Some New Identities on the Bernoulli and Euler Numbers

0 downloads 0 Views 2MB Size Report
Oct 6, 2011 - see 1 . As is well known, the ordinary Bernoulli polynomials are ..... 7 T. Kim, “Some identities on the q-Euler polynomials of higher order and ...
Missing:
Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2011, Article ID 856132, 11 pages doi:10.1155/2011/856132

Research Article Some New Identities on the Bernoulli and Euler Numbers Dae San Kim,1 Taekyun Kim,2 Sang-Hun Lee,3 D. V. Dolgy,4 and Seog-Hoon Rim5 1

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea 3 Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea 4 Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea 5 Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Republic of Korea 2

Correspondence should be addressed to Taekyun Kim, [email protected] Received 6 October 2011; Revised 31 October 2011; Accepted 31 October 2011 Academic Editor: Lee-Chae Jang Copyright q 2011 Dae San Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We give some new identities on the Bernoulli and Euler numbers by using the bosonic p-adic integral on Zp and reflection symmetric properties of Bernoulli and Euler polynomials.

1. Introduction Let p be a fixed prime number. Throughout this paper Zp , Qp , and Cp will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp . Let UDZp  be the space of uniformly differentiable functions on Zp . For f ∈ UDZp , the bosonic p-adic integral on Zp is defined by   I f 



pN −1   1  N fxdμx  lim fxμ x  p Zp  lim N fx. N →∞ N →∞p Zp x0 x0 N p −1

1.1

From 1.1, we note that     I f1  I f  f  0,

where f1 x  fx  1,

1.2

2

Discrete Dynamics in Nature and Society

see 1. As is well known, the ordinary Bernoulli polynomials are defined by the generating function as follows: Ft, x 

∞  tn t xt Bxt , e  e  B x n n! et − 1 n0

1.3

see 1–19, where we use the technical notation by replacing Bn x by Bn xn ≥ 0, symbolically. In the special case, x  0, Bn 0  Bn are called the n-th ordinary Bernoulli numbers. That is, the generating function of ordinary Bernoulli numbers is given by Ft  Ft, 0 

∞  tn t  Bn , t e − 1 n0 n!

1.4

see 1–19. From 1.4, we can derive the following relation: B  1n − Bn  δ1,n ,

B0  1,

1.5

see 1, 10, where δ1,n is the Kronecker symbol. By 1.3 and 1.4, we easily get Bn x 

 n  n l0

l

Bl x

n−l



 n  n l

l0

Bn−l xl .

1.6

By 1.2 and 1.3, we easily get  Zp

  exyt dμ y 

∞  tn t xt , e  B x n n! et − 1 n0

1.7

see 1, 10. From 1.7, we can derive Witt’s formula for the n-th Bernoulli polynomials as follows: 

n   x  y dμ y  Bn x,

 Zp

where n ∈ Z ,

1.8

see 11. By 1.1 and 1.8, we easily see that 

n   y  1 − x dμ y  −1n

 Zp

 Zp

n   y  x dμ y .



1.9

Thus, by 1.8 and 1.9, we get reflection symmetric relation for the Bernoulli polynomials as follows: Bn 1 − x  −1n Bn x

where n ∈ Z .

1.10

Discrete Dynamics in Nature and Society

3

The ordinary Euler polynomials are defined by the generating function as follows: Fe t, x 

∞  tn 2 xt . e  E x n n! et  1 n0

1.11

with the usual convention about replacing En x by En x see 8, 9. In the special case, x  0, En 0  En are called the n-th Euler numbers see 8, 9. From 1.11, we note that ∞  2 2 tn n xt −1−xt , e  e  E − x −1 1 n n! et  1 1  e−t n0

1.12

By comparing the coefficients on both sides of 1.11 and 1.12, we obtain the following reflection symmetric relation for Euler polynomials as follows: En x  −1n En 1 − x,

where n ∈ Z .

1.13

The equations 1.10 and 1.13 are useful in deriving our main results in this paper. For n, k ∈ Z , the Bernstein polynomials are defined by Bk,n x 

 n

xk 1 − xn−k ,

k

1.14

see 13. By 1.14, we easily get Bk,n x  Bn−k,n 1 − x. In this paper we consider the p-adic integrals for the Bernoulli and Euler polynomials. From those p-adic integrals, we derive some new identities on the Bernoulli and Euler numbers.

2. Identities on the Bernoulli and Euler Numbers First, we consider the p-adic integral on Zp for the nth ordinary Bernoulli polynomials as follows:  I1 



Zp

Bn xdμx 

l0

 n  n l0

l

 n  n l

 Bn−l

Zp

xl dμx 2.1

where n ∈ Z .

Bn−l Bl ,

On the other hand, by 1.3 and 1.10, one gets  I1  −1n

Zp

Bn 1 − xdμx.

2.2

4

Discrete Dynamics in Nature and Society

From 1.5, 1.6, 1.8, and 2.2, one notes that I1  −1

 −1

n

n

 n  n l0

l

l0

l

 Bn−l

1 − xl dμx

Zp

 n  n

2.3

Bn−l l  Bl  δ1,l 

n

 −1 nBn−l 1  −1

n

 n  n l0

l

Bn−l Bl  −1n nBn−l .

Equating 2.1 and 2.3, one gets 

1  −1

n1

 n  n

Bn−l Bl  −1n nδ1,n−l  Bn−1   −1n nBn−1

l

l0

n

2.4

n

 2−1 nBn−l  −1 nδ1,n−1 . Let n ∈ N with n ≡ 1 mod 2. Then, by 2.4, one has 2n−1 



2n − 1

B2n−1−l Bl  −2n − 1B2n−2 .

l

l0

2.5

Therefore, by 2.4 and 2.5, we obtain the following theorem. Theorem 2.1. For n ∈ N, one has 

n1

1  −1

 n  n l

l0

Bn−l Bl  2−1n nBn−1  −1n nδ1,n−1 .

2.6

In particular, 2n−1 



2n − 1 l

l0

B2n−1−l Bl  −2n − 1B2n−2 .

2.7

By the same motivation, let us also consider the p-adic integral on Zp for Euler polynomials as follows:  I2 



Zp

En xdμx 

l0

 n  n l0

l

 n  n

En−l Bl ,

l

 En−l

where n ∈ Z .

Zp

xl dμx 2.8

Discrete Dynamics in Nature and Society

5

On the other hand, by 1.12 and 1.13, one gets  I2  −1

 −1

n Zp

En 1 − xdμx  −1

 n  n

 En−l

l

l0

 n  n n

Zp

1 − xl dμx

2.9

En−l l  Bl  δ1,l 

l

l0

n

n

 n−1 En−l 1  −1

n

 n  n

En−l Bl  −1n nEn−l .

l

l0

From 1.12 and the definition of Euler numbers, one has En x 

 n  n

El x

l

l0

n−l



 n  n l0

l

En−l xl  E  xn ,

E  1n  En  2δ0,n ,

E0  1,

2.10

2.11

see 8, 9 with the usual convention of replacing En by En . By 2.9, 2.10, and 2.11, one gets n

n

I2  n−1 2δ0,n−1 − En−1   −1 nEn−1  −1

n

 n  n l0

l

En−l Bl .

2.12

Equating 2.8 and 2.12, one has 

1  −1

n−1

 n  n

En−l Bl  2n−1n δ0,n−1 .

l0

l

2.13

Therefore, by 2.13, we obtain the following theorem. Theorem 2.2. For n ∈ N ∪ {0}, one has 

1  −1

n−1

 n  n l

l0

En−l Bl  2−1n nδ0,n−1 .

2.14

In particular, 2n1  l0



2n  1 l

E2n1−l Bl  0,

for n ∈ N.

2.15

6

Discrete Dynamics in Nature and Society

Let us consider the following p-adic integral on Zp for the product of Bernoulli and Euler polynomials as follows:  Bm xEn xdμx I3  Zp





  n m   m n k0 0

k

k0 0

k

 Bm−k En−



Zp

xk xdμx

2.16

  n m   m n 

Bm−k En− Bk .

On the other hand, by 1.10 and 1.13, one gets  I3  −1mn Bm 1 − xEn 1 − xdμx Zp

 −1

mn

  m  n  m n k0 0

 −1

mn

k



  m  n  m n k0 0

k



 Bm−k En−

Zp

1 − xk dμx

Bm−k En− k    Bk  δ1,k 

2.17

 −1mn mBm−1 1En 1  −1mn nBm 1En−1 1   m  n  m n mn Bm−k En− Bk  −1mn mBm−1 En  nBm En−1 .  −1 k  k0 0 Equating 2.16 and 2.17, one gets   n m    m n mn1 Bm−k En− Bk 1 −1 k  k0 0  −1mn mBm−1  δ1,m−1 2δ0,n − En 

2.18

 −1mn nBm  δ1,m 2δ0,n−1 − En−1   −1mn nBm En−1  mBm−1 En . For n ∈ N, by 2.18, one gets 

−1

m1

  2n m   m 2n Bm−k E2n− Bk 1 k  k0 0

 −1m1 2nBm  δ1,m E2n−1  −1m 2nBm E2n−1   −1m1 2nδ1,m E2n−1 . Therefore, by 2.19, one obtains the following theorem.

2.19

Discrete Dynamics in Nature and Society

7

Theorem 2.3. For n ∈ N, one has 

−1

m1

  2n m   m 2n Bm−k E2n− Bk  −1m1 2nδ1,m E2n−1 . 1 k  k0 0

2.20

In particular, for m ∈ N, one has 

2n 2m1 

2m  1

k0 0

k

 2n B2m1−k E2n− Bk  0. 

2.21

By the same motivation, we consider the p-adic integral on Zp for the product of Bernoulli and Bernstein polynomials as follows:  I4 

Zp

where m, n, k ∈ N ∪ {0}.

Bm xBk,n xdμx

2.22

From 1.6 and 1.14, one gets I4 

 m  m

 x Bk,n xdμx

Bm−

 Zp 0    m n  m  Bm− xk 1 − xn−k dμx k 0  Zp    n−k m  n  m n−k j  Bm− Bkj . −1 k 0 j0  j

2.23

On the other hand,  I4  −1m

 −1

 −1

m

Zp

Bm 1 − xBn−k,n 1 − xdμx

 k m  n  k

m

0 j0

 n

−1

j

  m k 

j

  Bm− n − k  j    Bn−kj  δ1,n−kj

m

 n

mBm−1 1δ0,k − −1 n − kBm 1δ0,k  −1 k k    k m  n  m k m j Bm− Bn−kj  −1 −1 k 0 j0  j  −1

m

 n k

mBm−1 − kBm δn,k  −1

m

m

 n k

mBm 1kδ0,k−1

 n k

Bm δn,k1 . 2.24

8

Discrete Dynamics in Nature and Society

Equating 2.23 and 2.24, one gets m  n−k  −1 −1j m

  m n−k 

0 j0

Bm− Bkj

j

 n − kBm 1  mBm−1 1δ0,k − kBm 1δ0,k−1  mBm−1 − kBm δn,k   k m   m k j Bm− Bn−kj .  Bm δn,k1  −1  j 0 j0

2.25

By 2.25, we obtain the following theorem. Theorem 2.4. For n, m ∈ N, one has 2n 2m   −1j



2m



2n



0 j0

j

B2m− Bj

 2m  2m B2m− B2n .  2nB2m   0

2.26

Now, we consider the p-adic integral on Zp for the product of Euler and Bernstein polynomials as follows:  I5 





Zp

Em xBk,n xdμx

 m  m

 Em−

 0  n−k m  n  k

Zp

−1

j

x Bk,n xdμx

  m n−k

0 j0



j

Em− Bkj .

On the other hand, by 1.13 and 1.14, one gets  I5  −1m

Zp

Bn−k,n 1 − xEm 1 − xdμx

    k m  n  m k j Em−  −1 −1 1 − xn−kj dμx k 0 j0  j Zp m

   k m  n  m k   j  −1 n − k    j  Bn−kj  δ1,n−kj Em− −1 k 0 j0  j m

2.27

Discrete Dynamics in Nature and Society m

 −1 n − k

 n k

Em 1δ0,k  −1

 −1

m

 k m  n 

 −1

m

 n

9 m

 n

mEm−1 1δ0,k − −1

k

m

 n k

Em 1kδ0,k−1

  m k Em− Bn−kj −1 k 0 j0  j j

δn,k1 Em  δn,k mEm−1 − kEm .

k

Equating 2.27 and 2.28, one gets m  n−k  −1j −1 m

0 j0

2.28

  m n−k Em− Bkj  j

 n − kEm 1δ0,k  mδ0,k Em−1 1 − kEm 1δ0,k−1   k m   m k j Em− Bn−kj  −1  j 0 j0

2.29

 δn,k1 Em  mEm−1 − kEm δn,k . Therefore, by 2.11 and 2.29, we obtain the following theorem. Theorem 2.5. For n, m ∈ N, one has   2n 2m   2m 2n j E2m− Bj  −2mE2m−1  B2m2n . −1  j 0 j0

2.30

Finally, we consider the p-adic integral on Zp for the product of Euler, Bernoulli, and Bernstein polynomials as follows:  Br xEs xBk,n xdμx I6  Zp

    s r  r s n  Br− Es−j xkj 1 − xn−k dμx  j k 0 j0  Zp 

 s  r  n−k n  k

0 j0 i0

−1

i

2.31

   r s n−k 

j

i

Br− Es−j Bkij .

On the other hand, by 1.10, 1.13, and 1.14, one gets  I6  −1rs Br 1 − xEs 1 − xBn−k,n 1 − xdμx Zp

     s  r  k n  r s k rs i Br− Es−j  −1 −1 1 − xn−kij dμx. k 0 j0 i0  j i Zp

2.32

10

Discrete Dynamics in Nature and Society

Equating 2.31 and 2.32, we easily see that

−1

rs

   r s n−k Br− Es−j Bkij −1  j i 0 j0 i0

r  s  n−k 

i

   s  r  k  r s k   i  n − k    i  j  Bn−kij  δ1,n−kij Br− Es−j −1  j i 0 j0 i0  n − kBr 1Es 1δ0,k  rBr−1 1δ0,k Es 1  sBr 1Es−1 1δ0,k    s  r  k  r s k i Br− Es−j Bn−kij − kBr 1Es 1δ0,k−1  −1  j i 0 j0 i0  δn,k1 Br Es  rBr−1 Es  sBr Es−1 − kBr Es δn,k . 2.33 Therefore, by 1.5 and 2.11, we obtain the following theorem. Theorem 2.6. For r, n, s ∈ N, one has    2s  2r  2n  2r 2s 2n i B2r− E2s−j Bij −1  j i 0 j0 i0  −2sB2r E2s−1 

 r  2r 0

2l

B2r−2l B2n2l2s − r

s  j1



2s



2j − 1

2.34

E2s−2j1 B2n2r2j−2 .

Acknowledgments The authors express their sincere gratitude to the referees for their valuable suggestions and comments. This paper is supported in part by the Research Grant of Kwangwoon University in 2011.

References 1 T. Kim, “Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials,” Journal of Difference Equations and Applications, vol. 14, no. 12, pp. 1267–1277, 2008. 2 A. Bayad and T. Kim, “Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials,” Russian Journal of Mathematical Physics, vol. 18, no. 2, pp. 133–143, 2011. 3 A. Bayad, “Modular properties of elliptic Bernoulli and Euler functions,” Advanced Studies in Contemporary Mathematics, vol. 20, no. 3, pp. 389–401, 2010. 4 L. Jang, “A note on Kummer congruence for the Bernoulli numbers of higher order,” Proceedings of the Jangjeon Mathematical Society, vol. 5, no. 2, pp. 141–146, 2002. 5 L. C. Jang and H. K. Pak, “Non-Archimedean integration associated with q-Bernoulli numbers,” Proceedings of the Jangjeon Mathematical Society, vol. 5, no. 2, pp. 125–129, 2002. 6 G. Kim, B. Kim, and J. Choi, “The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers,” Advanced Studies in Contemporary Mathematics, vol. 17, no. 2, pp. 137–145, 2008.

Discrete Dynamics in Nature and Society

11

7 T. Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp ,” Russian Journal of Mathematical Physics, vol. 16, no. 4, pp. 484–491, 2009. 8 T. Kim, “Euler numbers and polynomials associated with zeta functions,” Abstract and Applied Analysis, vol. 2008, Article ID 581582, 11 pages, 2008. 9 T. Kim, “Note on the Euler numbers and polynomials,” Advanced Studies in Contemporary Mathematics, vol. 17, no. 2, pp. 131–136, 2008. 10 T. Kim, “On explicit formulas of p-adic q-L-functions,” Kyushu Journal of Mathematics, vol. 48, no. 1, pp. 73–86, 1994. 11 T. Kim, “Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Zp ,” Russian Journal of Mathematical Physics, vol. 16, no. 1, pp. 93–96, 2009. 12 T. Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol. 9, no. 3, pp. 288–299, 2002. 13 T. Kim, “A note on q-Bernstein polynomials,” Russian Journal of Mathematical Physics, vol. 18, no. 2, pp. 14–50, 2011. 14 A. Kudo, “A congruence of generalized Bernoulli number for the character of the first kind,” Advanced Studies in Contemporary Mathematics, vol. 2, pp. 1–8, 2000. 15 H. Ozden, I. N. Cangul, and Y. Simsek, “Remarks on q-Bernoulli numbers associated with Daehee numbers,” Advanced Studies in Contemporary Mathematics, vol. 18, no. 1, pp. 41–48, 2009. 16 S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin, “On the q-Genocchi numbers and polynomials associated with q-zeta function,” Proceedings of the Jangjeon Mathematical Society, vol. 12, no. 3, pp. 261–267, 2009. 17 C. S. Ryoo, “On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity,” Proceedings of the Jangjeon Mathematical Society, vol. 13, no. 2, pp. 255–263, 2010. 18 I. Buyukyazici, “On Generalized q-Bernstein Polynomials,” Global Journal of Pure and Applied Mathematics, vol. 6, no. 3, pp. 1331–1348, 2010. 19 Y. Simsek, “Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions,” Advanced Studies in Contemporary Mathematics, vol. 16, no. 2, pp. 251– 278, 2008.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Suggest Documents