Hindawi Publishing Corporation Journal of Mathematics Volume 2013, Article ID 162429, 7 pages http://dx.doi.org/10.1155/2013/162429
Research Article Some New Recurrence Relations Concerning Jacobi Functions Hatem Mejjaoli1 and Ahmedou Ould Ahmed Salem2 1 2
Department of Mathematics, College of Sciences, Taibah University, P.O. Box 30002, Al Madinah AL Munawara, Saudi Arabia Department of Mathematics, College of Sciences, King Khalid University, Mohayil, Saudi Arabia
Correspondence should be addressed to Hatem Mejjaoli;
[email protected] Received 6 December 2012; Revised 15 January 2013; Accepted 29 January 2013 Academic Editor: Baoding Liu Copyright Β© 2013 H. Mejjaoli and A. Ould Ahmed Salem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. πΌ,π½
The aim of this paper is to obtain some new recurrence relations for the βmodifiedβ Jacobi functions Ξ¦π . Based on an asymptotic relationship between the Jacobi function and the Bessel function, the expression of Bessel function in terms of elementary functions follows as particular cases.
1. Introduction
are proved. We establish, under some conditions, that πΌ,π½
It is well known that the Jacobi function π‘ β ππ (π‘), πΌ, π½, π β C, πΌ =ΜΈ β 1, β2, β3, . . ., is defined (cf. [1]) as the even πΆβ function on R which satisfies the differential equation 2
πΏ πΌ,π½ π’ (π‘) = β (π2 + (πΌ + π½ + 1) ) π’ (π‘) , π’ (0) = 1,
σΈ
π’ (0) = 0,
πΏ πΌ,π½ =
π π + [(2πΌ + 1) coth π‘ + (2π½ + 1) tanh π‘] . 2 ππ‘ ππ‘
πΌ,π½
πΌβπ,π½+π
πβ1
(π‘) ,
πΌ+π,π½+π
(π‘) β (β1)π Ξ¦π
πΌ+π,π½+π
= β (β1)π πππ (πΌ) (sinh π‘)π Ξ¦π
(4) (π‘)]
(π‘) ,
π=0
(2)
πΌ,π½
Γ (sinh π‘)πΌ ππ (π‘)
2 π πΌ,π½ [Ξ¦ ] (π‘) , cosh π‘ ππ‘ π
= (sinh π‘)πΌβπ Ξ¦π πΌβπ,π½+π
π‘ σ³¨σ³¨β Ξ¦π (π‘) Ξ ((πΌ + π½ + 1 + ππ) /2) Ξ ((πΌ + π½ + 1 β ππ) /2) 2βπ½+1 Ξ (1 + πΌ)
(π‘) =
π π 2 πΌ,π½ ] [(sinh π‘)πΌ Ξ¦π ] (π‘) sinh (2π‘) ππ‘
(sinh π‘)π [Ξ¦π
In this paper some new summation formulas for the βmodifiedβ Jacobi functions
=
[
πΌ+1,π½+1
(π‘) β Ξ¦π
(1)
where πΏ πΌ,π½ is the Jacobi operator given by 2
πΌβ1,π½+1
Ξ¦π
(3)
where πππ (πΌ) stands for a constant that will be determined. A same of the last formula with respect to the dual variable is also shown, another formulas are proven and some examples are treated. We note that the subject for the generalization of recurrence relations concerning special functions was studied by many authors (cf. [2β5]). The remaining part of the paper is organized as follows. In Section 2 we recall the main results about some necessary notions related to Jacobi functions, Bessel functions, and Macdonaldβs functions. Section 3 is devoted to establishing some new formulas concerning βmodifiedβ Jacobi functions and some examples are given.
2
Journal of Mathematics
2. Preliminaries This section gives an introduction to the Jacobi function, Bessel function of the first kind, and Macdonaldβs function. Main references are [1, 6β11]. πΌ,π½
2.1. Jacobi Function. A Jacobi function ππ (πΌ, π½, π β C, πΌ =ΜΈ β 1, β2, β3, ...) (cf. [1, 6]) can be expressed as a hypergeometric function under form π + ππ π β ππ , ; πΌ + 1; βsinh2 π‘) : (π‘) = 2 πΉ1 ( 2 2
πΌ,π½ ππ
can be exExample 1. The functions ππ1/2,1/2 and Ξ¦1/2,1/2 π pressed in terms of elementary functions as βπ‘ > 0,
ππ1/2,1/2 (π‘) =
2 sin (ππ‘) , π sinh (2π‘)
(10)
2 2 + ππ 2 β ππ Ξ¦1/2,1/2 )Ξ( ) (π‘) = β Ξ ( π π 2 2
βπ‘ > 0,
Γ
sin (ππ‘) 1 , π βsinh π‘ cosh π‘
(11)
|Im π| < 2,
(5)
π = πΌ + π½ + 1. This function satisfies the following properties. πΌ,π½
(i) For every π‘ β [0, +β[, (Ξ(πΌ + 1))β1 ππ (π‘) is an entire function of πΌ, π½, and π.
2.2. Bessel Function of the First Kind. We recall that the Bessel function of the first kind and order πΌ denoted by π½πΌ is defined as an analytic function on {π§ β C : | arg π§| < π} by β
π§ πΌ+2π (β1)π ( ) Ξ (π + 1) Ξ (π + πΌ + 1) 2 π=0
π½πΌ (π§) = β
(ii) For each πΌ, π½ β C and for each nonnegative integer π there exists a positive constant π such that βπ‘ β₯ 0,
βπ β C,
and possesses the following integral representation:
π σ΅¨σ΅¨ σ΅¨σ΅¨ πΌ,π½ σ΅¨ σ΅¨σ΅¨ β1 π σ΅¨σ΅¨(Ξ (πΌ + 1)) ( ) ππ (π‘)σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ ππ‘
(6)
π½πΌ (π§) =
1 πΌβ1/2 (π§/2)πΌ cos (π§π‘) ππ‘, β« (1 β π‘2 ) βπΞ (πΌ + 1/2) β1
β€ π(1 + |π|)π+π (1 + π₯) π(| Im π|βRe(π))π‘ , where π = 0 if Re(πΌ) > β1/2 and π = [(1/2) β Re(πΌ)] if Re(πΌ) β€ β1/2.
1 Re (πΌ) > β . 2
> β1/2 possesses (iii) The function π‘ β the Laplace type integral representation π‘
πΌ,π½ ππ (π‘) = β« K (π‘, π¦) cos (ππ¦) ππ¦, (7) 0
where K(π‘, β
) is explicitly given in [8] and it is a positive function on (0, π‘) if πΌ > β1/2 and |π½| β€ max{1/2, πΌ}. πΌ,π½ We note that the function ππ possesses also an integral representation with respect to the dual variable [12]. To finish this paragraph, we consider the βmodifiedβ Jacobi function
(14)
1 π πΌ (π§ π½πΌ (π§)) = π§πΌβ1 π½πΌβ1 (π§) . π§ ππ§
(15)
πβ1
π§π (π½πΌβπ (π§) β (β1)π π½πΌ+π (π§)) = β (β1)π πππ (πΌ) π§π π½πΌ+π (π§) , π=0
(16) with
πΌ,π½
Ξ ((πΌ + π½ + 1 + ππ) /2) Ξ ((πΌ + π½ + 1 β ππ/2)) 2βπ½+1 Ξ (1 + πΌ)
(17)
β
π½0 (π§) + 2 βπ½2π (π§) = 1,
which can be written (cf. [7], page 693) as follows:
π=1
πΌ,π½
β« π₯π½ πΎππ (π₯) π½πΌ (π₯ sinh π‘) ππ₯ = Ξ¦π (π‘) , 0
π 2πβπ πΆπ , Ξ (πΌ + π β π + 1)
and satisfies
πΌ,π½
β
πππ (πΌ) = Ξ (πΌ + 1)
(8)
Γ (sinh π‘)πΌ ππ (π‘) ,
βπ‘ > 0,
π½πΌβ1 (π§) β π½πΌ+1 (π§) = 2π½πΌσΈ (π§) ,
It also verifies [10]
π‘ σ³¨σ³¨β Ξ¦π (π‘) =
(13)
It satisfies the following functional relations:
πΌ,π½ ππ (π‘) for Re(πΌ)
βπ‘ > 0, βπ β C,
(12)
β
(9)
|Im π| < Re (πΌ + π½ + 1) , where π½πΌ and πΎπΌ denote, respectively, the Bessel function of the first kind and Macdonaldβs function.
β (β1)π π½2π+1 (π§) =
π=0
sin π§ , 2
(18)
(19)
β
π½0 (π§) + 2 β(β1)π π½2π (π§) = cos π§, π=1
(20)
Journal of Mathematics
3
β
2
β(β1)π+1 (2π) π½2π (π§) =
π=1 β
π§ sin π§ , 2
2
β (β1)π (2π + 1) π½2π+1 (π§) =
π=0
π§ cos π§ . 2
(21)
We recall also that the modified Bessel function of the first kind and Macdonaldβs function have, for π§ > 0 and πΌ β₯ 0, the following asymptotic representations ([9], page 136):
(22)
πΌπΌ (π§) β
π§πΌ , 2πΌ Ξ (πΌ + 1)
πΌπΌ (π§) β
π§ σ³¨β 0,
2 1 1 π½πΌ (π§) β β cos (π§ β πΌπ β π) , ππ§ 2 4
(23)
πΎΒ±1/2 (π§) = (
π§ σ³¨β 0
π§ σ³¨β β,
(30)
(31)
π§ σ³¨β β.
(32)
π 1/2 βπ§ ) π . 2π§
(33)
To complete this paragraph, we recall the following (cf. [7], page 684 and page 747).
β
(π§/2)πΌ+2π , Ξ (π + 1) Ξ (π + πΌ + 1) π=0
π βπ§ π , 2π§
(29)
Note that in the special case πΌ = Β±1/2, Macdonaldβs function is given by
(i) If | Im π| < 1 + Re(π½), then we have
πΌπΌ (π§) = β
π [πΌβπΌ (π§) β πΌπΌ (π§)] { { , if πΌ β Z, {2 sin (ππΌ) πΎπΌ (π§) = { { πΎ (π§) , if πΌ β Z. {]lim βπΌ ] {
ππ§ , β2ππ§
πΎπΌ (π§) β β
π§ σ³¨β β.
2.3. Modified Bessel Function of the First Kind and Macdonaldβs Function. We recall that the modified Bessel function of the first kind πΌπΌ of order πΌ β C and Macdonaldβs function πΎπΌ of order πΌ β C are defined as analytic functions on {π§ β C : | arg π§| < π} by the formulas
π§ σ³¨β 0,
2 log , if πΌ = 0 { { { π§ πΎπΌ (π§) β { πΌβ1 Ξ (πΌ) { , if πΌ > 0, {2 π§πΌ {
It has, for π§ β₯ 0 and πΌ β₯ 0, the following asymptotic representation:
π½πΌ (π§) β
π§πΌ , 2πΌ Ξ (πΌ + 1)
β
(24)
β« π₯π½ πΎππ (π₯) ππ₯ = 2π½β1 Ξ ( 0
1 + π½ + ππ 1 + π½ β ππ )Ξ( ). 2 2 (34)
(ii) If | Im π| < 1 + Re(π½) and π‘ > 0, then we have β
β« π₯π½ πΎππ (π₯) cos (π₯ sinh π‘) ππ₯ = β
The Macdonaldβs function satisfies
0
π β1/2,π½+1/2 sinh π‘Ξ¦π (π‘) . 2 (35)
πΎπΌ (π§) = πΎβπΌ (π§) ,
(25)
(iii) If | Im π| < 2 + Re(π½) and π‘ > 0, then we have
πΎπΌβ1 (π§) + πΎπΌ+1 (π§) = β2πΎπΌσΈ (π§) .
(26)
β« π₯π½ πΎππ (π₯) sin (π₯ sinh π‘) ππ₯ = β
β
0
π 1/2,π½+1/2 sinh π‘Ξ¦π (π‘) . 2 (36)
It also verifies (cf. [10]) πΌ,π½
3. Recurrence Relations for Ξ¦π
π§π (πΎπΌ+π (π§) β πΎπΌβπ (π§)) πβ1
= β (β1)πβπβ1 πππ (πΌ) π§π πΎπΌ+π (π§) ,
(27)
3.1. Some Reccurrence Relations with Respect to Parameters πΌ and π½ Proposition 2. Let πΌ, π½, π β C. If | Im π| < Re(π), with π = πΌ + π½ + 1 and π β N, then one has
π=0
where πππ (πΌ) is the constant defined by (17). For Re π§ > 0 and πΌ β C, it can be written under the representation integral ([9], page 119)
πΌβπ,π½+π
(sinh π‘)π [Ξ¦π πβ1
πΌ+π,π½+π
(π‘) β (β1)π Ξ¦π
πΌ+π,π½+π
= β (β1)π πππ (πΌ) (sinh π‘)π Ξ¦π
(π‘)]
(π‘) ,
π=0
β
πΎπΌ (π§) = β« πβπ§ cosh π’ cosh (πΌπ’) ππ’. 0
(28)
where πππ (πΌ) stands for the constant given by (17).
(37)
4
Journal of Mathematics Example 5. Using Example 1 and relation (42) for πΌ = 1/2 and π½ = 1/2, we obtain
Proof. Formula (16) asserts that π₯π½ (π₯ sinh π‘)π (π½πΌβπ (π₯ sinh π‘) β (β1)π π½πΌ+π (π₯ sinh π‘)) πβ1
= β (β1)π ππ (π) π₯π½ (π₯ sinh π‘)π π½πΌ+π (π₯ sinh π‘) .
(38)
π=0
We multiply both sides of the last identity by πΎππ (π₯) and integrate with respect to π₯ from 0 to β. Then use formula (9) to obtain the required formula.
Ξ¦3/2,3/2 (π‘) = π
Γ ππ3/2,3/2 (π‘) =
Proposition 3. For πΌ, π½, π β C such that | Im π| < Re(πΌ + π½ + 1), one has πΌβ1,π½+1
πΌ+1,π½+1
Ξ¦π
(π‘) β Ξ¦π
(π‘) =
2 π πΌ,π½ [Ξ¦ ] (π‘) . cosh π‘ ππ‘ π
πΌβ1,π½+1
πΌ+1,π½+1
(π‘) β Ξ¦π
(π‘)
β
π 2 = β« π₯π½ πΎππ (π₯) [π½πΌ (π₯ sinh π‘)] ππ₯. cosh π‘ 0 ππ‘
(40)
Γ
(41)
Γ ((π₯ sinh π‘)
Re(πΌ)β1
+ (π₯ sinh π‘)
Re(πΌ)+1
),
where πΆ(πΌ) is a positive constant. Taking account of the asymptotic formulas of Macdonaldβs function (30) and (32) (or formula (34)) and taking π‘ in any compact of (0, β), we can deduce the result in the case Re(πΌ) > β1/2. According to principle of analytic continuation, the restriction Re(πΌ) > β1/2 used can be dropped.
,
2 sin (ππ‘) cosh (2π‘) β π cos (ππ‘) sinh (2π‘) . (sinh (2π‘))3 (44)
2 2 + ππ 2 β ππ 1 Ξ¦β1/2,3/2 )Ξ( ) (π‘) = β Ξ ( π π 2 2 π Γ ππβ1/2,3/2 (π‘) =
β€ πΆ (πΌ) cosh π‘ β
πΎ| Im(π)| (π₯) π₯ Re(π½)+1
(sinh π‘)3/2 (cosh π‘)3
Example 6. Using Example 1 and relation (43) for πΌ = 1/2 and π½ = 1/2, we obtain
On the other hand, by using formulas (14), (28), and (13), we can deduce that σ΅¨σ΅¨ σ΅¨σ΅¨ π σ΅¨ σ΅¨σ΅¨ π½ σ΅¨σ΅¨π₯ πΎππ (π₯) [π½πΌ (π₯ sinh π‘)]σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ ππ‘
2 sin (ππ‘) cosh (2π‘) β π cos (ππ‘) sinh (2π‘)
12 π (4 + π2 )
(39)
Proof. At first, we suppose that Re(πΌ) > β1/2 and | Im π| < Re(πΌ+π½+1). With the help of formulas (14) and (9), we obtain Ξ¦π
2 + ππ 2 β ππ 1 1 Ξ( )Ξ( ) β2π 2 2 π
π cos (ππ‘) cosh π‘ β sin (ππ‘) sinh π‘ , βsinh π‘(cosh π‘)3
(45)
π cos (ππ‘) cosh π‘ β sin (ππ‘) sinh π‘ . sinh π‘(cosh π‘)3
Example 7. Using Example 5 and relation (42) for πΌ = 1 and π½ = 1, we obtain
Ξ¦5/2,5/2 (π‘) = π
1 2 + ππ 2 β ππ 1 Ξ( )Ξ( ) β2π 2 2 4π Γ ([16 + π2 β (π2 β 8) cosh (4π‘)] sin (ππ‘) β6π cos (ππ‘) sinh (4π‘)) β1
Γ ((sinh π‘)5/2 (cosh π‘)5 ) , Using Propositions 2 and 3, we obtain the following corollary. Corollary 4. If | Im π| < Re(πΌ + π½ + 1), then one has
15 8π (16 + π2 ) (4 + π2 ) Γ ([16 + π2 β (π2 β 8) cosh (4π‘)] sin (ππ‘)
Ξ¦π
(π‘) =
πΌ 1 π πΌ,π½ πΌ,π½ Ξ¦ (π‘) β [Ξ¦ ] (π‘) , sinh π‘ π cosh π‘ ππ‘ π
(42)
πΌβ1,π½+1 Ξ¦π
πΌ 1 π πΌ,π½ πΌ,π½ Ξ¦π (π‘) + [Ξ¦ ] (π‘) . (π‘) = sinh π‘ cosh π‘ ππ‘ π
(43)
πΌ+1,π½+1
ππ5/2,5/2 (π‘) =
β6π cos (ππ‘) sinh (4π‘)) β1
Γ ((sinh π‘)5 (cosh π‘)5 ) . (46)
Journal of Mathematics
5
Example 8. Using Example 7 and relation (42) for πΌ = 1 and π½ = 1, we obtain
Proof. According to formula (15), we obtain π 1 [(sinh π‘)πΌ π½πΌ (π₯ sinh π‘)] sinh (π‘) cosh (π‘) ππ‘
Ξ¦7/2,7/2 (π‘) π
= π₯(sinh π‘)
1 2 β ππ 1 2 + ππ = )Ξ( ) Ξ( β2π 2 2 8π Γ(
(sinh π‘) 2
+
πΌβ1,π½+1
(sinh π‘)πΌβ1 Ξ¦π
7
(cosh π‘)
=
2
π [β76 β π + (π β 44) cosh (4π‘)] sinh (2π‘) cos (ππ‘) (sinh π‘)7/2 (cosh π‘)7
),
ππ7/2,7/2 (π‘) =
Γ(
(sinh π‘)7 (cosh π‘)7 π [β76 β π2 + (π2 β 44) cosh (4π‘)] sinh (2π‘) cos (ππ‘) (sinh π‘)7 (cosh π‘)7
[ ).
Example 9. Using Example 5 and relation (43) for πΌ = 3/2 and π½ = 3/2, we obtain 1 2 + ππ 2 β ππ 1 Ξ( )Ξ( ) β2π 2 2 π 2
πΌβπ,π½+π
= (sinh π‘)πΌβπ Ξ¦π πΌ+π,π½+π
2 π π (β1)π πΌ,π½ = ] [(sinh π‘)πΌ Ξ¦π ] πΌβπ [ sinh ππ‘ (2π‘) (sinh π‘)
(48)
+3π cos (ππ‘) sinh (2π‘))
(π‘) ,
Ξ¦π
+
2
Γ ([4 + π + (π β 2) cosh (2π‘)] sin (ππ‘)
(53)
(β1)π+1 πβ1 πΌ+π,π½+π . β (β1)π ππ (π) (sinh π‘)π Ξ¦π (sinh π‘)π π=0
Proof. The result follows by induction argument.
β1
Γ ((sinh π‘)1/2 (cosh π‘)5 ) . Using the previous relation and relation (42) for πΌ = 1/2 and π½ = 5/2, we obtain
3.2. Some Reccurrence Relations with Respect to the Dual Variable. We give now some recurrence relations with respect to the dual variable π in the next proposition. Proposition 12. If | Im π| < Re(πΌ + π½ + 1) and π β N, then one has
Ξ¦3/2,7/2 (π‘) π
βπ‘ > 0,
1 2 β ππ 1 2 + ππ = )Ξ( ) Ξ( β2π 2 2 4π Γ(
β π 2 β« π₯π½ πΎππ (π₯) [(sinh π‘)πΌ π½πΌ (π₯ sinh π‘)] ππ₯. sinh (2π‘) 0 ππ‘ (52)
π π 2 πΌ,π½ ] [(sinh π‘)πΌ Ξ¦π ] (π‘) sinh (2π‘) ππ‘
(47)
Ξ¦1/2,5/2 (π‘) = π
(π‘)
Corollary 11. For πΌ, π½, π β C such that | Im π| < Re(πΌ+π½+1) and π β N one has
2
12 [16 + π β (π β 4) cosh (4π‘)] cosh (2π‘) sin (ππ‘)
+
π½πΌβ1 (π₯ sinh π‘)
By using formulas (14), (28), (13), and (34), we deduce the result.
105 16π (4 + π2 ) (16 + π2 ) (36 + π2 ) 2
(51)
and consequently
12 [16 + π2 β (π2 β 4) cosh (4π‘)] cosh (2π‘) sin (ππ‘) 7/2
πΌβ1
πΌ,π½+π
[(16 + π2 ) (β3 + 4 cosh (2π‘)) + (7π2 β 8) cosh (4π‘)] sin (ππ‘)
πβ1
2π [16 + π2 + (π2 β 14) cosh (2π‘)] sinh (2π‘) cos (ππ‘) (sinh π‘)3/2 (cosh π‘)7
).
Proposition 10. For πΌ, π½, π β C such that | Im π| < Re(πΌ + π½ + 1), one has π 2 πΌ,π½ [(sinh π‘)πΌ Ξ¦π ] (π‘) sinh (2π‘) ππ‘ πΌβ1,π½+1
= (sinh π‘)πΌβ1 Ξ¦π
(π‘) .
πΌ,π½+π
π=0
(49)
βπ‘ > 0,
(54)
= β (β1)πβπβ1 πππ (ππ) Ξ¦πβππ (π‘) ,
(sinh π‘)3/2 (cosh π‘)7 +
πΌ,π½+π
Ξ¦πβππ (π‘) β Ξ¦π+ππ (π‘)
(50)
where πππ (πΌ) is the constant given by (17). For all π‘ > 0, we have πΌ,π½+1
πΌ,π½+1
Ξ¦π+π (π‘) + Ξ¦πβπ (π‘) πΌ,π½
= 2 (π½ + 1) Ξ¦π (π‘) + 2 tanh π‘
π πΌ,π½ Ξ¦ (π‘) . ππ‘ π
(55)
Proof. The first equality is an immediate consequence of formulas (27) and (9) while the second is proved by using (26) and the asymptotic representations of π½πΌ and πΎπΌ .
6
Journal of Mathematics
As a consequence of this proposition, we have the following corollary.
3.3. Some Summations Intervening the βModifiedβ Jacobi Functions
Corollary 13. If | Im π| < Re(πΌ + π½ + 1) and π‘ > 0, one has
Proposition 16. If | Im π| < Re(1 + π½) and π‘ β (0, arg sinh 1), then one has
πΌ,π½+1
πΌ,π½
Ξ¦πβπ (π‘) = (π½ + 1 + ππ) Ξ¦π (π‘) + tanh π‘ πΌ,π½+1
πΌ,π½
Ξ¦π+π (π‘) = (π½ + 1 β ππ) Ξ¦π (π‘) + tanh π‘
π πΌ,π½ Ξ¦ (π‘) , ππ‘ π π πΌ,π½ Ξ¦ (π‘) . ππ‘ π
(56)
sin (ππ‘) , (π‘) = π sinh π‘
β
0,π½
π½β1
=2
=
(π + π) sin ((π + π) π‘) cosh π‘ + cos ((π + π) π‘) sinh π‘ . βsinh π‘cosh3 π‘ (60)
Remark 15. By using (33) and the fact that (cf., e.g., [7], page 707) πΌ
π‘ > 0, Re (πΌ) > β1,
β
=β
π 1 cosh π‘ β 1 πΌ ( ) 2 cosh π‘ sinh π‘ π 1 π‘ tanhπΌ ( ) , 2 cosh π‘ 2
π‘ > 0, Re (πΌ) > β1. (62)
βπ 1 π‘ tanhπΌ ( ) (3+2πΌ cosh π‘ +cosh (2π‘)) , (π‘) = 4 cosh3 π‘ 2
Ξ¦πΌ,3/2 βπ/2
1 + π½ + ππ 1 + π½ β ππ Ξ( )Ξ( ). 2 2
(66)
β
((π₯ sinh π‘) /2)2π Re(π½) π₯ πΎ| Im(π)| (π₯) ππ₯ (2π)!
((sinh π‘) /2)2π 2π+ Re(π½)β1 2 (2π)!
(67)
Γ Ξ(
1 + 2π + Re (π½) β |Im (π)| ) 2
Γ Ξ(
1 + 2π + Re (π½) + |Im (π)| ), 2
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π½2π (π₯ sinh π‘) π₯π½ πΎππ (π₯)σ΅¨σ΅¨σ΅¨ ππ₯, σ΅¨ σ΅¨
βπ‘ β (0, arg sinh 1) , (68)
As an application of the last corollary, we obtain Ξ¦πΌ,3/2 3(π/2)
β
π=1 0
β Ξ¦πΌ,1/2 π/2 (π‘) =
π=1
which permits to conclude the convergence of series ββ«
we can get
0
β σ΅¨ σ΅¨ β« σ΅¨σ΅¨σ΅¨σ΅¨π½2π (π₯ sinh π‘) π₯π½ πΎππ (π₯)σ΅¨σ΅¨σ΅¨σ΅¨ ππ₯ 0
0
(61)
β
With the help of formulas (13), (28), and (34), we can see that
2 2 + ππ 2 β ππ π Ξ¦1/2,3/2 )Ξ( ) (π‘) = β β Ξ ( π+π π 2 2 π
cosh π‘ β 1 1 ( ) , cosh π‘ sinh π‘
β
0,π½
β€β«
0
π β1/2,π½+1/2 sinh π‘Ξ¦π (π‘) . 2 (65)
Ξ¦π (π‘) + 2 β« ( β π½2π (π₯ sinh π‘)) π₯π½ πΎππ (π₯) ππ₯
(π‘) already calcuwhich coincided with the value of Ξ¦1/2,1/2 Ξ lated at Ξ = π + π and we have
β
(π‘) = β
π=1
Ξ ((1 + ππ) /2) Ξ ((1 β ππ) /2) sin (ππ‘) . (58) β2π πβsinh π‘
β« πβπ₯ π½πΌ (π₯ sinh π‘) ππ₯ =
1 + π½ + ππ 1 + π½ β ππ )Ξ( ). 2 2 (64)
Proof. Using formulas (18), (34), and (9), we obtain
Ξ ((1 + ππ) /2) Ξ ((1 β ππ) /2) sin ((π + π) π‘) , (π‘) = βπ β2π cosh π‘βsinh π‘ (59)
Γ
2π,π½
Ξ¦π (π‘)+2 β (β1)π Ξ¦π
Using now the last corollary, we can get Ξ¦1/2,1/2 π+π
(π‘) = 2π½β1 Ξ (
(57)
and therefore Ξ¦1/2,β1/2 (π‘) = π
2π,π½
π=1
Example 14. By using formulas (5.32) (in [1], page 44) and (10), we can see that ππ1/2,β1/2
β
0,π½
Ξ¦π (π‘)+2 β Ξ¦π
βπ 1 π‘ tanhπΌ ( ) (1 + πΌ cosh π‘) . (π‘) = 2 cosh3 π‘ 2
(63)
and consequently we obtain the first equality. The second identity is obtained by using formulas (20), (9), and (35). Remark 17. With the help of formulas (62) and (65), we deduce that Ξ¦β1/2,2 βπ/2 (π‘) =
1 β sinh2 π‘ . βsinh π‘cosh4 π‘
(69)
Using now Corollary 13, we see that Ξ¦β1/2,2 (3/2)π (π‘) =
2 . βsinh π‘cosh4 π‘
(70)
Journal of Mathematics
7
Proposition 18. If | Im π| < 2 + Re(π½) then one has β
2π,π½
β (β1)π+1 (2π)2 Ξ¦π
(π‘)
[2]
π=1
1/2,π½+3/2
= βπ(sinh π‘)3/2 Ξ¦π β
2π+1,π½
β (β1)π (2π + 1)2 Ξ¦π
(π‘) ,
βπ‘ β (0, arg sinh 1) ,
[3]
(π‘)
π=0
[4]
π β1/2,π½+3/2 = β (sinh π‘)3/2 Ξ¦π (π‘) , 2
βπ‘ β (0, arg sinh 1) . (71)
Proof. The first identity deduced from (21), (9), and (36). The second follows from (22), (9), and (35). Remark 19. By using the fact π‘ sinh2 π‘ , β (β1)π+1 (2π)2 tanh2π ( ) = 2 cosh3 π‘ π=1 β π‘ (3 β cosh (2π‘)) sinh π‘ , β (β1)π (2π + 1)2 tanh2π+1 ( ) = 2 4 cosh3 π‘ π=0 (72)
[10]
1 βsinh π‘ , (π‘) = β2 cosh4 π‘
(73)
1 (3 β cosh (2π‘)) . (π‘) = 4 βsinh π‘cosh4 π‘
1 ππ 1 ππ + , πΌ + β ; πΌ + 1; βsinh2 (ππ₯)) 2 2π 2 2π (74)
tends to the normalized Bessel function ππΌ (ππ₯) =
0 πΉ1 (πΌ + 1; β( β
[11] [12]
Remark 20. It is well known that the hypergeometric function 2 πΉ1 (π, π; π; π§) tends to the confluent hypergeometric function 0 πΉ1 (π; π) as π, π β β and π§ β β such a way that πππ§ β π. Consequently, as π β 0, πΌ,πΌ ππ/π (ππ₯) = 2 πΉ1 (πΌ +
[8]
[9]
formula (62), and the last proposition, we can see that
Ξ¦β1/2,2 π/2
[6]
[7]
β
Ξ¦1/2,2 π/2
[5]
ππ₯ 2 )) 2 2π
ππ₯ (β1)π = Ξ (πΌ + 1) β ( ) . Ξ (π + 1) Ξ (π + πΌ + 1) 2 π=0
(75)
Using this remark, the expression of Bessel function in terms of elementary functions for some particular values of the parameters follows as particular cases of our findings; we get the results given in [7, 9, 11].
References [1] T. H. Koornwinder, βJacobi functions and analysis on noncompact semi simple Lie groups,β in Special Functions: Group
Theoretical Aspects and ApplicaTions, R. A. Askey, T. H. Koornwinder, and W. Schempp, Eds., D. Reidel, Dordrecht, The Netherlands, 1984. H. Exton, βSome new summation formulae for the generalised hypergeometric function of higher order,β Journal of Computational and Applied Mathematics, vol. 79, no. 2, pp. 183β187, 1997. H. Exton, βSummation formulae involving the Laguerre polynomial,β Journal of Computational and Applied Mathematics, vol. 100, no. 2, pp. 225β227, 1998. M. Neher, βA note on a sum associated with the generalized hypergeometric function,β Applied Mathematics and Computation, vol. 187, no. 2, pp. 1527β1534, 2007. R. Tremblay and B. J. Fug`ere, βProducts of two restricted hypergeometric functions,β Journal of Mathematical Analysis and Applications, vol. 198, no. 3, pp. 844β852, 1996. M. Flensted-Jensen and T. H. Koornwinder, βJacobi functions: the addition formula and the positivity of the dual convolution structure,β Arkiv fΒ¨or Matematik, vol. 17, no. 1, pp. 139β151, 1979. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Fourth edition prepared by Ju. V. Geronimus and M. Ju. CeΛΔ±tlin. Translated from the Russian by Scripta Technica, Inc. Translation edited by Alan Jeffrey, Academic Press, New York, NY, USA, 1965. T. Koornwinder, βA new proof of a Paley-Wiener type theorem for the Jacobi transform,β Arkiv fΒ¨or Matematik, vol. 13, pp. 145β 159, 1975. N. N. Lebedev, Special Functions and Their Applications, Dover, New York, NY, USA, 1972. S. G. Samko, βOn some index relations for Bessel functions,β Integral Transforms and Special Functions, vol. 11, no. 4, pp. 397β 402, 2001. G. N. Watson, A Treatise on the Theory of Bessel Functions, Merchant Books, 2008. N. Ben Salem and K. Trim`eche, βMehler integral transforms associated with Jacobi functions with respect to the dual variable,β Journal of Mathematical Analysis and Applications, vol. 214, no. 2, pp. 691β720, 1997.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014