Some Integral Inequalities for Convex Functions via Riemann-Liouville ...

3 downloads 0 Views 209KB Size Report
Feb 23, 2015 - Abstract. In this paper, by setting up a generalized integral identity for dif- ferentiable functions via Riemann-Liouville fractional integrals, the au-.
Applied Mathematical Sciences, Vol. 9, 2015, no. 27, 1341 - 1353 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5159

Some Integral Inequalities for Convex Functions via Riemann-Liouville Integrals Jaekeun Park Department of Mathematics Hanseo University Seosan, Choongnam, 356-706, Korea c 2015 Jaekeun Park. This is an open access article distributed under the Copyright Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract In this paper, by setting up a generalized integral identity for differentiable functions via Riemann-Liouville fractional integrals, the author derive new estimates on generalization of Hermite-Hadamard and Ostrowski types inequaalities for functions whose derivatives in the absolute value at certain powers are convex.

Mathematics Subject Classification: 26A51, 26A33, 26D10 Keywords: Hermite-Hadamard type inequality, Simpson inequality, Ostrowski inequality, Riemann-Liouville fractional integrals, H¨older’s inequality, mean-power integral inequality

1

Introduction

Let f : I ⊆ R → R be a function defined on the interval I of real numbers. Then f is called to be convex on I if the following inequality f (ta + (1 − t)b) ≤ tf (a) + (1 − t)f (b) for all a, b ∈ I and t ∈ [0, 1]. There are many results associated with convex functions in the area of inequalities, but some of those is the classical HermiteHadamard inequality and Ostrowski inequality, respectively [10, 13]:

1342

Jaekeun Park

Theorem 1.1. Let f : I ⊆ R → R be a convex function defined on the interval I of real numbers and a, b ∈ I with a < b. Then following double inequality holds: Z b a + b 1 f (a) + f (b) ≤ f (x)dx ≤ . (1) f 2 b−a a 2 Theorem 1.2. [11] Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and a, b ∈ I 0 with a < b. If | f 0 (x) |≤ M, x ∈ [a, b], then the following inequality holds: Z b 1 M h (x − a)2 + (b − x)2 i . (2) f (t)dt ≤ f (x) − b−a a b−a 2 Definition 1. The beta function, also called the Euler integral of the first kind, is a special function defined by Z 1 β(x, y) = tx−1 (1 − t)y−1 dt, x, y > 0, 0

and Z

a

β(a, x, y) =

tx−1 (1 − t)y−1 dt, 0 < a < 1, x, y > 0,

0

is incomplete Beta function. Definition 2. A function f : [a, b] → (0, ∞) is said to be s-convex in the second sense if the following inequality f (ta + (1 − t)b) ≤ ts f (a) + (1 − t)s f (b) holds for all a, b ∈ I, t ∈ [0, 1], and s ∈ (0, 1]. We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper. Definition 3. Let f ∈ L([a, b]). The symbols Jaα+ f and Jbα− f denote the leftside and right-side Riemann-Liouville integrals of the order α and are defined by Z x 1 α (x − t)α−1 f (t)dt (0 ≤ a < x), Ja+ f (x) = Γ(α) a and Jbα− f (x)

1 = Γ(α)

Z

x

(t − x)α−1 f (t)dt,

(0 < x < b),

a

respectively, where Γ(α) is the Gamma function defined by Γ(α) = and Ja0+ f (x) = Jb0− f (x) = f (x).

R∞ 0

e−t tα−1 dt

Some integral inequalities

1343

In the caes of α = 1, the fractional integrals reduces to the classical integral. Recently, many authors have studied a number of inequalities by used the Riemann-Liouville fractional integrals, see [1-9,12,14-17] and the references cited therein. Especially, in [2, 12], Imdat I¸scan, Noor, and Awan proved a variant of Hermite-Hadamard and Ostrowski type inequalities which hold for the convex functions via Riemann-Liouville fractional integrals. Theorem 1.3. Let f : [a, b] → R be twice differentiable function on (a, b) with a < b. If f 00 ∈ L([a, b]) and | f 00 | is convex on [a, b], then we have the following inequality for fractional integrals: 2α−1 Γ(α + 1) n o a + b α α J ) f (a) + J f (b) − f ( ( a+b )− )+ ( a+b 2 2 (b − a)α 2 (b − a)2 n α+3 1 Γ(α + 3) o 00 ≤ 4 2 β( , α + 1, 2) + [| f (a) | + | f 00 (b) |]. 2 (α + 1) 2 Γ(α + 4) Theorem 1.4. Let f : [a, b] → R be twice differentiable function on (a, b) with a < b. If f 00 ∈ L([a, b]) and | f 00 | is convex on [a, b], then we have the following inequality for fractional integrals: 2α−1 Γ(α + 1) n o a + b α α J f (a) + J f (b) − f ( ) ( a+b )− ( a+b )+ 2 2 (b − a)α 2  p1 h 1 (b − a)2  1 ≤ 3+ 2 3 | f 00 (a) |q + | f 00 (b) |q q 2 q (α + 1) p(α + 1) + 1  1 i + | f 00 (a) |q +3 | f 00 (b) |q q .

(3)

In this paper, we give some generalized inequalities connected with HermiteHadamard-like type for differentiable functions whose derivatives in the absolute value are convex via fractional integrals.

2

Lemmas

Now we turn our attention to establish integral inequalities of HermiteHadamard and Ostrowski inequality type for convex functions via RiemannLiouville fractional integrals, we need the lemmas below: Lemma 1. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I such that f 0 ∈ L([a, b]), where a, b ∈ I with a < b. Then for

1344

Jaekeun Park

any λ, µ ∈ R and x ∈ [a, b] the following identity holds: I(f ; α; λ, µ; x)  λ 1 − λ  µ  1 − µ ≡ + f (x) + f (a) + f (b) x−a b−x x−a b−x o n 1 1 α α f (a) + f (b) − Γ(α + 1) J J − + (x − a)α+1 x (b − x)α+1 x Z 1 Z 1   α 0 (µ − tα )f 0 tx + (1 − t)b dt. (4) (t − 1 + λ)f tx + (1 − t)a dt + = 0

0

Proof. Integrating by parts and changing variable of definite integral, we have: Z 1  (tα − 1 + λ)f 0 tx + (1 − t)a dt 0



f (x) f (a) Γ(α + 1) α + (1 − λ) − J − f (a). x−a x − a (x − a)α+1 x

Similarly, we have Z

1

 (µ − tα )f 0 tx + (1 − t)b dt

0

= (1 − µ)λ

f (x) f (b) Γ(α + 1) α +µ − J + f (b). b−x b − x (b − x)α+1 x

Adding these two equalities leads to Lemma 1. Lemma 2. For 0 ≤ ξ ≤ 1, one has Z (a)

1

ξ − tα q dt ≡ δ1 (α, ξ, q)

0 1 o ξ q+ α n 1 1 1 = β( , 1 + q) + β(−q − , 1 + q) − β(ξ, −q − , 1 + q) , α α α Z 1 α ξ − tα q tdt ≡ δ2 (α, ξ, q) (b)

0 2 o ξ q+ α n 2 2 2 = β( , 1 + q) + β(−q − , 1 + q) − β(ξ, −q − , 1 + q) . (5) α α α α

Proof. These equalities follows from a straightfoward computation of definite integrals.

1345

Some integral inequalities

3

Some inequalities of Hermite-Hadamard and Ostrowski type

Now we turn our attention to establish new integral inequalities of HermiteHadamard and Ostrowski type for convex functions via fractional integrals. Theorem 3.1. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ, µ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: If (f ; α; λ, µ; x) 1

≤ δ1p (α, 1 − λ, 1) n 0 q  0 q o 1q × δ2 (α, 1 − λ, 1) f (x) + δ1 (α, 1 − λ, 1) − δ2 (α, 1 − λ, 1) f (a) n 1 q o 1q q  + δ1p (α, µ, 1) δ2 (α, µ, 1) f 0 (x) + δ1 (α, µ, 1) − δ2 (α, µ, 1) f 0 (b) . Proof. Suppose that q > 1. From Lemma 1, the convexity of | f 0 |q on [a, b], and the noted power-mean integral inequality, we have If (f ; α; λ, µ; x) Z 1 α  t − 1 + λ f 0 tx + (1 − t)a dt ≤ 0 Z 1  µ − tα f 0 tx + (1 − t)b dt + 0 Z Z 1  p1  1 α   1 α t − 1 + λ f 0 tx + (1 − t)a q dt q t − 1 + λ dt ≤ 0 0  p1  Z 1 Z 1   1 µ − tα dt µ − tα dt f 0 tx + (1 − t)b q dt q . + (6) 0

0

In virtue of Lemma 2, a direct calculation yields Z 1 α  t − 1 + λ f 0 tx + (1 − t)a q dt 0 Z 1 α   t − 1 + λ t f 0 x q + (1 − t) f 0 (a) q dt ≤ 0 q q  = δ2 (α, 1 − λ, 1) f 0 (x) + δ1 (α, 1 − λ, 1) − δ2 (α, 1 − λ, 1) f 0 (a) , (7) and Z

1

 µ − tα f 0 tx + (1 − t)b q dt 0 q q  ≤ δ2 (α, µ, 1) f 0 (x) + δ1 (α, µ, 1) − δ2 (α, µ, 1) f 0 (b) .

(8)

1346

Jaekeun Park

By substituting the above inequalities (7) and (8) into (6), we get the desired result for q > 1. Suppose that q = 1. From Lemma 1 and 2 it follows that If (f ; α; λ, µ; x) Z 1 α  t − 1 + λ f 0 tx + (1 − t)a dt ≤ 0 1

Z + Z

 µ − tα f 0 tx + (1 − t)b dt

0 1

α   t − 1 + λ t f 0 x + (1 − t) f 0 (a) dt

≤ 0

Z

1

  µ − tα t f 0 x + (1 − t) f 0 (b) dt 0  = δ2 (α, 1 − λ, 1) f 0 (x) + δ1 (α, 1 − λ, 1) − δ2 (α, 1 − λ, 1) f 0 (a)  + δ2 (α, µ, 1) f 0 (x) + δ1 (α, µ, 1) − δ2 (α, µ, 1) f 0 (b) , +

which completes the proof. If taking x =

a+b 2

in Theorem 3.1, we derive the following corollary:

Corollary 3.1. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ, µ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: a + b ) If (f ; α; λ, µ; 2 a+b b − a ) = (1 − λ)f (a) + µf (b) + (1 − µ + λ)f ( 2 2 o n 2 α − Γ(α + 1) J(αa+b )− f (a) + J(αa+b )+ f (b) 2 2 b−a n 1 a + b q p ≤ δ1 (α, 1 − λ, 1) δ2 (α, 1 − λ, 1) f 0 ( ) 2 q o 1q  + δ1 (α, 1 − λ, 1) − δ2 (α, 1 − λ, 1) f 0 (a) n 1 a + b q + δ1p (α, µ, 1) δ2 (α, µ, 1) f 0 ( ) 2  0 q o 1q + δ1 (α, µ, 1) − δ2 (α, µ, 1) f (b) .

If taking λ = µ in Theorem 3.1, we derive the following corollary:

1347

Some integral inequalities

Corollary 3.2. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: If (f ; α; λ, λ; x) 1

≤ δ1p (α, 1 − λ, 1) n 0 q  0 q o 1q × δ2 (α, 1 − λ, 1) f (x) + δ1 (α, 1 − λ, 1) − δ2 (α, 1 − λ, 1) f (a) n 1 0 q  0 q o 1q p + δ1 (α, λ, 1) δ2 (α, λ, 1) f (x) + δ1 (α, λ, 1) − δ2 (α, λ, 1) f (b) . Corollary 3.3. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: 1 1 If (f ; α; , ; x) 2 2 1 q o 1q q 1 n 1 1  1 ≤ δ1p (α, , 1) δ2 (α, , 1) f 0 (x) + δ1 (α, , 1) − δ2 (α, , 1) f 0 (a) 2 2 2 2 n 1 1 1 1  0 q o 1q 1 q p 0 + δ1 (α, , 1) δ2 (α, , 1) f (x) + δ1 (α, , 1) − δ2 (α, , 1) f (b) , 2 2 2 2 where 1 n 1 α δ1 (α, , 1) = 2 1+α 1 1 n δ2 (α, , 1) = α 2 2+α

1  α1 1 − α o , + 2 2 1 1+ α2 2 − α o + . 2 4

Corollary 3.4. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: 2 2 If (f ; α; , ; x) 3 3 1 1 n 1 0 q 1 1  0 q o 1q p ≤ δ1 (α, , 1) δ2 (α, , 1) f (x) + δ1 (α, , 1) − δ2 (α, , 1) f (a) 3 3 3 3 n 1 q o 1q 2 2 2 2  q + δ1p (α, , 1) δ2 (α, , 1) f 0 (x) + δ1 (α, , 1) − δ2 (α, , 1) f 0 (b) , 3 3 3 3

1348

Jaekeun Park

where 1 δ1 (α, , 1) = 3 2 δ1 (α, , 1) = 3 1 δ2 (α, , 1) = 3 2 δ2 (α, , 1) = 3

α n 1 1+ α1 2 − α o 2α , + 1+α 3 3 α n 2 1+ α1 1 − 2α o 2α + , 1+α 3 3 1 n 1 1+ α2 4 − α o α + , 2+α 3 6 1 n 2 1+ α2 1 − α o α + . 2+α 3 3

Corollary 3.5. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: 1 1 I (f ; α; , ; x) f 3 3 1 2 n 2 2 0 q 2  0 q o 1q p ≤ δ1 (α, , 1) δ2 (α, , 1) f (x) + δ1 (α, , 1) − δ2 (α, , 1) f (a) 3 3 3 3 n 1 q o 1q 1 1 1 1  q + δ1p (α, , 1) δ2 (α, , 1) f 0 (x) + δ1 (α, , 1) − δ2 (α, , 1) f 0 (b) , 3 3 3 3 where δ1 and δ2 are defined as in Corollary 3.4.

Theorem 3.2. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ, µ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: I (f ; α; λ, µ; x) f n 0 q  0 q o 1q ≤ δ2 (α, 1 − λ, q) f (x) + δ1 (α, 1 − λ, q) − δ2 (α, 1 − λ, q) f (a) n q q o 1q  + δ2 (α, µ, q) f 0 (x) + δ1 (α, µ, q) − δ2 (α, µ, q) f 0 (b) .

Proof. Suppose that q > 1. By Lemma 1, the convexity of | f 0 |q on [a, b],

Some integral inequalities

and H¨older’s integral inequality, it follows that If (f ; α; λ, µ; x) Z 1 α  t − 1 + λ f 0 tx + (1 − t)a dt ≤ 0 Z 1  µ − tα f 0 tx + (1 − t)b dt + 0  Z 1  p1  Z 1   1 tα − 1 + λ q f 0 tx + (1 − t)a q dt q ≤ dt 0 0  Z 1  p1  Z 1   1 µ − tα q f 0 tx + (1 − t)b q dt q + dt 0 0 Z 1  q  1q α q 0 = | t − 1 + λ | | f tx + (1 − t)a | dt 0 Z 1  q  1q α q 0 | µ − t | | f tx + (1 − t)b | dt . +

1349

(9)

0

In virtue of Lemma 2, a direct calculation yields Z 1 α  t − 1 + λ q f 0 tx + (1 − t)a q dt 0 Z 1 α   t − 1 + λ q t f 0 x q + (1 − t) f 0 (a) q dt ≤ 0

q q  = δ2 (α, 1 − λ, q) f 0 (x) + δ1 (α, 1 − λ, q) − δ2 (α, 1 − λ, q) f 0 (a) , (10) and Z

1

 µ − tα q f 0 tx + (1 − t)b q dt 0 q q  ≤ δ2 (α, µ, q) f 0 (x) + δ1 (α, µ, q) − δ2 (α, µ, q) f 0 (b) .

(11)

By substituting the above inequalities (10) and (11) into (9), we get the desired result for q > 1. For q = 1, from Lemma 1 and 2 it follows that If (f ; α; λ, µ) Z 1 α   t − 1 + λ t f 0 x + (1 − t) f 0 (a) dt ≤ 0 Z 1   µ − tα t f 0 x + (1 − t) f 0 (b) dt + 0  = δ2 (α, 1 − λ, 1) f 0 (x) + δ1 (α, 1 − λ, 1) − δ2 (α, 1 − λ, 1) f 0 (a)  + δ2 (α, µ, 1) f 0 (x) + δ1 (α, µ, 1) − δ2 (α, µ, 1) f 0 (b) , which completes the proof.

1350

Jaekeun Park

Corollary 3.6. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ, µ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: a + b ) I (f ; α; λ, µ; f 2 b − a a+b = ) (1 − λ)f (a) + µf (b) + (1 − µ + λ)f ( 2 2 n o 2 α Γ(α + 1) J(αa+b )− f (a) + J(αa+b )+ f (b) − 2 2 b−a n a + b q ≤ δ2 (α, 1 − λ, q) f 0 ( ) 2 q o 1q  + δ1 (α, 1 − λ, q) − δ2 (α, 1 − λ, q) f 0 (a) n a + b q + δ2 (α, µ, q) f 0 ( ) 2  0 q o 1q . + δ1 (α, µ, q) − δ2 (α, µ, q) f (b) If taking λ = µ in Theorem 3.1, we derive the following corollary: Corollary 3.7. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: If (f ; α; λ, λ; x) n 0 q  0 q o 1q ≤ δ2 (α, 1 − λ, q) f (x) + δ1 (α, 1 − λ, q) − δ2 (α, 1 − λ, q) f (a) n q q o 1q  + δ2 (α, λ, q) f 0 (x) + δ1 (α, λ, q) − δ2 (α, λ, q) f 0 (b) . Corollary 3.8. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: 1 1 If (f ; α; , ; x) 2 2 n 1 0 q 1 1  0 q o 1q ≤ δ2 (α, , q) f (x) + δ1 (α, , q) − δ2 (α, , q) f (a) 2 2 2 n q o 1q 1 0 q 1 1  + δ2 (α, , q) f (x) + δ1 (α, , q) − δ2 (α, , q) f 0 (b) . 2 2 2

Some integral inequalities

1351

Corollary 3.9. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b. If |f 0 |q is convex on [a, b] for q ≥ 1 with p1 + 1q = 1, then the following inequality holds: 2 2 If (f ; α; , ; x) 3 3 n q q o 1q 1 1 1  ≤ δ2 (α, , q) f 0 (x) + δ1 (α, , q) − δ2 (α, , q) f 0 (a) 3 3 3 n 2 0 q 2 2  0 q o 1q + δ2 (α, , q) f (x) + δ1 (α, , q) − δ2 (α, , q) f (b) . 3 3 3 Theorem 3.3. Let f : I ⊆ R → R be a differentiable function on the interior I 0 of an interval I and f 0 ∈ L([a, b]), where a, b ∈ I with a < b and λ, µ ∈ [0, 1]. If |f 0 |q is convex on [a, b] for q > 1 with p1 + 1q = 1, then the following inequality holds: If (f ; α; λ, µ; x) n f 0 (x) q + f 0 (a) q o 1q 1 p ≤ δ1 (α, 1 − λ, p) 2 n f 0 (x) q + f 0 (b) q o 1q 1 + δ1p (α, µ, p) . 2 Proof. Suppose that q > 1. From Lemma 1, the convexity of | f 0 |q on [a, b], and the H¨older’s integral inequality, we have If (f ; α; λ, µ; x) Z Z 1 p  p1  1 0   1 α f tx + (1 − t)a q dt q t − 1 + λ dt ≤ 0 0 Z 1  p1  Z 1   1 µ − tα p dt f 0 tx + (1 − t)b q dt q + 0 0 Z 1 1 q 0 q  1q p 0 t f (x) + (1 − t) f (a) dt ≤ δ1 (α, 1 − λ, p) 0 Z 1 1 q 0 q  1q p 0 t f (x) + (1 − t) f (b) dt + δ1 (α, µ, p) 0  f 0 (x) q + f 0 (a) q  1q 1 ≤ δ1p (α, 1 − λ, p) 2  f 0 (x) q + f 0 (b) q  1q 1 + δ1p (α, µ, p) , 2 which completes the proof.

1352

Jaekeun Park

References [1] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal.,1(1) (2010) 51-58. http://dx.doi.org/10.15352/afa/1399900993 [2] Imdat I¸scan, Generalization of different type integral inequalities for (α, m)-convex functions via fractional integrals, arXiv:1303.6089v1[math.CA]25 Mar 2013, (2013). [3] Imdat I¸scan, On generalization of different type integral inequalities for s-convex functions via fractional integrals, Math. Sci. and Appl. E-Notes, 2(1) (2014) 55-67. [4] Imdat I¸scan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. and Appl., 2013(1)(2013) 491. http://dx.doi.org/10.1186/1029-242x-2013-491 [5] Imdat I¸scan, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014) 237– 244. http://dx.doi.org/10.1016/j.amc.2014.04.020 [6] Imdat I¸scan, On generalization of different type integral inequalities for some convex functions via fractional integrals, arXiv:1208.1641, 2(1) 2012. [7] Imdat I¸scan, Generalization of different type integral inequalities for sconvex functions via fractional integrals, Appl. Anal., 93 (9) (2013) 18461862. http://dx.doi.org/10.1080/00036811.2013.851785 [8] U. N. Katugampola, New approach to a generalized fractional integrals, Appl. Math. Comput., 218(3) (2011) 860-865. http://dx.doi.org/10.1016/j.amc.2011.03.062 [9] YuMei Liao, JianHua Deng, JinRong Wang, Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: for twice differentiable geometricarithmetically s-convex functions, J. Inequal. Appl., 2013:517 (2013) 5567. http://dx.doi.org/10.1186/1029-242x-2013-517 [10] Meihui Qu, Wenjun Liu, J. Park, Some new Hermite-Hadamard-type inequalities for geometric-arithmetically s-convex functions, WSEAS Trans. on Math., 13 (2014) 452-161. [11] D. S. Mitrinovi´c, J. E. Peˇcari´c, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic Pub., Dortrecht, (1991). http://dx.doi.org/10.1007/978-94-011-3562-7

Some integral inequalities

1353

[12] Muhammad Aslam Noor, Muhammad Uzair Awan, Some integral inequalities for two kind of convexities via fractional integrals, TJMM, 5(2) (2013) 129–136. [13] J. Park, Generalization of some Simpson-like type inequalities via differentiable s-convex mappings in the second sense, Inter. J. Math. Math. Sci., 2011 (2011) 13 Pages, Art ID:493531. http://dx.doi.org/10.1155/2011/493531 [14] M. Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abst. Appl. Anal., 2012 (2012) 10 Pages, Art ID:428983. http://dx.doi.org/10.1155/2012/428983 [15] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Ba¸sak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57(9) (2013) 2403–2407. http://dx.doi.org/10.1016/j.mcm.2011.12.048 [16] E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Comput. and Math. with Appl., 63 (2012) 1147–1154. http://dx.doi.org/10.1016/j.camwa.2011.12.023 [17] J. Wang, X. Li, M. Feckan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., (2012). http://dx.doi.org/10.1080/00036811.2012.727986 Received: February 3, 2015; Published: February 23, 2015

Suggest Documents