)  are  presented  in  Table  7.  In  the  office,  the  coordinates  of  each  central  point  were  crossed   with   the   georeferenced   data   and   the   variables   described   in   Table   8   were   added.   The   collected   data   is  presented  in  Annex  III.    

 

47  

 

  F IGURE   13   –   F IELD  WORK  

  F IGURE   14   –   F IELD  FORM  

 

48    

T ABLE   6   –   D ESCRIPTION  OF   “ LABORATORY  VARIABLES ”   Variable  

Type  

Unit/scale  

Description   4

Determined   using   a   SC-­‐144DR   (Leco)   device .   This   device   can   perform   gSOM/100gsoil   direct   combustion   and   infrared   detection   for   sulphur   and   carbon   in   various  organic  materials  from  ppm  levels  to  high  percent  concentrations.    

SOM  

Ratio  

Phosphorus  

Ratio  

mg/Kg  P  

Potassium  

Ratio  

mg/Kg  K2O  

Acidity  

Interval  

Manual   Texture  

Nominal  

The   extraction   was   performed   according   to   the   Riehm   (1958).   For   the   determination   of   assimilable   phosphorus   the   method   from   Knudsen   (1980)  was  used.  Regarding  the  assimilable  potassium,  the  method  used   was   flame   photometry,   with   the   calibration   procedure   from   the   5 manufacturer  (JENWAY  PFP7)  

pH  

Determined  through  a  potentiometric  method.  Solution  soil:  water  (1:2.5)  

-­‐  

The   manual   texture   assessment   is   based   on   the   clear   different   to   the   touch  between  sand,  silt  and  clay.  It’s  a  fast  and  easy  method.   Procedure:   -­‐take  a  piece  of  land  and  put  it  in  your  palm   -­‐pinch   and   rub   between   your   thumb   and   fingers   in   order   to   verify   whether  it  is  rough  or  smooth    -­‐add   water   dropwise,   and   try   to   shape   the   land   while   assessing   the   characteristics  it  presents  to  touch.   Classification  of  texture:   COARSE  -­‐  presents  almost  exclusively  rough  materials,  is  loose,  not  plastic   or  sticky  and  can  not  shape  up  in  filament.   MEDIUM   -­‐   has   a   higher   proportion   of   soft   materials   that   harsh,   not   too   sticky,  it  shaped  up  into  filament  and  breaks  when  you  want  to  bend  it.   FINE  -­‐  has  soft  and  thin,  silky,  sticky  and  easily  fashioned  into  elongated   filament  which  may  do  not  break  when  bended.  

T ABLE   7   –   D ESCRIPTION  OF   “ FIELD  VARIABLES ”   Variable   Forest  type   Tree  cover   Shrub  cover   Herbaceous   cover  

Percentage   Height   Percentage   Height   Percentage  

Type  

Unit  

Description  

Nominal  

-­‐  

Estimated  by  the  technician,  regards  the  dominant  tree  cover.  

Ratio  

%   m   %   m   %  

The  technician  estimates  both  variables.  In  order  to  estimate  the   percentage,  the  scheme  from  Annex  II  is  used.  Data  collected  for   2 the  500  m  plot.  

Ratio   Ratio  

Litter  

Ordinal  

-­‐  

Estimated  by  the  technician,  regards  the  amount  of  accumulated   litter.  It  is  divided  in  5  classes:  1  (absent);  2  (sparse);  3  (medium);   4  (abundant)  and  5  (very  abundant).  Data  collected  for  the   2 500m  plot.  

Topography  

Nominal  

-­‐  

Estimated  by  the  technician,  regards  the  distinction  between   slope,  base,  top,  plan.  Data  collected  for  each  sub-­‐sample  and   2 then  homogenized  for  the  500  m  plot.  

-­‐  

The  dominant  aspect  is  determined  with  the  compass,  from  the   central  point  of  the  plot,  with  the  technician  back  up  the  slope.   The  main  eight  cardinal  points  are  considered.  Data  collected  for   2 each  sub-­‐sample  and  then  homogenized  for  the  500  m  plot.  

-­‐  

Estimated  by  the  technician,  evaluates  if  each  sub-­‐sample  is   inside  or  outside  the  vertical  projection  of  the  canopy.  Data   collected  for  each  sub-­‐sample  and  then  homogenized  for  the  500   2 m  plot.  Six  categories  are  considered:  0  (5  sub-­‐samples  inside);   0.2  (4  sub-­‐samples  are  inside);  0.4  (3  sub-­‐samples  inside);  0.6  (2   sub-­‐samples  inside);  0.8  (1  sub-­‐samples  inside);  1  (0  sub-­‐samples   inside)  

Aspect  

Canopy  

Nominal  

Ordinal  

                                                                                                                        4

 For  more  information  please  check  http://uk.leco-­‐europe.com/product/sc144dr/    For  more  information  please  check  http://www.jenway.com/adminimages/pfp7(1).pdf  

5

 

49  

T ABLE   8   –   D ESCRIPTION  OF   “ OFFICE  VARIABLES ”   Variable   T_REF_BULK_ DENSITY  

Source   Harmonized   World  Soil   Database   (HWSDB)  

Type  

Unit   3

Ratio  

g/cm  

T_BULK_DENS ITY  

HWSDB  

Ratio  

g/cm  

Altimetry  

Portuguese   Environment   Agency  

Ratio  

m  

3

Topsoil  bulk  density,  derived  from  the  available  analysed   data  (FAO  et  al.,  2012).   -­‐  

a

P_Evap.  

Rosário  (2004)  

Ratio  

mm  

Annual  potential  evapotranspiration.  

a

Prec._AY  

Rosário  (2004)  

Ratio  

mm  

Precipitation  level  for  an  average  year.  

a

Slope  

Rosário  (2004)  

Ordinal  

%  

Plot  slope.  Four  classes  are  considered:  1  (0-­‐2%);  2  (3-­‐ 15%);  3  (16-­‐24%);  4  (>25%).  

a

Drainage  

Rosário  (2004)  

Ordinal  

-­‐  

Soil  drainage.  Four  classes  are  assumed:  1  (good  to   moderate);  2  (imperfect);  3  (bad)  and  4  (very  bad).  

a

Thickness  

Rosário  (2004)  

Ordinal  

cm  

Soil  thickness.  Divided  in  four  classes:  1  (>75);  2  (50-­‐75);   3  (25-­‐50);  4  (6.0);  2   (3.0-­‐6.0);  3  (1.5-­‐3.0);  4  (0.5-­‐1.5);  5  (0.1-­‐0.5);  6  (1.5/>0.1 ).   b

Data  made  available  by  Eng.  Lúcio  do  Rosário,  to  whom  I  kindly  thank.    superficial  k/sub  superficial  k  

3 .2 .2 S T A T I S T I C A L   A N A L Y S I S   O F   S O M   D I F F E R E N C E S   Our   goal   is   to   analyse   and   compare   SOM   concentration   from   two   datasets,   namely   (1)   tillage   plots  and  (2)  no-­‐tillage  plots  (including  or  excluding  differentiation  of  the  soil  original  material).     The  statistical  analysis  is  performed  with  software  Stata  11.   3 . 2 . 2 . 1 T W O   S A M P L E   M E A N   H Y P O T H E S I S   A P P R O A C H  

We  start  by  assessing  if  there  is  a  statistical  significant  difference  in  SOM  concentration  between   the  two  defined  datasets.  We  assume  spatial  independence  among  samples  and  that  the  average  is   representative   of   the   SOM   concentration   for   each   dataset.   To   test   the   significance   of   the   differences   between   SOM   averages,   both   parametric   (t-­‐test)   and   non-­‐parametric   (Kruskal-­‐Wallis)   methods  are  applied  (Zar,  2010).  The  two  methods  are  compared,  aiming  to  assess  the  robustness   of  results.  The  normality  of  the  SOM  data  distribution  is  tested  through  the  Shapiro-­‐Wilk  test;  for   intuition,   we   display   a   graphical   assessment   of   cumulative   frequencies.   The   homoscedasticity   of   SOM  data  is  tested  using  Bartlett’s  test  (Zar,  2010).   For   the   cases   in   which   it   is   possible   to   find   a   statistically   significant   difference   in   SOM   concentration  between  datasets  representing  soil  management  systems  (no-­‐tillage,  NT;  and  tillage,   T),   lower   (L),   average   (A)   and   higher   (H)   SOM   differences   (ΔSOM)   are   assessed.   The   SOM   concentrations  from  t-­‐test  results,  namely  upper  bound  (UB),  lower  bound  (LB)  and  average  (AV),   are  considered  to  estimate  the  SOM  concentration  difference  between  systems  (see  Equation  3).      

50    

∆𝑆𝑂𝑀! = 𝑆𝑂𝑀!";!" − 𝑆𝑂𝑀!;!" ∆𝑆𝑂𝑀! = 𝑆𝑂𝑀!";!" − 𝑆𝑂𝑀!;!"   ∆𝑆𝑂𝑀! = 𝑆𝑂𝑀!";!" − 𝑆𝑂𝑀!;!" E QUATION   3  

  The   analysed   data   corresponds   to   a   snapshot,   as   opposed   to   a   time   series.   We   present   estimates   per   year   by   calculating   the   number   of   years   needed   to   achieve   the   reported   SOM   difference.  In  order  to  do  so,  the  farmers  reported  the  year  of  last  intervention.  For  the  plots  under   tillage  management,  the  answer  is  naturally  the  last  year  in  which  a  tillage  event  took  place.  For  the   no-­‐tillage  plots,  the  farmers  tend  to  give  information  about  last  time  an  intervention  took  place,  not   necessarily,   and   likely,   tillage.   Therefore,   there   is   the   need   to   estimate   the   last   year   of   tillage   mobilization   for   the   no-­‐tillage   plots.   Using   the   reported   information   by   farmers,   we   built   an   histogram  of  the  reported  years  passed  since  the  last  tillage  event  (YSLM).  According  to  Figure  15,   the   cycle   of   control   is   of   about   7   years.   Given   the   uncertainty,   the   interval   of   7±2   is   considered.   Three   variables   were   thus   defined,   namely   YSLM5,   YSLM7,   YSLM9,   with   the   characteristics   presented  in  Table  9.  For  no-­‐tilled  plots  we  assumed  that  the  last  tillage  event  occurred  in  the  last   cycle,  and  5,  7  and  9  years  are  subtracted  to  the  year  of  mobilization  reported  by  farmers.     For   the   assessment   of   SOM   difference   in   a   yearly   basis,  ∆𝑆𝑂𝑀!  considers   the   average   for   YSLM9;  ∆𝑆𝑂𝑀!  considers  the  average  for  YSLM7;  ∆𝑆𝑂𝑀!  considers  the  average  for  YSLM5.    

  F IGURE   15   –   H ISTOGRAM  OF  THE  YEARS  PASSED  SINCE  LAST  MOBILIZATION  FOR  THE  NO -­‐ TILLED  PLOTS     T ABLE   9   –   M EAN  AND  STANDARD  DEVIATION  STATISTICS  OF   YSLM  VARIABLES ,  PER  YEAR   Variable   YSLM5   YSLM7   YSLM9  

 

Average   5.53   6.34   7.16  

YSLM   2011   Standard  deviation   Average   4.10   6.46   4.76   7.26   5.51   8.06  

2012   Standard  deviation   4.14   4.80   5.56  

51  

3.2.2.2

M U L T I P L E   L I N E A R   R E G R E S S I O N   A P P R O A C H  

Given   that   samples   were   collected   in   different   regions,   it   is   not   possible   to   assume   the   homogeneity   of   relevant   characteristics   between   observations.   This   implies   that   other   characteristics,   besides   the   soil   management   system,   may   be   influencing   the   difference   in   SOM   concentrations.   As   for   the   methodology   of   homogeneity   assessment,   for   ratio/interval   data,   the   procedure  is  similar  to  the  one  presented  for  SOM  analysis  (t-­‐test  and  Kruskal-­‐Wallis).  For  ordinal   and  nominal  data  only  non-­‐parametric  methods  are  applicable.  In  this  case,  we  are  not  testing  the   differences  in  means  but  in  other  measures  of  distribution  (such  as  the  median  or  frequency).  For   the   ordinal   data   the   Mann–Whitney   test   is   applied;   for   the   nominal   data,   contingency   tables   are   considered.   By  considering  a  multiple  linear  regression  approach,  it  is  possible  to  measure  the  influence  of   tillage/no   tillage   techniques   on   SOM   concentration   while   controlling   for   the   effects   of   other   variables.    According  to  the  general  model  presented  in  Equation  4,  the  SOM  level  depends  both  on   the   year   that   the   last   tillage   mobilization   took   place   and   other   set   of   relevant   variables   that   may   influence  the  SOM  differences.  The  set  of  three  YSLM  variables  is  also  included  in  the  model.  The   models  were  developed  through  a  stepwise  regression  approach  in  which  we  assessed  the  following   topics:   •

relation   between   the   predicted   and   observed   values   through   its   graphical   representation;  



homoscedasticity   of   residuals   through   graphical   representation   of   residuals   versus   fitted  values;  



existence  of  omitted  variables  through  the  Ramsey  test;  



multicollinearity  of  independent  variables  through  the  variance  inflation  factor;  



normality  of  residuals  through  the  Shapiro-­‐Wilk  test  as  well  as  graphical  assessment.   𝑆𝑂𝑀 = 𝛼 + 𝛽! 𝑌𝑆𝐿𝑀 + 𝛽! 𝑋! + 𝜀   E QUATION   4  

  The  difference  in  SOM  concentration  due  to  the  management  technique  is  estimated  from  the   𝛽!  coefficient   (in   units   of   gSOM/100gsoil.yr-­‐1).   This   method   is   inspired   by   work   from   Conant   et   al.   (2007).  Without  tillage  management,  the  accumulation  of  SOM  follows  an  exponential  distribution   with   a   level   of   saturation  (Teixeira   et   al.,   2011).   We   assumed   that   the   plots   sampled   are   far   from   reaching   saturation   levels   and   as   such   SOM   accumulation   is   approximately   linear.   According   to   Figure   16,   the   total   collected   data   behaves   as   expected;   the   SOM   levels   increase   with   the   years   passed  since  the  last  mobilization  (slope  of  0.08±0.03,  with  a  p-­‐value  of  0.00).   For  the  no-­‐tillage  data  sub-­‐set  one  could  assume  that  SOM  would  increase  at  a  constant  rate,  as   presented  in  the  conceptual  representation  in  Figure  17.  In  the  presence  of  tillage  management,  it   is   here   assumed   that,   when   tillage   takes   place,   SOM   drops   to   its   original   levels.   Although   after   a   tillage  event,  a  decrease  in  SOM  level  is  expected,  the  final  level  is  not  known.  We  assume  the  same   slope  for  the  two  sub-­‐sets  of  data.    

52    

  F IGURE   16   –   SOM  LEVELS  VERSUS   YSLM  FOR  THE  ALL  DATA    

SOM (gSOM/100gsoil)

 

Tillage No-tillage

time

 

F IGURE   17   –   S CHEMATIC  REPRESENTATION  OF   SOM  EVOLUTION  ACCORDING  TO  THE  MANAGEMENT  SYSTEM  

3 .2 .3 C A R B O N   S E Q U E S T R A T I O N   F A C T O R   The   estimation   of   the   carbon   sequestration   factor   (tCO2.ha-­‐1.yr-­‐1)   is   based   on   an   estimated   annual  change  in  SOM  levels  ((gSOM/100gsoil).yr-­‐1).  When  considering  the  results  from  the  t-­‐test,  we   assumed  that  the  difference  in  SOM  levels  correspond  to  the  change  that  would  take  place  with  the   shift  from  tillage  to  no-­‐tillage  management.   As   stated   before,   the   SOM   levels   can   be   converted   into   soil   carbon   by   a   factor   of   0.58   (gSOC/gSOM).  The  carbon  content  per  area  is  estimated  using  the  bulk  density  (gsoil.cm-­‐3)  and  sampling   depth  (cm).  As  already  discussed,  the  sampling  depth  is  20  cm.  The  bulk  density  was  not  assessed   on   field,   and   as   such   we   recurred   to   secondary   sources.   According   to   Teixeira   et   al.   (2011),   the   average  soil  bulk  density  in  Portuguese  soils  is  1.48  gsoilcm-­‐3.  Using  the  same  source  of  information,   the   HWSDB   (Fisher   et   al.,   2008),   for   the   sampled   plots,   the   bulk   density   was   gathered   and   its   average   used   in   the   analysis.   The   obtained   values   are   of   1.35   and   1.52   gsoilcm-­‐3,   corresponding   to   two   different   approaches   used   by   Fisher   et   al.   (2008)   to   estimate   bulk   density.   The   conversion   of   carbon  to  carbon  dioxide  is  done  with  the  factor  44 12.  

 

53  

In   order   to   adjust   the   obtained   value   for   the   presence   of   rocks   and  roots,   we   include   a   factor   of   15%,  following  the  data  from  LUCAS  database  and  grassland  occupation6.    

3.3.

R E S U L T S   &  D IS C U S S IO N  

3 .3 .1 S T A T I S T I C A L   A N A L Y S I S   O F   S O M   D I F F E R E N C E S   3 . 3 . 1 . 1 T W O   S A M P L E   M E A N   H Y P O T H E S I S   A P P R O A C H  

The   results   regarding   SOM   concentration   averages   and   standard   deviations   are   presented   in   Table  10.  The  quartile  distributions  are  presented  in  Figure  18  and  Figure  19.   T ABLE   10   –   SOM  AVERAGE  AND  STANDARD  DEVIATION   Soil  original   material   All   Granite   Sandstone   Schist  

SOM  (gSOM/100gsoil)   2011   Standard  deviation   Average   1.86   2.87   0.91   1.82   2.25   3.10   0.74   1.88   0.49   1.50   0.63   1.61   1.48   3.94   1.31   2.48  

Management   Average   3.08   2.01   3.85   2.32   1.44   1.57   4.26   2.85  

No-­‐till   Till   No-­‐till   Till   No-­‐till     Till     No-­‐till   Till  

2012   Standard  deviation   1.62   0.74   1.78   0.48   0.43   0.71   1.39   1.05  

0

2

SOM (gSOM/100gsoil) 4 6

8

 

NT

T

2011

NT

T

2012

F IGURE   18   –   B OX  PLOT  FOR   SOM  DATA  BY  SYSTEM  AND  SAMPLING  YEAR  

                                                                                                                        6

 For  more  information  please  check  http://eusoils.jrc.ec.europa.eu/projects/Lucas/  

54    

 

8 SOM (gSOM/100gsoil) 2 4 6 0

2011

2012

Granite

2011

2012

2011

Sandstones

2012

Schist

NT

T

  F IGURE   19   –   B OX  PLOT  FOR   SOM  DATA  BY  SYSTEM  AND  SAMPLING  YEAR  AND  ORIGINAL  MATERIAL  

  Using  the  entire  dataset  two  results  are  highlighted:  (1)  average  SOM  concentration  is  higher  for   data   regarding   no-­‐tilled   plots,   and   (2)   2011   values   are   higher   than   2012   ones.   Also,   the   SOM   dispersion  is  higher  for  data  regarding  no-­‐tilled  plots.  The  time  frame  between  2011  and  2012  was   characterised  by  a  drought,  which  may  explain  the  lower  values.     For  a  95%  CI,  SOM  data  fails  the  Bartlett’s  test  for  homoscedasticity  as  well  as  the  Shapiro-­‐Wilk   test  for  normality.  As  presented  in  Figure  20,  Figure  21  and  Figure  22  the  graphical  assessment  for   normality   shows   that   SOM   data   roughly   follows   a   normal   distribution,   although   it   is   possible   to  

0

0

2

2

SOM (gSOM/100gsoil) 4 6

SOM (gSOM/100gsoil) 4 6

8

8

identify  both  problems  of  skewness  and  kurtosis.  No-­‐tillage  data  presents  a  worse  performance.      

NT

T Frequency

NT

T Frequency

   

F IGURE   20   –   D ISTRIBUTIONAL  DOTPLOT  FOR   2011   ( LEFT )  AND   2012   ( RIGHT )   SOM  DATA  

 

55  

8

8

SOM (gSOM/100gsoil) 4 6

6

2

SOM (gSOM/100gsoil) 2 4 0

0

-2 -2

0

2 4 Inverse Normal

6

0

8

1

 

2 Inverse Normal

3

4

 

F IGURE   21   –   C OMPARISON  WITH  NORMAL  QUARTILE  FOR  NO -­‐ TILLAGE   ( LEFT )  AND  TILLAGE   ( RIGHT )   SOM  DATA ,   2011  

8 0

0

2

SOM (gSOM/100gsoil) 4 6

SOM (gSOM/100gsoil) 2 4 6

8

 

0

2

4

6

Inverse Normal

0

1

 

2 Inverse Normal

3

4

 

F IGURE   22   –   C OMPARISON  WITH  NORMAL  QUARTILE  FOR  NO -­‐ TILLAGE   ( LEFT )  AND  TILLAGE   ( RIGHT )   SOM  DATA ,   2012  

  In  order  to  transform  SOM  variable  into  a  new  variable  with  normal  distribution,  a  logarithmic  

-1

-1

0

0

ln(SOM)

ln(SOM)

1

1

2

2

transformation   is   applied   (base   e).   Although   other   transformations   were   analysed,   such   as   the   Box-­‐ Cox,   only   the   logarithmic   (base   e)   is   here   presented.  The   Shapiro-­‐Wilk’s   test,   for   a   95%   CI,   does   not   allow  the  rejection  of  normality  (although  it  would  be  rejected  with  a  99%  CI).  In  Figure  23,  Figure   24  and  Figure  25  we  present  graphical  assessment  for  normality.    As  for  homoscedasticity,  the  t-­‐test   was  defined  to  accommodate  different  variances.      

NT

NT

T Frequency

 

T Frequency

F IGURE   23   –   D ISTRIBUTIONAL  DOTPLOT  FOR   2011   ( LEFT )  AND   2012   ( RIGHT )  LN (SOM)  DATA  

56    

 

2

3

1

2

0

ln(SOM)

ln(SOM) 1

-1

0 -1 -1

0

1 Inverse Normal

2

3

-.5

0

.5 Inverse Normal

 

1

1.5

 

F IGURE   24   –   C OMPARISON  WITH  NORMAL  QUARTILE  FOR  NO -­‐ TILLAGE   ( LEFT )  AND  TILLAGE   ( RIGHT )  LN (SOM),   2011  

ln(SOM) -1

-1

0

0

ln(SOM)

1

1

2

2

 

-.5

0

.5

1 Inverse Normal

1.5

2

-.5

 

0

.5 Inverse Normal

1

1.5

 

F IGURE   25   –   C OMPARISON  WITH  NORMAL  QUARTILE  FOR  NO -­‐ TILLAGE   ( LEFT )  AND  TILLAGE   ( RIGHT )  LN (SOM),   2012    

The  results  from  the  t-­‐test,  applied  to  the  transformed  data  are  presented  in  Table  11,  Figure  26   and  Figure  27.  According  to  these  results  (and  considering  the  entire  dataset),  there  is  no  overlap  in   the  95%  CI.  The  null  hypothesis  of  equality  of  means  is  rejected  with  a  p-­‐value  of  0.00  for  both  2011   and   2012   data.   The   robustness   of   this   result   is   supported   by   the   non-­‐parametric   test   of   equal   means   hypothesis   for   SOM   data.   With   a   p-­‐value   of   0.00   both   for   2011   and   2012   data,   the   null   hypothesis   is   rejected   by   the   Kruskal-­‐Wallis   test.   Summing   up,   the   statistical   analysis   indicates   that,  for  the  analysed  dataset  and  a  95%  CI,  the  average  SOM  concentration  is  not  equal  among   treatments,  with  higher  values  for  data  regarding  plots  under  no  tillage.   T ABLE   11   –   T WO  SAMPLE  T -­‐ TEST  RESULTS  FOR  LN (SOM)  DATA   (95%   CI)   Soil  original   material   All   Granite   Sandstone   Schist  

Management   No-­‐till   Till   No-­‐till   Till   No-­‐till     Till     No-­‐till   Till  

Low   2.16   1.62   1.82   1.97   1.18   1.24   3.50   1.72  

SOM  (gSOM/100gsoil)   2011   2012   Average   High   Low   Average   2.54   2.98   2.14   2.46   1.81   2.02   1.54   1.68   3.35   6.17   1.53   2.79   2.22   2.50   1.65   1.82   1.36   1.57   1.29   1.45   1.44   1.66   1.27   1.47   4.00   4.58   3.30   3.72   2.51   3.66   1.68   2.28  

High   2.84   1.84   5.10   2.00   1.62   1.69   4.20   3.07  

 

 

57  

  All$

Granite$

Sandstones$

Schist$

6.5$ 6.0$ 5.5$

SOM$(gSOM/100gsoil)$

5.0$ 4.5$ 4.0$ 3.5$ 3.0$ 2.5$ 2.0$ 1.5$ 1.0$

No*+llage' Tillage'

   

F IGURE   26   –   S CHEMATIC  REPRESENTATION  OF  T -­‐ TEST  RESULT  FOR  LN (SOM)  DATA   (95%   CI),   2011  

  All$

Granite$

Sandstones$

Schist$

5.5$ 5.0$

SOM$(gSOM/100gsoil)$

4.5$ 4.0$ 3.5$ 3.0$ 2.5$ 2.0$ 1.5$ 1.0$

No*+llage' Tillage'

   

F IGURE   27   –   S CHEMATIC  REPRESENTATION  OF  T -­‐ TEST  RESULT  FOR  LN (SOM)  DATA   (95%   CI),   2012  

  Since   the   t-­‐test   method   is   able   to   accommodate   a   certain   degree   of   violation   of   its   assumptions   (Zar,  2010),  this  method  was  also  applied  to  SOM  data  (without  transformation).  According  to  the   obtained  results  (see  Figure  28  and  Figure  29),  for  2011  data,  and  a  95%  CI,  SOM  concentration  was   2.01±0.20  for  tilled  plots  and  3.08±0.46  for  no-­‐tilled  plots;  for  2012  data,  SOM  concentration  was   1.82±0.16   for   tilled   plots   and   2.87±0.41   for   no-­‐tilled   plots.   The   equality   of   means   is   also   clearly   rejected,  with  a  higher  SOM  concentration  for  the  data  correspondent  to  no-­‐tilled  plots.    

58    

All$

Granite$

Sandstones$

Schist$

6.5$ 6.0$ 5.5$

SOM$(gSOM/100gsoil)$

5.0$ 4.5$ 4.0$ 3.5$ 3.0$ 2.5$ 2.0$ 1.5$ 1.0$

No*+llage' Tillage'

   

F IGURE   28   –   S CHEMATIC  REPRESENTATION  OF  T -­‐ TEST  RESULT  FOR   SOM  DATA   (95%   CI),   2011  

  All#

Granite#

Sandstones#

Schist#

6.0# 5.5# 5.0#

SOM$(gSOM/100gsoil)$

4.5# 4.0# 3.5# 3.0# 2.5# 2.0# 1.5# 1.0# 0.5# 0.0#

No*+llage' Tillage'

   

F IGURE   29   –   S CHEMATIC  REPRESENTATION  OF  T -­‐ TEST  RESULT  FOR   SOM  DATA   (95%   CI),   2012  

  When   the   distinction   in   soil   original   material   is   included,   each   sample   becomes   necessarily   smaller  and  more  unbalanced,  with  a  loss  in  statistical  testing  strength.  The  results  from  Table  10   can   be   separated   in   two   groups.   The   first   group   regards   the   sandstones,   for   which   SOM   concentration  is  higher  for  data  regarding  tilled  plots.  The  second  group  includes  granite  and  schist,   where   SOM   concentration   is   higher   for   data   regarding   no-­‐tilled   plots.   The   Shapiro-­‐Wilk   test   for   normality  indicates  mixed  results.  While  for  2011  data  the  hypothesis  of  normality  is  not  rejected   for   the   sub-­‐sample   respecting   to   any   of   the   soil   original   material,   for   2012   data,   normality   is   rejected  for  all  soil  original  materials.  Similarly  mixed  results  are  obtained  in  the  Bartlett’s  test  for   homoscedasticity.  Again,  we  tested  a  logarithmic  transformation  of  each  sub-­‐set.  T-­‐test  results  are   presented   in   Table   11   and   show   an   important   overlap   in   SOM   concentrations   for   the   sandstones   and  granite.  The  p-­‐values  are  0.58  and  0.15,  respectively  and  regarding  the  2011  data;  and  0.88  and    

59  

0.12  for  the  2012  data.  The  hypothesis  of  equal  means  can  not  be  rejected.  For  the  schist  sub-­‐set  of   data,  there  is  a  slight  overlap  for  2011  data,  but  not  for  2012  data.  The  correspondent  p-­‐values  are   0.02  and  0.00  for  2011  and  2012,  respectively.  Therefore,  for  a  95%  CI,  it  is  possible  to  reject  the   hypothesis  of  equal  means.   The   same   results   are   obtained   for   the   t-­‐test   performed   to   the   non-­‐transformed   data.   For   the   plots   originated   from   granite,   tillage   samples   present   a   95%   CI   of   2.32±0.28   for   2011   data   and   of   1.88±0.18   for   2012.   No-­‐tillage   samples   present   a   95%   CI   of   3.85±2.36   for   2011   and   3.10±2.21   for   2012.   For   the   plots   originated   from   sandstone,   the   till   samples   present   a   95%   CI   of   1.57±0.20   for   2011  data  and  of  1.61±0.22  for  2012.  The  no-­‐till  plots  range  from  1.44±0.20  for  2011  and  1.50±0.17   for   2012.   For   the   plots   originated   from   schist,   the   till   samples   present   a   95%   CI   of   2.85±0.88   for   2011  data  and  of  2.48±0.70  for  2012.  The  no-­‐till  plots  range  from  4.26±0.54  for  2011  and  3.94±0.50   for  2012.   Regarding  2011  data,  previous  results  are  coherent  with  those  from  the  non-­‐parametric  Kruskal-­‐ Wallis  test,  which  reject  the  null  hypothesis  of  equal  means  for  schist  data  and  does  not  reject  it  for   granite  and  sandstone.  As  for  2012  results,  results  for  granite  are  not  coherent  for  the  95%  CI,  but   coherent  for  a  99%  CI.   Summing   up,   when   soil   original   material   is   not   included,   the   null   hypothesis   of   equal   SOM   average   among   management   techniques   is   rejected   with   a   95%   CI,   indicating   higher   SOM   concentration   for   data   regarding   no-­‐tilled   plots.   When   soil   original   material   is   included   mixed   results  are  obtained  and  it  is  not  possible  to  draw  a  solid  conclusion.   The  lower,  average  and  higher  SOM  concentration  differences,  in  a  yearly  basis,  are  presented  in   Table  12.         T ABLE   12   –   H IGHER  AND  LOWER   ΔSOM  FROM  THE  T -­‐ TEST  RESULTS   (95%   CI)   -­‐1

Soil  original   material   All  

ΔSOM  ((gSOM/100gsoil).yr )  

Data   SOM   ln(SOM)  

Lower   0.06   0.02  

2011   Average   0.17   0.11  

Higher   0.31   0.25  

Lower   0.06   0.04  

2012   Average   0.14   0.11  

Higher   0.25   0.20  

3 . 3 . 1 . 2 M U L T I P L E   L I N E A R   R E G R E S S I O N   A P P R O A C H  

As  for  homogeneity  of  variables,  in  Table  13  we  present  those  for  which  the  null  hypothesis  of   equal   distribution   between   control   systems   is   rejected   (p-­‐value

Suggest Documents