Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 419064, 10 pages http://dx.doi.org/10.1155/2014/419064
Research Article Some Paranormed Double Difference Sequence Spaces for Orlicz Functions and Bounded-Regular Matrices S. A. Mohiuddine,1 Kuldip Raj,2 and Abdullah Alotaibi1 1
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 2 School of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India Correspondence should be addressed to S. A. Mohiuddine;
[email protected] Received 23 November 2013; Accepted 14 January 2014; Published 10 March 2014 Academic Editor: M. Mursaleen Copyright Š 2014 S. A. Mohiuddine et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this paper is to introduce some new double difference sequence spaces with the help of the Musielak-Orlicz function F = (đšđđ ) and four-dimensional bounded-regular (shortly, RH-regular) matrices đ´ = (đđđđđ ). We also make an effort to study some topological properties and inclusion relations between these double difference sequence spaces.
1. Introduction, Notations, and Preliminaries In [1], Hardy introduced the concept of regular convergence for double sequences. Some important work on double sequences is also found by Bromwich [2]. Later on, it was studied by various authors, for example, M´oricz [3], M´oricz and Rhoades [4], Bas¸arÄąr and Sonalcan [5], Mursaleen and Mohiuddine [6â8], and many others. Mursaleen [9] has defined and characterized the notion of almost strong regularity of four-dimensional matrices and applied these matrices to establish a core theorem (also see [10, 11]). Altay and Bas¸ar [12] have recently introduced the double sequence spaces BS, BS(đĄ), CSđ , CSđđ , CSđ , and BV consisting of all double series whose sequence of partial sums are in the spaces Mđ˘ , Mđ˘ (đĄ), Cđ , Cđđ , Cđ , and Lđ˘ , respectively. Bas¸ar and Sever [13] extended the well-known space âđ from single sequence to double sequences, denoted by Lđ , and established its interesting properties. The authors of [14] defined some convex and paranormed sequences spaces and presented some interesting characterization. Most recently, Mohiuddine and Alotaibi [15] introduced some new double sequences spaces for đ-convergence of double sequences and invariant mean and also determined some inclusion results for these spaces. For more details on these concepts, one can be referred to [16â18].
The notion of difference sequence spaces was introduced by KÄązmaz [19], who studied the difference sequence spaces đâ (Î), đ(Î), and đ0 (Î). The notion was further generalized by Et and C ¸ olak [20] by introducing the spaces đâ (Îđ ), đ(Îđ ), and đ0 (Îđ ). Let đ¤ be the space of all complex or real sequences đĽ = (đĽđ ) and let đ and đ be two nonnegative integers. Then for đ = đâ , đ, đ0 , we have the following sequence spaces: đ (Îđđ ) = {đĽ = (đĽđ ) â đ¤ : (Îđđ đĽđ ) â đ} ,
(1)
đâ1 0 where Îđđ đĽ = (Îđđ đĽđ ) = (Îđâ1 đ đĽđ â Î đ đĽđ+1 ) and Î đĽđ = đĽđ for all đ â N, which is equivalent to the following binomial representation: đ
đ Îđđ đĽđ = â (â1)V ( ) đĽđ+đ V . V V=0
(2)
We remark that for đ = 1 and đ = đ = 1, we obtain the sequence spaces which were introduced and studied by Et and C ¸ olak [20] and KÄązmaz [19], respectively. For more details about sequence spaces see [21â27] and references therein.
2
Abstract and Applied Analysis
An Orlicz function đš : [0, â) â [0, â) is continuous, nondecreasing, and convex such that đš(0) = 0, đš(đĽ) > 0 for đĽ > 0 and đš(đĽ) â â as đĽ â â. If convexity of Orlicz function is replaced by đš(đĽ + đŚ) ⤠đš(đĽ) + đš(đŚ), then this function is called modulus function. Lindenstrauss and Tzafriri [28] used the idea of Orlicz function to define the following sequence space: óľ¨óľ¨ óľ¨óľ¨ óľ¨đĽ óľ¨ âđš = {đĽ = (đĽđ ) â đ¤ : â đš ( óľ¨ đ óľ¨ ) < â, đ > 0} , đ đ=1 â
(3)
which is known as an Orlicz sequence space. The space âđš is a Banach space with the norm óľ¨óľ¨ óľ¨óľ¨ â óľ¨đĽđ óľ¨ âđĽâ = inf {đ > 0 : â đš ( óľ¨ óľ¨ ) ⤠1} . đ đ=1
(4)
Also it was shown in [28] that every Orlicz sequence space âđš contains a subspace isomorphic to âđ (đ ⼠1). An Orlicz function đš can always be represented in the following integral form: đĽ
đš (đĽ) = ⍠đ (đĄ) đđĄ,
(5)
0
where đ is known as the kernel of đš, is a right differentiable for đĄ ⼠0, đ(0) = 0, đ(đĄ) > 0, đ is nondecreasing, and đ(đĄ) â â as đĄ â â. A sequence F = (đšđ ) of Orlicz functions is said to be a Musielak-Orlicz function (see [29, 30]). A sequence N = (đđ ) is defined by đđ (V) = sup {|V| đ˘ â đšđ (đ˘) : đ˘ ⼠0} ,
đ = 1, 2, . . . ,
(6)
which is called the complementary function of a MusielakOrlicz function F. For a given Musielak-Orlicz function F, the Musielak-Orlicz sequence space đĄF and its subspace âF are defined as follows: đĄF = {đĽ â đ¤ : đźF (đđĽ) < â for some đ > 0} , âF = {đĽ â đ¤ : đźF (đđĽ) < â âđ > 0} ,
(7)
where đźF is a convex modular defined by â
đźF (đĽ) = â đšđ (đĽđ ) , đ=1
đĽ = (đĽđ ) â đĄF .
(8)
We consider đĄF equipped with the Luxemburg norm đĽ âđĽâ = inf {đ > 0 : đźF ( ) ⤠1} đ
đšđ (2đ˘) ⤠đžđšđ (đ˘) + đđ
(9)
â,â
đŚđđ = â đđđđđ đĽđđ đ,đ=0,0
(12)
is called the đ´-đđđđđ of the double sequence (đĽđđ ). A double sequence (đĽđđ ) is said to be đ´-đ đ˘đđđđđđ to the limit đż if the đ´-means exist for all đ, đ in the sense of Pringsheimâs convergence: đ,đ
đ- lim
đ,đ â â
â đđđđđ đĽđđ = đŚđđ ,
đ,đ=0,0
đ- lim đŚđđ = đż. (13) đ,đ â â
A four-dimensional matrix đ´ is said to be boundedregular (or RH-regular) if every bounded đ-convergent sequence is đ´-summable to the same limit and the đ´-means are also bounded. The following is a four-dimensional analogue of the wellknown Silverman-Toeplitz theorem [32]. Theorem 1 (Robison [33] and Hamilton [34]). The fourdimensional matrix đ´ is RH-regular if and only if
(RH2 ) đ-limđ,đ ââ,â đ,đ=0,0 |đđđđđ | = 1, (RH3 ) đ-limđ,đ ââ đ=0 |đđđđđ | = 0 for each đ, (RH4 ) đ-limđ,đ ââ đ=0 |đđđđđ | = 0 for each đ,
(10)
(11)
holds for all đ â N and đ˘ â R+ , whenever đšđ (đ˘) ⤠đ. A double sequence đĽ = (đĽđđ ) is said to be bounded if 2 âđĽâ(â,2) = supđ,đ |đĽđđ | < â. We denote by đâ the space of all bounded double sequences. By the convergence of double sequence đĽ = (đĽđđ ) we mean the convergence in the Pringsheim sense; that is, a double sequence đĽ = (đĽđđ ) is said to converge to the limit đż in Pringsheim sense (denoted by, đ-lim đĽ = đż) provided that given đ > 0 there exists đ â N such that |đĽđđ â đż| < đ whenever đ, đ > đ (see [31]). We will write more briefly as 2 đ-convergent. If, in addition, đĽ â đâ , then đĽ is said to be boundedly P-convergent to đż. We will denote the space of all bounded convergent double sequences (or boundedly đ2 . convergent) by đâ Let đ â N Ă N and let đ > 0 be given. By đđ(đĽ;đ) , we denote the characteristic function of the set đ(đĽ; đ) = {(đ, đ) â NĂN : |đĽđđ | ⼠đ}. Let đ´ = (đđđđđ ) be a four-dimensional infinite matrix of scalers. For all đ, đ â N0 , where N0 := N ⪠{0}, the sum
(RH1 ) đ-limđ,đ đđđđđ = 0 for each đ and đ,
or equipped with the Orlicz norm 1 âđĽâ0 = inf { (1 + đźF (đđĽ)) : đ > 0} . đ
A Musielak-Orlicz function F = (đšđ ) is said to satisfy Î 2 -đđđđđđĄđđđ if there exist constants đ, đž > 0 and a sequence 1 1 đ = (đđ )â đ=1 â đ+ (the positive cone of đ ) such that the inequality
(RH5 ) ââ,â đ,đ=0,0 |đđđđđ | < â for all đ, đ â N0 .
Abstract and Applied Analysis
3
2. The Double Difference Sequence Spaces In this section, we define some new paranormed double difference sequence spaces with the help of Musielak-Orlicz functions and four-dimensional bounded-regular matrices. Before proceeding further, first we recall the notion of paranormed space as follows. A linear topological space đ over the real field R (the set of real numbers) is said to be a paranormed space if there is a subadditive function đ : đ â R such that đ(đ) = 0, đ(đĽ) = đ(âđĽ), and scalar multiplication is continuous; that is, |đźđ â đź| â 0 and đ(đĽđ â đĽ) â 0 imply đ(đźđ đĽđ â đźđĽ| â 0 for all đźâs in R and all đĽâs in đ, where đ is the zero vector in the linear space đ. The linear spaces đâ (đ), đ(đ), and đ0 (đ) were defined by Maddox [35] (also, see Simons [36]). Let F = (đšđđ ) be a Musielak-Orlicz function; that is, F is a sequence of Orlicz functions and let đ´ = (đđđđđ ) be a nonnegative four-dimensional bounded-regular matrix. Then, we define the following:
đ02
Remark 2. If we take F(đĽ) = đĽ in đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ), then we have the following spaces: đ02 (đ´, đ˘, Îđđ , đ) { = {đĽ = (đĽđđ ) : { â,â } óľ¨ óľ¨ đđđ đ-lim â đđđđđ [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] = 0} , đ,đ đ,đ=0,0 }
đ2 (đ´, đ˘, Îđđ , đ) { = {đĽ = (đĽđđ ) : { â,â óľ¨ óľ¨ đđđ đ-lim â đđđđđ [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] đ,đ đ,đ=0,0
} = 0 for some đż â C} . }
(đ´, F, đ˘, Îđđ , đ)
(15) { = {đĽ = (đĽđđ ) : {
Remark 3. Let đ = (đđđ ) = 1 for all đ, đ. Then đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ) are reduced to đ02 (đ´, F, đ˘, Îđđ )
â,â
} óľ¨ óľ¨ đđđ đ-lim â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] = 0} , đ,đ đ,đ=0,0 } đ2 (đ´, F, đ˘, Îđđ , đ)
(14)
{ = {đĽ = (đĽđđ ) : { â,â
óľ¨ óľ¨ đđđ đ-lim â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] đ,đ đ,đ=0,0
} = 0 for some đż â C} , }
where đ = (đđđ ) is a double sequence of real numbers such that đđđ > 0 for đ, đ, supđ,đ đđđ = đť < â, and đ˘ = (đ˘đđ ) is a double sequence of strictly positive real numbers.
{ = {đĽ = (đĽđđ ) : { â,â } óľ¨óľ¨ đ óľ¨óľ¨ óľ¨óľ¨Î đ đĽđđ óľ¨óľ¨)] = 0} , đ-lim đ [đš (đ˘ â đđđđ đđ đđ óľ¨ óľ¨ đ,đ đ,đ=0,0 }
đ2 (đ´, F, đ˘, Îđđ ) { = {đĽ = (đĽđđ ) : { â,â óľ¨ óľ¨ đ-lim â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨)] đ,đ đ,đ=0,0
} = 0 for some đż â C} , } respectively.
(16)
4
Abstract and Applied Analysis
Remark 4. Let đ˘ = (đ˘đđ ) = 1 for all đ, đ. Then, the spaces đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ) are reduced to đ02 (đ´, F, Îđđ , đ)
Remark 6. If we take đ´ = (đś, 1, 1) and F(đĽ) = đĽ in đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ), then we have the following spaces: đ02 (đ˘, Îđđ , đ)
{ = {đĽ = (đĽđđ ) : {
{ = {đĽ = (đĽđđ ) : {
â,â } óľ¨ đđđ óľ¨ đ-lim â đđđđđ [đšđđ (óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] = 0} , đ,đ đ,đ=0,0 }
đâ1,đâ1 } óľ¨ óľ¨ đđđ đ-lim â [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] = 0} , đ,đ đ,đ=0,0 }
đ2 (đ˘, Îđđ , đ)
đ2 (đ´, F, Îđđ , đ)
{ = {đĽ = (đĽđđ ) : {
{ = {đĽ = (đĽđđ ) : {
đâ1,đâ1 óľ¨ óľ¨ đđđ đ-lim â [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] đ,đ
â,â
óľ¨ óľ¨ đđđ đ-lim â đđđđđ [đšđđ (óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] đ,đ
đ,đ=0,0
đ,đ=0,0
} = 0 for some đż â C} . }
} = 0 for some đż â C} , }
(19) (17)
respectively. Remark 5. If we take đ´ = (đś, 1, 1) in đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ), then we have the following spaces: đ02 (F, đ˘, Îđđ , đ)
} { óľ¨ óľ¨ đ02 (đ´, đš) = {đĽ = (đĽđđ ) : đ-lim âđđđđđ đš (óľ¨óľ¨óľ¨óľ¨đĽđđ óľ¨óľ¨óľ¨óľ¨) = 0} , đ,đ đ,đ } {
{ = {đĽ = (đĽđđ ) : {
{ óľ¨ óľ¨ đ2 (đ´, đš) = {đĽ = (đĽđđ ) : đ-lim âđđđđđ đš (óľ¨óľ¨óľ¨óľ¨đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) đ,đ đ,đ {
đâ1,đâ1 } óľ¨óľ¨ đ óľ¨óľ¨ đđđ óľ¨óľ¨Î đ đĽđđ óľ¨óľ¨) ] = 0} , đ-lim [đš (đ˘ â đđ đđ óľ¨ óľ¨ đ,đ đ,đ=0,0 }
đ2 (F, đ˘, Îđđ , đ) { = {đĽ = (đĽđđ ) : { đâ1,đâ1 óľ¨ óľ¨ đđđ đ-lim â [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] đ,đ đ,đ=0,0
} = 0 for some đż â C} . }
Remark 7. Let đđđ = đ˘đđ = 1 for all đ, đ. If, in addition, F(đĽ) = đš(đĽ) and đ = 0, then the spaces đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ) are reduced to đ02 (đ´, đš) and đ2 (đ´, đš) which were introduced and studied by Yurdakadim and Tas [37] as below:
(18)
} = 0 for some đż â C} . }
(20)
Throughout the paper, we will use the following inequality: let (đđđ ) and (đđđ ) be two double sequences. Then óľ¨óľ¨ óľ¨đ óľ¨ óľ¨đ óľ¨ óľ¨đ óľ¨óľ¨đđđ + đđđ óľ¨óľ¨óľ¨ đđ ⤠đž (óľ¨óľ¨óľ¨đđđ óľ¨óľ¨óľ¨ đđ + óľ¨óľ¨óľ¨đđđ óľ¨óľ¨óľ¨ đđ ) , óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨
(21)
where đž = max(1, 2đťâ1 ) and supđ,đ đđđ = đť (see [15]). We will also assume throughout this paper that the symbol F will denote the sublinear Musielak-Orlicz function.
Abstract and Applied Analysis
5
3. Main Results Theorem 8. Let F = (đšđđ ) be a sublinear Musielak-Orlicz function, đ´ = (đđđđđ ) a nonnegative four-dimensional đ
đťregular matrix, đ = (đđđ ) a bounded sequence of positive real numbers, and đ˘ = (đ˘đđ ) a sequence of strictly positive real numbers. Then đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ) are linear spaces over the complex field C. Proof. Let đĽ = (đĽđđ ), đŚ = (đŚđđ ) â đ02 (đ´, F, đ˘, Îđđ , đ) and đź, đ˝ â C. Then there exist integers đđź and đđ˝ such that |đź| ⤠đđź and |đ˝| ⤠đđ˝ . Since F = (đšđđ ) is a nondecreasing function, so by inequality (21), we have â,â
óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ (đźđĽđđ + đ˝đŚđđ )óľ¨óľ¨óľ¨óľ¨) ]
â,â óľ¨ óľ¨ đđđ đ (đđĽ) = sup â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] đđ
đ,đ=0,0
where [|đ|] denotes the integer part of |đ|. It is also clear that if đĽ â 0 and đ â 0 implies đ(đđĽ) â 0. For fixed đ, if đĽ â 0, then đ(đđĽ) â 0. We need to show that for fixed đĽ, đ â 0 implies đ(đđĽ) â 0. Let đĽ â đ2 (đ´, F, đ˘, Îđđ , đ). Thus
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ ⤠â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đźÎđđ đĽđđ + đ˝Îđđ đŚđđ óľ¨óľ¨óľ¨óľ¨) ]
(24)
⤠(1 + [|đ|]) đ (đĽ) ,
â,â óľ¨ óľ¨ đđđ đ-lim â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] = 0. đ,đ
đ,đ=0,0
(25)
Then, for đ > 0 there exists đ â N such that
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ ⤠đž â đđđđđ [đšđđ đđź (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ]
â,â
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ + đž â đđđđđ [đšđđ đđ˝ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đŚđđ óľ¨óľ¨óľ¨óľ¨) ]
We now show that the scalar multiplication is continuous. First observe the following:
(22)
đ óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] < 4 đ,đ=0,0
(26)
for đ, đ > đ. Also, for each đ, đ with 1 ⤠đ, đ ⤠đ, since
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ ⤠đžđđźđť â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ]
â,â
óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] < â,
đ,đ=0,0
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ + đžđđ˝đť â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đŚđđ óľ¨óľ¨óľ¨óľ¨) ] ół¨â 0.
(27)
there exists an integer đđ,đ such that
đ,đ=0,0
Thus đźđĽ + đ˝đŚ â đ02 (đ´, F, đ˘, Îđđ , đ). This proves that đ02 (đ´, F, đ˘, Îđđ , đ) is a linear space. Similarly we can prove that đ2 (đ´, F, đ˘, Îđđ , đ) is also a linear space.
đ óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] < . 4 đ,đ>đ
Theorem 9. Let F = (đšđđ ) be a sublinear Musielak-Orlicz function, đ´ = (đđđđđ ) a nonnegative four-dimensional đ
đťregular matrix, đ = (đđđ ) a bounded sequence of positive real numbers, and đ˘ = (đ˘đđ ) a sequence of strictly positive real numbers. Then đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ) are paranormed spaces with the paranorm
Let đ = max1â¤(đ,đ)â¤đ{đđ,đ }. We have for each đ, đ with 1 ⤠đ, đ ⤠đ
â,â óľ¨ óľ¨ đđđ 1/đ đ (đĽ) = sup â {đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ]} , đ,đ
đ,đ=0,0
(28)
đ,đ
đ óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] < . 4 đ,đ>đ
(29)
Also from (26), for đ, đ > đ, we have (23)
where 0 < đđđ ⤠sup đđđ = đť < â and đ = max(1, đť). Proof. We will prove the result for đ02 (đ´, F, đ˘, Îđđ , đ). Let đĽ = (đĽđđ ) â đ02 (đ´, F, đ˘, Îđđ , đ). Then for each đĽ = (đĽđđ ) â đ02 (đ´, F, đ˘, Îđđ , đ), đ(đĽ) exists. Also it is clear that đ(0) = 0, đ(âđĽ) = đ(đĽ), and đ(đĽ + đŚ) ⤠đ(đĽ) + đ(đŚ).
đ óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] < . 4 đ,đ>đ
(30)
Thus đ is an integer independent of đ, đ such that đ óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] < . 4 đ,đ>đ
(31)
6
Abstract and Applied Analysis
Since |đ|đđđ ⤠max(1, |đ|đť), therefore
Thus đ(đđĽ) â 0 as đ â 0. Therefore đ02 (đ´, F, đ˘, Îđđ , đ) is a paranormed space. Similarly, we can prove that đ2 (đ´, F, đ˘, Îđđ , đ) is a paranormed space. This completes the proof.
â,â
óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ]
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ = â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđż + đđżóľ¨óľ¨óľ¨óľ¨) ]
Theorem 10. Let F = (đšđđ ) be a sublinear Musielak-Orlicz function, đ´ = (đđđđđ ) a nonnegative four-dimensional đ
đťregular matrix, đ = (đđđ ) a bounded sequence of positive real numbers, and đ˘ = (đ˘đđ ) a sequence of strictly positive real numbers. Then đ02 (đ´, F, đ˘, Îđđ , đ) and đ2 (đ´, F, đ˘, Îđđ , đ) are complete topological linear spaces.
đ,đ=0,0
â,â óľ¨ óľ¨ đđđ ⤠â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ] đ,đ=0,0
â,â
đđđ
đ
Proof. Let (đĽđđ ) be a Cauchy sequence in đ02 (đ´, F, đ˘, Îđđ , đ); that is, đ(đĽđ â đĽđĄ ) â 0 as đ, đĄ â â. Then, we have
+ â đđđđđ [đšđđ (đ˘đđ |đđż|) ] đ,đ=0,0
óľ¨ óľ¨ đđđ ⤠â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ]
(32)
đ,đ>đ
óľ¨ óľ¨ đđđ + â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ] đ,đâ¤đ
+
â
â,â
đ óľ¨óľ¨ đ đĄ óľ¨óľ¨óľ¨ đđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨Îđđ đĽđđ â Îđđ đĽđđ óľ¨óľ¨) ] ół¨â 0. óľ¨ óľ¨ đ,đ=0,0
Thus for each fixed đ and đ as đ, đĄ â â, since đ´ = (đđđđđ ) is nonnegative, we are granted that
óľ¨ óľ¨ đđđ đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ]
đâĽđ,đđ
óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ]
â
đ,đâ¤đ
đđđ
Since for any fixed natural number đ, from (38) we have
đ,đ=0,0
in Pringsheimâs sense. Now choose đż < 1 such that |đ| < đż implies óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ]
â,â
đ óľ¨óľ¨ đ đĄ óľ¨óľ¨óľ¨ đđ đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨Îđđ đĽđđ â Îđđ đĽđđ óľ¨óľ¨) ] < đ âđ, đ. óľ¨ óľ¨ đ,đâ¤đ đ,đĄ>đ
â
(41)
đ,đâ¤đ
đ + â đđđđđ [đšđđ (đ˘đđ |đđż|) ] < . 4 đ,đ=0,0 đđđ
In the same manner, we have đ óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨đÎđđ đĽđđ â đđżóľ¨óľ¨óľ¨óľ¨) ] < , 4 đâĽđ,đđż đšđđ
óľ¨ óľ¨ đđđ â¤đž (2) âđđđđđ [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] . đż đ,đ
â,â
óľ¨óľ¨ óľ¨óľ¨ đđđ đ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨Îđđ đĽđđ â Îđđ đżđ óľ¨óľ¨óľ¨) ] ół¨â 0 óľ¨ óľ¨ đ,đ=0,0
(44)
as đ, đ ół¨â â; whence from the fact that supđđ ââ,â đ,đ=0,0 đđđđđ < â and from the definition of Musielak-Orlicz function, we have đšđđ |Îđđ đżđ â Îđđ đż| â 0 as đ â â and so đżđ converges to đż. Thus â,â
óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] ół¨â 0
đ,đ=0,0
(45)
as đ, đ ół¨â â. Hence đĽ â đ2 (đ´, F, đ˘, Îđđ , đ) and this completes the proof. Theorem 11. Let F = (đšđđ ) be a sublinear MusielakOrlicz function which satisfies the Î 2 -condition. Then đ2 (đ´, đ˘, Îđđ , đ) â đ2 (đ´, F, đ˘, Îđđ , đ).
Since đ´ is đ
đť-regular and đĽ â đ2 (đ´, đ˘, Îđđ , đ), we get đĽ â đ2 (đ´, F, đ˘, Îđđ , đ). Theorem 12. Let F = (đšđđ ) be a sublinear MusielakOrlicz function and let đ´ = (đđđđđ ) be a nonnegative four-dimensional RH-regular matrix. Suppose that đ˝ = limđĄ â â (đšđđ (đĄ)/đĄ) < â. Then đ2 (đ´, đ˘, Îđđ , đ) = đ2 (đ´, F, đ˘, Îđđ , đ) .
â,â
óľ¨ óľ¨ đđđ â đđđđđ [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ]
đ,đ=0,0
Let đ > 0 and choose đż with 0 < đż < 1 such that đšđđ (đĄ) < đ for 0 ⤠đĄ ⤠đż. Write đŚđđ = (đ˘đđ |Îđđ đĽđđ â đż|) and consider đđđ
âđđđđđ [đšđđ (đŚđđ ) ] = đ,đ
đ,đ:|đŚđđ |â¤đż
đ2 (đ´, F, đ˘, Îđđ , đ) â đ2 (đ´, F, đ˘, Îđđ ) .
â
đđđđđ [đšđđ (đŚđđ ) ]
đ2 (đ´, F, đ˘, Îđđ ) â đ2 (đ´, F, đ˘, Îđđ , đ) .
â,â
đż
â đđđđđ [đšđđ (đŚđđ ) ] . đ,đ:|đŚđđ |>đż (47)
)
đż, we use the fact that đŚđđ < đŚđđ /đż < 1 + đŚđđ /đż. Hence đŚđđ
đšđđ (2) + đž
đŚđđ 2đż
đšđđ (2) = đž
(54)
Proof. (i) Let đĽ = (đĽđđ ) â đ2 (đ´, F, đ˘, Îđđ , đ). Then since 0 < inf đđđ < đđđ ⤠1, we obtain the following:
â đđđđđ đ,đ:|đŚđđ |â¤đż
đšđđ (đŚđđ ) < đšđđ (1 +
(53)
(ii) Let 1 ⤠đđđ ⤠sup đđđ < â. Then
đđđ
=đ
+
Theorem 13. (i) Let 0 < inf đđđ < đđđ ⤠1. Then
đđđđđ [đšđđ (đŚđđ ) ]
đ,đ:|đŚđđ |>đż
(52)
which implies that đĽ = (đĽđđ ) â đ2 (đ´, đ˘, Îđđ , đ). This completes the proof.
đđđ
â +
1 â,â óľ¨ óľ¨ đđđ ⤠[đš (đ˘ óľ¨óľ¨óľ¨Îđ đĽ â đżóľ¨óľ¨óľ¨óľ¨) ] , â đ đ˝ đ,đ=0,0 đđđđ đđ đđ óľ¨ đ đđ
(46)
đ,đ
(51)
Proof. In order to prove that đ2 (đ´, đ˘, Îđđ , đ) = đ2 (đ´, F, đ˘, Îđđ , đ), it is sufficient to show that đ2 (đ´, F, đ˘, Îđđ , đ) â đ2 (đ´, đ˘, Îđđ , đ). Now, let đ˝ > 0. By definition of đ˝, we have đšđđ (đĄ) ⼠đ˝đĄ for all đĄ ⼠0. Since đ˝ > 0, we have đĄ ⤠(1/đ˝)đšđđ (đĄ) for all đĄ ⼠0. Let đĽ = (đĽđđ ) â đ2 (đ´, F, đ˘, Îđđ , đ). Thus, we have
Proof. Let đĽ = (đĽđ ) â đ2 (đ´, đ˘, Îđđ , đ); that is, óľ¨ óľ¨ đđđ lim âđđđđđ [(đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] = 0. đ,đ
(50)
đŚđđ đż
đ,đ=0,0
â,â
óľ¨ óľ¨ đđđ ⤠â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ] .
(55)
đ,đ=0,0
Thus đĽ = (đĽđđ ) â đ2 (đ´, F, đ˘, Îđđ ). (ii) Let đđđ ⼠1 for each đ and đ and sup đđđ < â. Let đĽ = (đĽđđ ) â đ2 (đ´, F, đ˘, Îđđ ). Then for each 0 < đ < 1 there exists a positive integer đ such that â,â
đšđđ (2) , (49)
óľ¨ óľ¨ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨)] ⤠đ < 1 âđ, đ ⼠đ.
đ,đ=0,0
(56)
8
Abstract and Applied Analysis 2 2 â đâ and it is Proof. We have đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ 2 đ 2 clear that đ0 (đ´, F, đ˘, Î đ , đ) ⊠đâ ≠ 0. For đĽ, đŚ â đ02 (đ´, F, đ˘, 2 , we get |đĽđđ + đŚđđ | < |đĽđđ | + |đŚđđ |. Now, we have Îđđ , đ) ⊠đâ
This implies that â,â
óľ¨ óľ¨ đđđ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨) ]
đ,đ=0,0
â,â
óľ¨ óľ¨ â¤ â đđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â đżóľ¨óľ¨óľ¨óľ¨)] .
(57)
óľ¨ óľ¨ đđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ (đĽđđ + đŚđđ )óľ¨óľ¨óľ¨óľ¨) ] óľ¨ óľ¨ óľ¨ óľ¨ đđđ ⤠[đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨Îđđ đŚđđ óľ¨óľ¨óľ¨óľ¨) ]
đ,đ=0,0
Therefore đĽ = (đĽđđ ) â đ2 (đ´, F, đ˘, Îđđ , đ). This completes the proof. Lemma 14. Let F = (đšđđ ) be a sublinear Musielak-Orlicz function which satisfies the Î 2 -condition and let đ´ = (đđđđđ ) be a nonnegative four-dimensional đ
đť-regular matrix. Then 2 2 đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ is an ideal in đâ . 2 2 Proof. Let đĽ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ and đŚ â đâ . We need 2 đ 2 2 , to show that đĽđŚ â đ0 (đ´, F, đ˘, Î đ , đ) ⊠đâ . Since đŚ â đâ there exists đ1 > 1 such that âđŚâ < đ1 . In this case |đĽđđ đŚđđ | < đ1 |đĽđđ | for all đ, đ. Since F is nondecreasing and satisfies Î 2 condition, we have
0. Therefore limđ,đ âđ,đ đđđđđ [đšđđ 2 (đ˘đđ |Îđđ (đĽđđ đŚđđ )|)đđđ ] = 0. Thus đĽđŚ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ . This completes the proof. 2 2 Lemma 15. Let đş be an ideal in đâ and let đĽ = (đĽđđ ) â đâ . 2 Then đĽ is in the closure of đş in đâ if and only if đđ(đĽ;đ) â đş for all đ > 0.
Proof. Let đĽ be in the closure of đş and let đ > 0 be given. Suppose that đ§ = (đ§đđ ) â đş such that âđĽ â đ§â < đ/2 and observe that đ(đĽ; đ) â đ(đ§; đ/2). Define a double sequence đŚ = 2 (đŚđđ ) â đâ by 1 óľ¨ óľ¨ đ { , if óľ¨óľ¨óľ¨óľ¨đ§đđ óľ¨óľ¨óľ¨óľ¨ ⧠, { { đ§đđ 2 đŚđđ = { { { otherwise. {0,
(59)
(61)
1 óľ¨ óľ¨ đđđ + đžâđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đŚđđ óľ¨óľ¨óľ¨óľ¨) ] , 2 đ,đ where đž = max{đž1 , đž2 }, so đĽ+đŚ, đĽâđŚ â đ02 (đ´, F, đ˘, Îđđ , đ)⊠2 . đâ 2 2 and đŚ â đâ . Thus, there Let đĽ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ exists a positive integer đž, so that, for every đ, đ, we have |đĽđđ đŚđđ | ⤠đž|đĽđđ |. Therefore óľ¨ óľ¨ đđđ óľ¨ đđđ óľ¨ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ (đĽđđ đŚđđ )óľ¨óľ¨óľ¨óľ¨) ] ⤠[đšđđ (đ˘đđ đž óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] óľ¨ óľ¨ đđđ ⤠đ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] ,
(62)
and so óľ¨ óľ¨ đđđ âđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ (đĽđđ đŚđđ )óľ¨óľ¨óľ¨óľ¨) ] đ,đ
óľ¨ óľ¨ đđđ ⤠đâđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] .
(63)
đ,đ
Clearly đŚđ§ = đđ(đ§;đ/2) â đş. Since đ(đĽ; đ) â đ(đ§; đ/2) and 2 đđ(đĽ;đ) â đâ , hence đđ(đĽ;đ) đđ(đ§;đ/2) = đđ(đĽ;đ) â đş. 2 Conversely, if đĽ â đâ then âđĽ â đĽđđ(đĽ;đ) â < đ. It follows that đđ(đĽ;đ) â đş for all đ > 0; then đĽ is in the closure of đş. Lemma 16. If đ´ is a nonnegative four-dimensional đ
đť2 regular matrix, then đ02 (đ´, đ˘, Îđđ , đ) ⊠đâ is a closed ideal in 2 đâ .
2 Hence đĽđŚ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ . So đ02 (đ´, F, đ˘, Îđđ , đ) ⊠2 2 đâ is an ideal in đâ for a Musielak-Orlicz function which satisfies the Î 2 -condition. 2 is Now, we have to show that đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ 2 ; there exists đĽđđ = closed. Let đĽ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ đđ 2 2 đĽđđ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ such that đĽđđ â đĽ â đâ .
Abstract and Applied Analysis
9
For every đ > 0 there exists đ1 (đ) â N such that, for all đ, đ > đ1 (đ), |Îđđ đĽđđ â Îđđ đĽ| < đ. Now, for đ > 0, we have óľ¨ óľ¨ đđđ âđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] đ,đ
The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.
đ,đ
óľ¨ đđ óľ¨óľ¨ óľ¨óľ¨ đ đđ óľ¨óľ¨ đđđ óľ¨óľ¨ + óľ¨óľ¨Î đ đĽđđ óľ¨óľ¨) ] ⤠âđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â Îđđ đĽđđ óľ¨ óľ¨ óľ¨
References
đ,đ
1 óľ¨ đđ óľ¨óľ¨ đđđ óľ¨óľ¨) ] ⤠âđđđđđ [đšđđ (đ˘đđ 2 óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â Îđđ đĽđđ óľ¨ 2 đ,đ 1 óľ¨ đđ óľ¨óľ¨ đđđ óľ¨óľ¨) ] + âđđđđđ [đšđđ (đ˘đđ 2 óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨ 2 đ,đ 1 1 óľ¨ đđ óľ¨óľ¨ đđđ óľ¨óľ¨) ] . ⤠đžđšđđ (đ) âđđđđđ + đžâđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨ 2 2 đ,đ đ,đ (64) 2 Since đĽđđ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ and đ´ is RH-regular, we get
óľ¨ óľ¨ đđđ lim âđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ óľ¨óľ¨óľ¨óľ¨) ] = 0; đ,đ
(65)
đ,đ
2 . This completes the proof. so đĽ â đ02 (đ´, F, đ˘, Îđđ , đ)âŠđâ
Theorem 17. Let đĽ = (đĽđđ ) be a bounded sequence, F = (đšđđ ) a sublinear Musielak-Orlicz function which satisfies the Î 2 condition, and đ´ a nonnegative four-dimensional đ
đť-regular 2 2 matrix. Then đ2 (đ´, F, đ˘, Îđđ , đ) ⊠đâ = đ2 (đ´, đ˘, Îđđ , đ) ⊠đâ . Proof. Without loss of generality we may take đż = 0 and establish (66)
Since đ02 (đ´, đ˘, Îđđ , đ) â đ02 (đ´, F, đ˘, Îđđ , đ), therefore đ02 (đ´, 2 2 â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ . We need to show đ˘, Îđđ , đ) ⊠đâ 2 đ 2 2 2 . Notice that đ0 (đ´, F, đ˘, Î đ , đ) ⊠đâ â đ0 (đ´, đ˘, Îđđ , đ) ⊠đâ that if đ â N Ă N, then đ
đ
âđđđđđ [đšđđ (đđ (đ, đ)) đđ ] = đšđđ (1) âđđđđđ (đđ (đ, đ)) đđ , đ,đ
đ,đ
(67) 2 for all đ, đ. Observe that đđ (đ, đ) â đ02 (đ´, đ˘, Îđđ , đ) ⊠đâ 2 whenever đĽ â đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ by Lemmas 14 and 15, so 2 2 â đ02 (đ´, đ˘, Îđđ , đ) ⊠đâ . đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ
The proof is complete.
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
óľ¨ đđ đđ óľ¨óľ¨ đđđ óľ¨óľ¨) ] = âđđđđđ [đšđđ (đ˘đđ óľ¨óľ¨óľ¨óľ¨Îđđ đĽđđ â Îđđ đĽđđ + Îđđ đĽđđ óľ¨
2 2 = đ02 (đ´, đ˘, Îđđ , đ) ⊠đâ . đ02 (đ´, F, đ˘, Îđđ , đ) ⊠đâ
Conflict of Interests
(68)
[1] G. H. Hardy, âOn the convergence of certain multiple series,â Proceedings of the Cambridge Philosophical Society, vol. 19, pp. 86â95, 1917. [2] T. J. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan and co. Ltd, New York, NY, USA, 1965. [3] F. M´oricz, âExtensions of the spaces đ and đ0 from single to double sequences,â Acta Mathematica Hungarica, vol. 57, no. 1-2, pp. 129â136, 1991. [4] F. M´oricz and B. E. Rhoades, âAlmost convergence of double sequences and strong regularity of summability matrices,â Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, no. 2, pp. 283â294, 1988. [5] M. Bas¸arÄąr and O. Sonalcan, âOn some double sequence spaces,â Indian Academy of Mathematics, vol. 21, no. 2, pp. 193â200, 1999. [6] M. Mursaleen and S. A. Mohiuddine, âRegularly đ-conservative and đ-coercive four dimensional matrices,â Computers & Mathematics with Applications, vol. 56, no. 6, pp. 1580â1586, 2008. [7] M. Mursaleen and S. A. Mohiuddine, âOn đ-conservative and boundedly đ-conservative four-dimensional matrices,â Computers & Mathematics with Applications, vol. 59, no. 2, pp. 880â 885, 2010. [8] Mursaleen and S. A. Mohiuddine, âDouble đ-multiplicative matrices,â Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 991â996, 2007. [9] M. Mursaleen, âAlmost strongly regular matrices and a core theorem for double sequences,â Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 523â531, 2004. [10] M. Mursaleen and O. H. H. Edely, âAlmost convergence and a core theorem for double sequences,â Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 532â540, 2004. [11] S. A. Mohiuddine and A. Alotaibi, âAlmost conservative fourdimensional matrices through de la Vall´ee-Poussin mean,â Abstract and Applied Analysis, vol. 2014, Article ID 412974, 6 pages, 2014. [12] B. Altay and F. Bas¸ar, âSome new spaces of double sequences,â Journal of Mathematical Analysis and Applications, vol. 309, no. 1, pp. 70â90, 2005. [13] F. Bas¸ar and Y. Sever, âThe space đż đ of double sequences,â Mathematical Journal of Okayama University, vol. 51, pp. 149â 157, 2009. [14] M. Mursaleen and S. A. Mohiuddine, âSome matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means,â Journal of Function Spaces and Applications, vol. 2012, Article ID 612671, 10 pages, 2012. [15] S. A. Mohiuddine and A. Alotaibi, âSome spaces of double sequences obtained through invariant mean and related concepts,â Abstract and Applied Analysis, vol. 2013, Article ID 507950, 11 pages, 2013.
10 [16] K. Demirci, âStrong đ´-summability and đ´-statistical convergence,â Indian Journal of Pure and Applied Mathematics, vol. 27, no. 6, pp. 589â593, 1996. [17] M. Mursaleen and S. A. Mohiuddine, âSome new double sequence spaces of invariant means,â Glasnik MatematiËcki, vol. 45, no. 1, pp. 139â153, 2010. [18] S. D. Parashar and B. Choudhary, âSequence spaces defined by Orlicz functions,â Indian Journal of Pure and Applied Mathematics, vol. 25, no. 4, pp. 419â428, 1994. [19] H. KÄązmaz, âOn certain sequence spaces,â Canadian Mathematical Bulletin, vol. 24, no. 2, pp. 169â176, 1981. [20] M. Et and R. C ¸ olak, âOn some generalized difference sequence spaces,â Soochow Journal of Mathematics, vol. 21, no. 4, pp. 377â 386, 1995. [21] M. Et, âSpaces of Ces`aro difference sequences of order đ defined by a modulus function in a locally convex space,â Taiwanese Journal of Mathematics, vol. 10, no. 4, pp. 865â879, 2006. [22] M. Et, âGeneralized Ces`aro difference sequence spaces of nonabsolute type involving lacunary sequences,â Applied Mathematics and Computation, vol. 219, no. 17, pp. 9372â9376, 2013. [23] K. Raj, A. K. Sharma, and S. K. Sharma, âA sequence space defined by Musielak-Orlicz function,â International Journal of Pure and Applied Mathematics, vol. 67, no. 4, pp. 475â484, 2011. [24] K. Raj, S. Jamwal, and S. K. Sharma, âNew classes of generalized sequence spaces defined by an Orlicz function,â Journal of Computational Analysis and Applications, vol. 15, no. 4, pp. 730â 737, 2013. [25] K. Raj and S. K. Sharma, âSome generalized difference double sequence spaces defined by a sequence of Orlicz-functions,â Cubo, vol. 14, no. 3, pp. 167â190, 2012. [26] B. C. Tripathy, âGeneralized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex space,â Soochow Journal of Mathematics, vol. 30, no. 4, pp. 431â446, 2004. [27] M. Et, Y. Altin, B. Choudhary, and B. C. Tripathy, âOn some classes of sequences defined by sequences of Orlicz functions,â Mathematical Inequalities & Applications, vol. 9, no. 2, pp. 335â 342, 2006. [28] J. Lindenstrauss and L. Tzafriri, âOn Orlicz sequence spaces,â Israel Journal of Mathematics, vol. 10, pp. 379â390, 1971. [29] L. Maligranda, Orlicz Spaces and Interpolation, vol. 5 of Seminars in Mathematics, Polish Academy of Science, 1989. [30] J. Musielak, Orlicz Spaces and Modular Spaces, vol. 1034 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1983. [31] A. Pringsheim, âZur Theorie der zweifach unendlichen Zahlenfolgen,â Mathematische Annalen, vol. 53, no. 3, pp. 289â321, 1900. [32] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan & Co., London, UK, 1950. [33] G. M. Robison, âDivergent double sequences and series,â Transactions of the American Mathematical Society, vol. 28, no. 1, pp. 50â73, 1926. [34] H. J. Hamilton, âTransformations of multiple sequences,â Duke Mathematical Journal, vol. 2, no. 1, pp. 29â60, 1936. [35] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, UK, 2nd edition, 1988. [36] S. Simons, âThe sequence spaces đ(đ] ) and đ(đ] ),â Proceedings of the London Mathematical Society, vol. 15, pp. 422â436, 1965. [37] T. Yurdakadim and E. Tas, âDouble sequences and Orlicz functions,â Periodica Mathematica Hungarica, vol. 67, no. 1, pp. 47â54, 2013.
Abstract and Applied Analysis
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014