Spanning 3-Ended Trees in Almost Claw-Free Graphs

3 downloads 0 Views 2MB Size Report
Dec 3, 2015 - sufficient conditions for claw-free graphs to contain spanning. -ended trees. Theorem 3 (see [16]). If is a connected claw-free graph of.
Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2015, Article ID 476182, 5 pages http://dx.doi.org/10.1155/2015/476182

Research Article Spanning 3-Ended Trees in Almost Claw-Free Graphs Xiaodong Chen, Meijin Xu, and Yanjun Liu College of Science, Liaoning University of Technology, Jinzhou 121001, China Correspondence should be addressed to Xiaodong Chen; [email protected] Received 10 November 2015; Accepted 3 December 2015 Academic Editor: Chenguang Yang Copyright Β© 2015 Xiaodong Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We prove that if 𝐺 is a π‘˜-connected (π‘˜ β‰₯ 2) almost claw-free graph of order 𝑛 and πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2, then 𝐺 contains a spanning 3-ended tree, where πœŽπ‘˜ (𝐺) = min{βˆ‘Vβˆˆπ‘† deg(V) : 𝑆 is an independent set of 𝐺 with |𝑆| = π‘˜}.

1. Introduction In this paper, only finite and simple graphs are considered. We refer to [1] for notation and terminology not defined here. If 𝐡 βŠ† 𝑉(𝐺), as well as every edge of 𝐺 incident with the vertices in 𝐡, then 𝐡 is a dominating set. We use 𝛾(𝐺) to denote the domination number of a graph 𝐺, where 𝛾(𝐺) = min{|𝑆| : 𝑆 is a dominating set of 𝐺}. If a graph 𝐺 has no 𝐾1,3 subgraph, then 𝐺 is claw-free. The vertex of degree 3 in 𝐾1,3 is called claw center of a claw. Let 𝑁(V) = {𝑒 : 𝑒V ∈ 𝐸(𝐺)} and 𝑁[V] = 𝑁(V)βˆͺ{V}. If, for any vertex V ∈ 𝑉(𝐺), 𝛾(𝑁(V)) ≀ 2 and the set of all claw centers in 𝐾1,3 subgraphs of 𝐺 is an independent set, then 𝐺 is almost claw-free. A claw-free graph is almost claw-free. 𝑁𝐻(𝑆) = {V : V ∈ 𝑉(𝐻) and 𝑒V ∈ 𝐸(𝐺) for some vertex 𝑒 ∈ 𝑉(𝑆)}, and 𝑑𝐻(𝑆) = |𝑁𝐻(𝑆)|. We use πœŽπ‘˜ (𝐺) to denote the minimum degree sum of all the independent sets with order π‘˜ in 𝐺. π‘Žπ‘ƒπ‘ or 𝑃[π‘Ž, 𝑏] denotes a path with a positive orientation from π‘₯ to 𝑦 with end vertices π‘Ž, 𝑏. For a path 𝑃[π‘Ž, 𝑏], π‘₯, 𝑦 ∈ 𝑉(𝑃), let π‘₯𝑃𝑦 denote the subpath with end vertices π‘₯, 𝑦 with positive orientation and π‘¦π‘ƒβˆ’ π‘₯ denote the subpath with end vertices 𝑦, π‘₯ with negative orientation. Let 𝑀(𝐺) denote the number of components of a graph 𝐺. As we know, graph theory focuses on graphs composed by vertices and edges. The vertices in a graph are considered as discrete points which is usually discussed in control problems. Then there are a lot of results using graph theory to solve control problems [2–8]. A spanning tree in a graph 𝐺 with no more than π‘˜ leaves is called a spanning π‘˜-ended tree of 𝐺. There are many results about the properties of spanning trees [9–13]. Kyaw [14, 15]

gave some degree sum conditions for 𝐾1,4 -free graphs to contain spanning π‘˜-ended trees. Theorem 1 (see [14]). If 𝐺 is a connected 𝐾1,4 -free graph and 𝜎4 (𝐺) β‰₯ |𝐺| βˆ’ 1, then 𝐺 contains spanning 3-ended trees. Theorem 2 (see [15]). If 𝐺 is a connected 𝐾1,4 -free graph, then the following properties hold: (i) 𝐺 contains a hamiltonian path if 𝜎3 (𝐺) β‰₯ |𝐺|. (ii) 𝐺 contains spanning π‘˜-ended trees if πœŽπ‘˜+1 (𝐺) β‰₯ |𝐺| βˆ’ π‘˜/2 for an integer π‘˜ β‰₯ 3. On the other hand, Kano et al. [16] obtained sharp sufficient conditions for claw-free graphs to contain spanning π‘˜-ended trees. Theorem 3 (see [16]). If 𝐺 is a connected claw-free graph of order 𝑛 and πœŽπ‘˜+1 (𝐺) β‰₯ 𝑛 βˆ’ π‘˜ (π‘˜ β‰₯ 2), then 𝐺 contains spanning π‘˜-ended trees with the maximum degree at most 3. Recently, Chen et al. [17] gave some degree sum conditions for π‘˜-connected 𝐾1,4 -free graphs to contain spanning 3-ended trees. Theorem 4 (see [17]). If 𝐺 is a π‘˜-connected 𝐾1,4 -free graph of order 𝑛 and πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2 (π‘˜ β‰₯ 2), then 𝐺 contains spanning 3-ended trees. Inspired by Theorems 4 and 5, in this paper, we further explore sufficient conditions for π‘˜-connected almost clawfree graphs to contain spanning 3-ended trees which holds for claw-free graphs.

2

Discrete Dynamics in Nature and Society

Theorem 5. If 𝐺 is a π‘˜-connected almost claw-free graph of order 𝑛 and πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2 (π‘˜ β‰₯ 2), then 𝐺 contains spanning 3-ended trees. Obviously, there are a lot of almost claw-free graphs containing 𝐾1,4 subgraphs, so to some extent Theorem 5 is a generalization of Theorem 4.

2. Preliminaries We need the following result given by RyjΒ΄acΛ‡ek [18] to prove Theorem 5. Lemma 6 (see [18]). 𝛾(𝑁(V)) = 2 for any claw center V in an almost claw-free graph. We mainly use the definition and properties of insertible vertex defined in [16] to prove Theorem 5. Suppose that 𝐺 is a connected nonhamiltonian graph and 𝐢 is longest cycle in 𝐺 with counterclockwise direction as positive orientation. Assume that 𝑅 is a component of 𝐺 βˆ’ 𝐢 and 𝑁𝐢(𝑅) = {𝑒1 , 𝑒2 , . . . , π‘’π‘š } such that 𝑒1 , 𝑒2 , . . . , π‘’π‘š are labeled in order along the positive direction of 𝐢. Let 𝑆𝑗 = 𝐢(𝑒𝑗 , 𝑒𝑗+1 ], 1 ≀ 𝑗 ≀ π‘š βˆ’ 1, and π‘†π‘š = 𝐢(π‘’π‘š , 𝑒1 ]. A vertex 𝑒 in 𝑆𝑗 is an insertible vertex if 𝑒 has two consecutive neighbors V and V+ in 𝐢 βˆ’ 𝑆𝑗 . Chen and Schelp [19] proposed the following two results. Lemma 7 (see [19]). For each 𝑆𝑗 , 𝑆𝑗 βˆ’ {V𝑗+1 } contains a noninsertible vertex. Assume that V𝑗 is the first noninsertible vertex in 𝑆𝑗 βˆ’ {𝑒𝑗+1 } for each 𝑗 ∈ [1, π‘š]. Lemma 8 (see [19]). Let π‘₯𝑖 ∈ 𝐢[𝑒𝑖+ , V𝑖 ], π‘₯𝑗 ∈ 𝐢[𝑒𝑗+ , V𝑗 ] with 1 ≀ 𝑖 < 𝑗 ≀ π‘š. Then (a) there is no path 𝑃[π‘₯𝑖 , π‘₯𝑗 ] in 𝐺 such that 𝑃[π‘₯𝑖 , π‘₯𝑗 ] ∩ 𝑉(𝐢) = {π‘₯𝑖 , π‘₯𝑗 }, (b) for any vertex 𝑒 in 𝐢[π‘₯𝑖+ , π‘₯π‘—βˆ’ ], if 𝑒π‘₯𝑖 ∈ 𝐸(𝐺), then π‘’βˆ’ π‘₯𝑗 βˆ‰ 𝐸(𝐺). By symmetry, for any vertex 𝑒 in 𝐢[π‘₯𝑗+ , π‘₯π‘–βˆ’ ], if 𝑒π‘₯𝑗 ∈ 𝐸(𝐺), then π‘’βˆ’ π‘₯𝑖 βˆ‰ 𝐸(𝐺), (c) for any vertex 𝑒 in 𝐢[π‘₯𝑖 , π‘₯𝑗 ], if 𝑒π‘₯𝑖 , 𝑒π‘₯𝑗 ∈ 𝐸(𝐺), then π‘’βˆ’ 𝑒+ βˆ‰ 𝐸(𝐺). By symmetry, for any vertex 𝑒 in 𝐢[π‘₯𝑗 , π‘₯𝑖 ], if 𝑒π‘₯𝑖 , 𝑒π‘₯𝑗 ∈ 𝐸(𝐺), then π‘’βˆ’ 𝑒+ βˆ‰ 𝐸(𝐺). Suppose, for some 𝑖 ∈ [1, π‘š], 𝑁(V𝑖 ) ∩ 𝑉(𝐺 βˆ’ 𝐢 βˆ’ 𝑅) =ΜΈ 0 and V𝑖󸀠 is the second noninsertible vertex in 𝑆𝑖 βˆ’ {𝑒𝑖+1 }. Then Chen et al. [17] gave the following result. Lemma 9 (see [17]). Let 1 ≀ 𝑖 < 𝑗 ≀ π‘š, π‘₯𝑖 ∈ 𝐢[V𝑖+ , V𝑖󸀠 ] and π‘₯𝑗 ∈ 𝐢[𝑒𝑗+ , V𝑗 ]. Then the following properties hold: (a) There does not exist a path 𝑃[π‘₯𝑖 , π‘₯𝑗 ] in 𝐺 such that 𝑃[π‘₯𝑖 , π‘₯𝑗 ] ∩ 𝑉(𝐢) = {π‘₯𝑖 , π‘₯𝑗 }. 𝐢[π‘₯𝑖+ , π‘₯π‘—βˆ’ ],

if 𝑒π‘₯𝑖 ∈ 𝐸(𝐺), then (b) For every vertex 𝑒 ∈ π‘’βˆ’ π‘₯𝑗 βˆ‰ 𝐸(𝐺); similarly, for every 𝑒 ∈ 𝐢[π‘₯𝑗+ , π‘₯π‘–βˆ’ ], if 𝑒π‘₯𝑗 ∈ 𝐸(𝐺), then π‘’βˆ’ π‘₯𝑖 βˆ‰ 𝐸(𝐺).

(c) For every vertex 𝑒 ∈ 𝐢[π‘₯𝑖 , π‘₯𝑗 ], if 𝑒π‘₯𝑖 , 𝑒π‘₯𝑗 ∈ 𝐸(𝐺), then π‘’βˆ’ 𝑒+ βˆ‰ 𝐸(𝐺); by symmetry, for any vertex 𝑒 in 𝐢[π‘₯𝑗 , π‘₯𝑖 ], if 𝑒π‘₯𝑖 , 𝑒π‘₯𝑗 ∈ 𝐸(𝐺), then π‘’βˆ’ 𝑒+ βˆ‰ 𝐸(𝐺).

3. Proof of Theorem 5 To the contrary, suppose that 𝐺 satisfies the conditions of Theorem 5 and any spanning tree in 𝐺 contains more than 3 leaves. Let 𝑃 = 𝑃[π‘₯, 𝑦] be longest path in 𝐺 such that 𝑃 satisfies the following two conditions: (T1) 𝑀(𝐺 βˆ’ 𝑃) is minimum. (T2) |𝑃[π‘₯, 𝑒1 ]| is minimum such that 𝑒1 is the first vertex in 𝑃 with 𝑁(𝑒1 ) ∩ 𝑉(𝐺 βˆ’ 𝑃) =ΜΈ 0, subject to (T1). Suppose that 𝑅 is a component in πΊβˆ’π‘ƒ, and {𝑒1 , . . . , π‘’π‘š } = 𝑁𝑃 (𝑅) with 𝑒1 , . . . , π‘’π‘š in order along the positive direction of 𝑃. Let 𝑅𝐼 denote an independent set in 𝑅. Let 𝐺󸀠 denote a graph with 𝑉(𝐺󸀠 ) = 𝑉(𝐺) βˆͺ {𝑒0 }, 𝐸(𝐺󸀠 ) = 𝐸(𝐺) βˆͺ {𝑒0 𝑒 : 𝑒 ∈ 𝑉(𝐺)}. Then 𝐢 = 𝑒0 𝑃[π‘₯, 𝑦]𝑒0 is a maximal cycle in 𝐺󸀠 . We define the counterclockwise orientation as the positive direction of 𝐢. Let 𝑆𝑖 denote the segment 𝐢(𝑒𝑖 , 𝑒𝑖+1 ] for 0 ≀ 𝑖 ≀ π‘š βˆ’ 1, and π‘†π‘š = 𝐢(π‘’π‘š , 𝑒0 ]. By Lemma 7, let V𝑖 denote the first noninsertible vertex in 𝑆𝑖 , for 𝑖 ∈ [0, π‘š], and π‘ˆ = {V0 , V1 , . . . , Vπ‘š }. By Lemma 8(a), π‘ˆ is an independent set. 𝐢 can be divided into disjoint intervals 𝑆 = 𝐢[π‘Ž, 𝑏] with π‘Ž, 𝑏+ βˆ‰ 𝑁(π‘ˆ) and 𝐢[π‘Ž+ , 𝑏] βŠ† 𝑁(π‘ˆ). We call the intervals π‘ˆsegments. If π‘Ž = 𝑏, then 𝐢[π‘Ž+ , 𝑏] = 0; that is, if |𝑆| = 1, then π‘‘π‘ˆ(𝑆) = 0. By the definition of π‘ˆ-segment, for any π‘ˆ-segment βˆ’ ] (subscripts 𝑆, there exists 𝑙 ∈ [0, π‘š] such that 𝑆 βŠ† 𝐢[V𝑙 , V𝑙+1 expressed modulo π‘š + 1). Claim 1. π‘₯ = V0 and 𝑦 βˆ‰ 𝑁(V𝑖 ) for any 𝑖 ∈ [0, π‘š βˆ’ 1]. Proof. Suppose that π‘₯ is an insertible vertex such that π‘₯𝑒, π‘₯𝑒+ ∈ 𝐸(𝐺), where 𝑒, 𝑒+ ∈ 𝐢 βˆ’ 𝑆0 . If 𝑒 =ΜΈ 𝑦, then we can get a path 𝑃󸀠 = 𝑃[π‘₯+ , 𝑒]π‘₯𝑃[𝑒+ , 𝑦], a contradiction to (T2). If 𝑒 = 𝑦, then let 𝑃󸀠 = 𝑃[π‘₯+ , 𝑦]π‘₯, a contradiction to (T2). Thus π‘₯ = V0 . Suppose V𝑖 𝑦 ∈ 𝐸(𝐺), for some 𝑖 ∈ [0, π‘š βˆ’ 1]. Obviously, 𝑒0 = 𝑦+ . Since 𝑦V𝑖 , 𝑦+ V𝑖 ∈ 𝐸(𝐺) and 𝑦 ∈ 𝐢 βˆ’ 𝑆𝑖 , V𝑖 is an insertible vertex, a contradiction. Claim 2. For any vertex 𝑒 ∈ 𝑉(𝑃), if 𝑁[𝑒] is claw-free, then π‘‘π‘ˆ(𝑒) ≀ 1. Proof. Suppose that 𝑒 is in some π‘ˆ-segment 𝑆 with 𝑆 βŠ† βˆ’ ], 𝑖 ∈ [0, π‘š], and V𝑖1 , V𝑖2 ∈ π‘π‘ˆ(𝑒) with 0 ≀ 𝐢[V𝑖 , V𝑖+1 𝑖1 < 𝑖2 ≀ π‘š. Then by Lemma 8(c), π‘’βˆ’ 𝑒+ βˆ‰ 𝐸(𝐺). Since 𝐺[𝑒, π‘’βˆ’ , 𝑒+ , V𝑖1 ] =ΜΈ 𝐾1,3 , V𝑖1 π‘’βˆ’ ∈ 𝐸(𝐺) or V𝑖1 𝑒+ ∈ 𝐸(𝐺). Similarly, V𝑖2 π‘’βˆ’ ∈ 𝐸(𝐺) or V𝑖2 𝑒+ ∈ 𝐸(𝐺). Obviously, at βˆ’ least one vertex in {V𝑖1 , V𝑖2 } is not in 𝐢[V𝑖 , V𝑖+1 ]. Without loss βˆ’ of generality, suppose V𝑖1 βˆ‰ 𝐢[V𝑖 , V𝑖+1 ] and V𝑖1 π‘’βˆ’ ∈ 𝐸(𝐺). Then by V𝑖1 π‘’βˆ’ , V𝑖1 𝑒 ∈ 𝐸(𝐺), V𝑖1 is an insertible vertex, a contradiction. Claim 3. π‘‘π‘ˆ(𝑒) ≀ 2 for any vertex 𝑒 ∈ 𝑉(𝑃), and if π‘‘π‘ˆ(𝑒) = 2, then 𝑒 is a claw center. Proof. Without loss of generality, suppose that 𝑒 is in π‘ˆsegment 𝑆 and 𝑆 βŠ† 𝐢[V0 , V1βˆ’ ]. If |𝑆| = 1, then π‘‘π‘ˆ(𝑒) = 0.

Discrete Dynamics in Nature and Society Suppose |𝑆| β‰₯ 2 and 𝑆 = {π‘₯0 , π‘₯1 , π‘₯2 , . . . , π‘₯β„Ž }, where π‘₯0 , π‘₯1 , π‘₯2 , . . . , π‘₯β„Ž are in order along the positive direction of 𝐢. Then π‘₯0 βˆ‰ 𝑁(π‘ˆ), π‘₯𝑖 ∈ 𝑁(π‘ˆ) for 𝑖 ∈ [1, β„Ž]. For some 𝑖 ∈ [1, β„Ž], suppose V𝑖1 , V𝑖2 , V𝑖3 ∈ π‘π‘ˆ(π‘₯𝑖 ) with 0 ≀ 𝑖1 < 𝑖2 < 𝑖3 ≀ π‘š. Then π‘₯𝑖 is a claw center. By Lemma 6, suppose 𝑦1 , 𝑦2 are two distinct domination vertices of 𝑁(π‘₯𝑖 ). Then 𝑁[𝑦1 ], 𝑁[𝑦2 ] are claw-free and at least two vertices in {V𝑖1 , V𝑖2 , V𝑖3 } are incident with 𝑦1 or 𝑦2 . Without loss of generality, suppose V𝑖1 𝑦1 , V𝑖2 𝑦1 ∈ 𝐸(𝐺). Then 𝑦1 ∈ 𝑉(𝑃), and 𝑦1βˆ’ 𝑦1+ βˆ‰ 𝐸(𝐺) by Lemma 8(c). Suppose 𝑆𝑗 = 𝐢(𝑒𝑗 , 𝑒𝑗+1 ] containing 𝑦1 , 0 ≀ 𝑗 ≀ π‘š. Obviously, at least one vertex in {V𝑖1 , V𝑖2 } is not in 𝑆𝑗 . Without loss of generality, suppose V𝑖1 βˆ‰ 𝑆𝑗 . Since V𝑖1 is a noninsertible vertex and V𝑖1 𝑦1 ∈ 𝐸(𝐺), 𝑦1βˆ’ V𝑖1 , 𝑦1+ V𝑖1 βˆ‰ 𝐸(𝐺). Thus 𝐺[𝑦1 , 𝑦1βˆ’ , 𝑦1+ , V𝑖1 ] = 𝐾1,3 , a contradiction. If π‘‘π‘ˆ(𝑒) = 2, then by Claim 2, 𝑒 is a claw center. Claim 4. For any π‘ˆ-segment 𝑆 not containing 𝑦, 𝑆 contains at most one vertex 𝑒 with π‘‘π‘ˆ(𝑒) = 2, and π‘‘π‘ˆ(𝑆) ≀ |𝑆|. Proof. If 𝑦 βˆ‰ 𝑁(π‘ˆ), then there exists a π‘ˆ-segment 𝑆 with 𝑆 = {𝑦, 𝑒0 }. Suppose 𝑦 ∈ 𝑁(π‘ˆ) and 𝑦 in π‘ˆ-segment 𝑆, then 𝑒0 ∈ 𝑆 by 𝑒0 = 𝑦+ and 𝑒0 ∈ 𝑁(π‘ˆ). Thus if 𝑦 βˆ‰ 𝑆, then 𝑒0 βˆ‰ 𝑆0 . Without loss of generality, suppose 𝑆 = {π‘₯0 , π‘₯1 , π‘₯2 , . . . , π‘₯β„Ž } βŠ† βˆ’ ], 0 ≀ 𝑖 ≀ π‘š, where π‘₯0 , π‘₯1 , π‘₯2 , . . . , π‘₯β„Ž are in order 𝐢[V𝑖 , V𝑖+1 along the positive direction of 𝐢. By Claim 3, suppose that π‘₯𝑗 is the first vertex in 𝑆 with π‘‘π‘ˆ(π‘₯𝑗 ) = 2, 1 ≀ 𝑗 ≀ β„Ž, and {V𝑖1 , V𝑖2 } = π‘π‘ˆ(π‘₯𝑗 ), where 0 ≀ 𝑖1 < 𝑖2 ≀ π‘š. Then V𝑖2 =ΜΈ V𝑖 , and, by Claim 3, π‘₯𝑗 is a claw center. Then 𝑁[π‘₯𝑗+ ] is claw-free, and, by Claim 2, π‘‘π‘ˆ(π‘₯𝑗+ ) ≀ 1. Thus if 𝑗 ≀ β„Ž ≀ 𝑗 + 1, then we are done. Suppose β„Ž > 𝑗 + 1 and π‘π‘ˆ(π‘₯𝑗+1 ) = {V𝑖3 }, 𝑖3 ∈ [0, π‘š]. Since 𝐺[π‘₯𝑗+1 , π‘₯𝑗+2 , π‘₯𝑗 , V𝑖3 ] =ΜΈ 𝐾1,3 , 𝐸(𝐺) contains at least one edge in {π‘₯𝑗 V𝑖3 , π‘₯𝑗+2 V𝑖3 , π‘₯𝑗 π‘₯𝑗+2 }. Since V𝑖3 is a noninsertible vertex and V𝑖3 π‘₯𝑗+1 ∈ 𝐸(𝐺), V𝑖3 = V𝑖 if π‘₯𝑗 V𝑖3 or π‘₯𝑗+2 V𝑖3 ∈ 𝐸(𝐺), a contradiction to Lemma 8(b) since π‘₯𝑗 V𝑖1 , π‘₯𝑗 V𝑖2 ∈ 𝐸(𝐺). Thus V𝑖3 =ΜΈ V𝑖 , and π‘₯𝑗 π‘₯𝑗+2 ∈ 𝐸(𝐺). Since π‘₯𝑗 is a claw center, 𝑁[π‘₯𝑗+2 ] is claw-free and, by Claim 2, π‘‘π‘ˆ(π‘₯𝑗+2 ) ≀ 1. Thus if β„Ž = 𝑗 + 2, then we are done. Suppose β„Ž > 𝑗 + 2 and {V𝑖4 } = π‘π‘ˆ(π‘₯𝑗+2 ), 𝑖4 ∈ [0, π‘š]. Since π‘₯𝑗+1 V𝑖3 , π‘₯𝑗+2 V𝑖4 ∈ 𝐸(𝐺) and V𝑖3 =ΜΈ V𝑖 , by Lemma 8(b) V𝑖4 =ΜΈ V𝑖 . Then V𝑖4 π‘₯𝑗+3 βˆ‰ 𝐸(𝐺). Since 𝐺[π‘₯𝑗+2 , π‘₯𝑗 , π‘₯𝑗+3 , V𝑖4 ] =ΜΈ 𝐾1,3 , V𝑖4 π‘₯𝑗 or π‘₯𝑗 π‘₯𝑗+3 ∈ 𝐸(𝐺). If V𝑖4 π‘₯𝑗 ∈ 𝐸(𝐺), then V𝑖4 ∈ {V𝑖1 , V𝑖2 }. Then, by Lemma 8(b), V𝑖3 = V𝑖4 and V𝑖4 = V𝑖2 since π‘₯𝑗+1 V𝑖3 , π‘₯𝑗+2 V𝑖4 ∈ 𝐸(𝐺). Then V𝑖2 π‘₯𝑗+1 , V𝑖2 π‘₯𝑗+2 ∈ 𝐸(𝐺), a contradiction to the noninsertablity of V𝑖2 . Thus π‘₯𝑗 π‘₯𝑗+3 ∈ 𝐸(𝐺), and then 𝑁[π‘₯𝑗+3 ] is claw-free. By Claim 2, π‘‘π‘ˆ(π‘₯𝑗+3 ) ≀ 1. Thus if β„Ž = 𝑗 + 3, then we are done. If β„Ž > 𝑗 + 3, then, proceeding in the above manners to the set 𝐿 = {π‘₯𝑗+4 , . . . , π‘₯β„Ž }, we can get that 𝑁[𝑒] is claw-free for any vertex 𝑒 in 𝐿, and then, by Claim 2, π‘‘π‘ˆ(𝑒) ≀ 1. It follows that 𝑆 has exactly one vertex π‘₯𝑗 with π‘‘π‘ˆ(π‘₯𝑗 ) = 2 for 𝑗 ∈ [1, β„Ž]. Thus the claim holds. Claim 5. Suppose that the π‘ˆ-segment 𝑆0 contains 𝑦. Then π‘‘π‘ˆ(𝑒) ≀ 1 for any vertex 𝑒 ∈ 𝑆0 βˆ’ {𝑒0 }. Proof. If 𝑦 βˆ‰ 𝑁(π‘ˆ), then 𝑆0 = {𝑦, 𝑒0 } and π‘‘π‘ˆ(𝑦) = 0. Suppose 𝑦 ∈ 𝑁(π‘ˆ). Then, by Claim 1, π‘π‘ˆ(𝑦) = {V𝑑 }. By Lemma 8(b), π‘π‘ˆ(𝑒) βŠ† {V𝑑 } and then π‘‘π‘ˆ(𝑒) ≀ 1 for any vertex 𝑒 ∈ 𝑆0 βˆ’ {𝑒0 }.

3 Claim 6. For any vertex 𝑒𝑖 (1 ≀ 𝑖 ≀ π‘š) in 𝑁𝑃 (𝑅) = {𝑒1 , . . . , π‘’π‘š }, 𝑑𝑅𝐼 (𝑒𝑖 ) ≀ 2. Proof. Suppose 𝑧1 , 𝑧2 , 𝑧3 ∈ 𝑁𝑅𝐼 (𝑒𝑖 ), where 𝑧1 , 𝑧2 , 𝑧3 are distinct vertices, 𝑖 ∈ [1, π‘š]. Since 𝐺[𝑒𝑖 , 𝑧1 , 𝑧2 , 𝑧3 ] = 𝐾1,3 , 𝑒𝑖 is a claw center. By Lemma 6, suppose 𝑦1 , 𝑦2 are the two distinct domination vertices in 𝑁(𝑒𝑖 ). Then π‘’π‘–βˆ’ , 𝑒𝑖+ ∈ 𝑁(𝑦1 ) βˆͺ 𝑁(𝑦2 ), and 𝑁[𝑦1 ], 𝑁[𝑦2 ] are claw-free. Since π‘’π‘–βˆ’ , 𝑒𝑖+ βˆ‰ 𝑁𝑃 (𝑅), {𝑦1 , 𝑦2 } ∩ 𝑉(𝐢) =ΜΈ 0. Suppose 𝑦1 , 𝑦2 are both in 𝑉(𝐢). Then at least two vertices of 𝑧1 , 𝑧2 , 𝑧3 are adjacent to 𝑦1 or 𝑦2 . Without loss of generality, suppose 𝑧1 , 𝑧2 ∈ 𝑁(𝑦1 ), and then 𝐺[𝑦1 , 𝑧1 , 𝑧2 , 𝑦1+ ] = 𝐾1,3 , a contradiction. Thus one vertex of 𝑦1 , 𝑦2 is in 𝑉(𝐢), and the other vertex is in 𝑉(𝑅). Without loss of generality, suppose 𝑦1 ∈ 𝑉(𝐢), 𝑦2 ∈ 𝑉(𝑅). Then 𝑒𝑖+ 𝑦1 ∈ 𝐸(𝐺). If 𝑧1 , 𝑧2 , 𝑧3 ∈ 𝑁(𝑦2 ), then 𝐺[𝑦2 , 𝑧1 , 𝑧2 , 𝑧3 ] = 𝐾1,3 , a contradiction, and, by the preceding proof, there is exactly one vertex of 𝑧1 , 𝑧2 , 𝑧3 adjacent to 𝑦1 . Thus 𝑦1 ∈ 𝑁𝑃 (𝑅) βˆ’ {𝑒𝑖 }. Without loss of generality, suppose 𝑧1 ∈ 𝑁(𝑦1 ). Since 𝐺[𝑦1 , 𝑦1βˆ’ , 𝑦1+ , 𝑧1 ] =ΜΈ 𝐾1,3 , 𝑦1βˆ’ 𝑦1+ ∈ 𝐸(𝐺). Then we can get a longer cycle 𝐢󸀠 = 𝑦1 𝑧1 πΆβˆ’ [𝑒𝑖 , 𝑦1+ ]πΆβˆ’ [𝑦1βˆ’ , 𝑒𝑖+ ]𝑦1 than 𝐢, a contradiction. Claim 7. For any vertex 𝑒𝑖 (1 ≀ 𝑖 ≀ π‘š) in 𝑁𝑃 (𝑅) = {𝑒1 , . . . , π‘’π‘š }, if π‘‘π‘ˆ(𝑒𝑖 ) = 1 and 𝑑𝑅𝐼 (𝑒𝑖 ) = 2, then π‘‘π‘ˆ(𝑒) ≀ 1 and π‘‘π‘ˆ(𝑆) = |𝑆| βˆ’ 1, for any vertex 𝑒 ∈ 𝑆, where 𝑆 is the π‘ˆsegment containing 𝑒𝑖 . Proof. Suppose π‘‘π‘ˆ(𝑒𝑖 ) = 1 and 𝑁𝑅𝐼 (𝑒𝑖 ) = {𝑧1 , 𝑧2 }, 𝑖 ∈ [1, π‘š]. Since 𝐺[𝑒𝑖 , π‘’π‘–βˆ’ , 𝑧1 , 𝑧2 ] = 𝐾1,3 , 𝑒𝑖 is a claw center. Assume 𝑆 = {π‘₯1 , π‘₯2 , . . . , π‘₯β„Ž } and π‘₯𝑗 = 𝑒𝑖 , 2 ≀ 𝑗 ≀ β„Ž. If β„Ž > 𝑗, then, by Lemma 8(a), π‘π‘ˆ(𝑒) = {V𝑖 } for any vertex 𝑒 ∈ {π‘₯𝑗+1 , . . . , π‘₯β„Ž }. Thus if 𝑒 ∈ 𝑆 with π‘‘π‘ˆ(𝑒) = 2, then 𝑒 ∈ {π‘₯2 , π‘₯3 , . . . , π‘₯π‘—βˆ’1 }. Suppose π‘‘π‘ˆ(π‘₯𝑝 ) = 2, 𝑝 ∈ [2, 𝑗 βˆ’ 1]. By the proof of Claim 4, 𝑁[𝑒] is claw-free for any vertex 𝑒 in {π‘₯𝑝+1 , . . . , π‘₯β„Ž }, which contradicts that π‘₯𝑗 is a claw center. It follows that π‘‘π‘ˆ(𝑆) = |𝑆| βˆ’ 1. Claim 8. For any vertex 𝑒𝑖 (1 ≀ 𝑖 ≀ π‘š) in 𝑁𝑃 (𝑅) = {𝑒1 , . . . , π‘’π‘š }, if π‘‘π‘ˆ(𝑒𝑖 ) = 2, then 𝑑𝑅𝐼 (𝑒𝑖 ) ≀ 1. Proof. Without loss of generality, we consider 𝑒2 . Suppose {V𝑖 , V𝑗 } = π‘π‘ˆ(𝑒2 ) with 0 ≀ 𝑖 < 𝑗 ≀ π‘š and 𝑧1 , 𝑧2 ∈ 𝑁𝑅𝐼 (𝑒2 ), where 𝑧1 , 𝑧2 are two distinct vertices. By Claim 3, 𝑒2 is a claw center. By Lemma 6, suppose 𝑦1 , 𝑦2 are the two distinct domination vertices in 𝑁(𝑒2 ). Then 𝑁[𝑦1 ], 𝑁[𝑦2 ] are claw-free and V𝑖 , V𝑗 ∈ 𝑁(𝑦1 ) βˆͺ 𝑁(𝑦2 ). Thus {𝑦1 , 𝑦2 } ∩ 𝑉(𝐢) =ΜΈ 0. Without loss of generality, suppose 𝑦1 ∈ 𝑉(𝐢). If 𝑦2 ∈ 𝑉(𝑅), then V𝑖 𝑦1 , V𝑗 𝑦1 ∈ 𝐸(𝐺), a contradiction to Claim 2. Suppose 𝑦2 ∈ 𝑉(𝐢). By Claim 2, V𝑖 , V𝑗 can not both be incident with 𝑦1 or 𝑦2 . Without loss of generality, suppose 𝑧1 𝑦1 , 𝑧2 𝑦2 , V𝑖 𝑦1 , V𝑗 𝑦2 ∈ 𝐸(𝐺). Obviously, 𝑦1 ∈ 𝑁𝑃 (𝑅) βˆ’ {𝑒2 }. Suppose 𝑦1 = 𝑒𝑗 , 𝑗 ∈ {1, 3, . . . , π‘š}. If V𝑖 =ΜΈ Vπ‘—βˆ’1 , then 𝐺[𝑦1 , 𝑦1+ , V𝑖 , 𝑧1 ] = 𝐾1,3 , a contradiction. Suppose V𝑖 = Vπ‘—βˆ’1 . Then, by 𝐺[𝑦1 , 𝑦1+ , V𝑖 , 𝑧1 ] =ΜΈ βˆ’ 𝐾1,3 , 𝑦1+ V𝑖 ∈ 𝐸(𝐺). Obviously, all the vertices in 𝐢(π‘’π‘—βˆ’1 , Vπ‘—βˆ’1 ) can be inserted into 𝐢[𝑦1 , π‘’π‘—βˆ’1 ]. Let 𝑦1 𝑃1 π‘’π‘—βˆ’1 denote the path by the above inserting process with 𝑉(𝑃1 ) = 𝑉(𝐢) and π‘’π‘—βˆ’1 𝑃𝑅 𝑦1 denote the path connecting π‘’π‘—βˆ’1 and 𝑦1 with internal vertices in 𝑅. Then we can get a cycle 𝐢󸀠 = 𝑦1βˆ’ 𝑃1βˆ’ Vπ‘—βˆ’1 𝑦1+ 𝑃1 π‘’π‘—βˆ’1 𝑃𝑅 𝑦1 longer than 𝐢, a contradiction.

4

Discrete Dynamics in Nature and Society

Claim 9. Consider the following: βˆ‘π‘š 𝑖=0 𝑑𝑃 (V𝑖 ) ≀ |𝑃| βˆ’ 1 and βˆ‘π‘š 𝑖=0 𝑑𝑃 (V𝑖 ) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑃 (𝑧) ≀ |𝑃| + π‘š βˆ’ 1. βˆ’ Proof. Obviously, 𝑉(𝑃) = β‹ƒπ‘šβˆ’1 𝑖=0 𝑉(𝑃[V𝑖 , V𝑖+1 ]) βˆͺ 𝑉(𝑃[Vπ‘š , 𝑦]) π‘š π‘š and βˆ‘π‘–=0 𝑑𝑃 (V𝑖 ) = π‘‘π‘ˆ(𝑃). Then βˆ‘π‘–=0 𝑑𝑃 (V𝑖 ) = βˆ‘π‘šβˆ’1 𝑖=0 π‘‘π‘ˆ (𝑃[V𝑖 , βˆ’ ])+π‘‘π‘ˆ(𝑃[Vπ‘š , 𝑦]). By Claim 5, π‘‘π‘ˆ(𝑃[Vπ‘š , 𝑦]) ≀ |𝑃[Vπ‘š , 𝑦]|βˆ’ V𝑖+1 βˆ’ βˆ’ ]) ≀ |𝑃[V𝑖 , V𝑖+1 ]| for 1 ≀ 𝑖 ≀ π‘š βˆ’ 1. 1. By Claim 4, π‘‘π‘ˆ(𝑃[V𝑖 , V𝑖+1 π‘š π‘šβˆ’1 βˆ’ Thus βˆ‘π‘–=0 𝑑𝑃 (V𝑖 ) ≀ βˆ‘π‘–=0 |𝑃[V𝑖 , V𝑖+1 ]| + |𝑃[Vπ‘š , 𝑦]|βˆ’1 = |𝑃|βˆ’1. Obviously, 𝑁𝑃 (𝑅𝐼 ) βŠ† {𝑒1 , 𝑒2 , . . . , π‘’π‘š }. Then βˆ‘π‘š 𝑖=0 𝑑𝑃 (V𝑖 ) + π‘šβˆ’1 βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑃 (𝑧) = π‘‘π‘ˆ(𝑃) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑁𝑃 (𝑅𝐼 ) (𝑧) = βˆ‘π‘–=0 (π‘‘π‘ˆ(𝑃[V𝑖 , βˆ’ V𝑖+1 ]) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒𝑖 (𝑧)) + π‘‘π‘ˆ(𝑃[Vπ‘š , 𝑦]). Without loss of generality, we consider 𝑃[V1 , V2βˆ’ ]. Let 𝑆𝑒2 denote the π‘ˆ-segment containing 𝑒2 . By Claim 4, π‘‘π‘ˆ(𝑆) ≀ |𝑆| for any π‘ˆ-segment in 𝑃[V1 , V2βˆ’ ]. Obviously, βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒2 (𝑧) = 𝑑𝑅𝐼 (𝑒2 ). By Claim 6, 𝑑𝑅𝐼 (𝑒2 ) ≀ 2. Suppose π‘‘π‘ˆ(𝑒2 ) = 0. Then 𝑒2 is the first vertex in 𝑆𝑒2 and 𝑆𝑒2 = 𝐢[𝑒2 , V2 ). By Lemma 8(a), π‘π‘ˆ(𝑆𝑒2 ) βŠ† {V2 }. Thus π‘‘π‘ˆ(𝑆𝑒2 ) = |𝑆𝑒2 | βˆ’ 1 and π‘‘π‘ˆ(𝑃[V1 , V2βˆ’ ]) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒2 (𝑧) = βˆ‘π‘†=𝑆̸ 𝑒 π‘‘π‘ˆ(𝑆) + π‘‘π‘ˆ(𝑆𝑒2 ) + 𝑑𝑅𝐼 (𝑒2 ) ≀ βˆ‘π‘†=𝑆̸ 𝑒 |𝑆| + (|𝑆𝑒2 | βˆ’ 1) + 2 = 2 2 |𝑃[V1 , V2βˆ’ ]| + 1. Suppose π‘‘π‘ˆ(𝑒2 ) = 1. If 𝑑𝑅𝐼 (𝑒2 ) ≀ 1, then π‘‘π‘ˆ(𝑃[V1 , V2βˆ’ ]) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒2 (𝑧) = βˆ‘π‘†=𝑆̸ 𝑒 π‘‘π‘ˆ(𝑆) + π‘‘π‘ˆ(𝑆𝑒2 ) + 𝑑𝑅𝐼 (𝑒2 ) ≀ βˆ‘π‘†=𝑆̸ 𝑒 |𝑆| + 2 2 |𝑆𝑒2 | + 1 = |𝑃[V1 , V2βˆ’ ]| + 1. If 𝑑𝑅𝐼 (𝑒2 ) = 2, then, by Claim 7, π‘‘π‘ˆ(𝑆𝑒2 ) = |𝑆𝑒2 | βˆ’ 1. Thus π‘‘π‘ˆ(𝑃[V1 , V2βˆ’ ]) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒2 (𝑧) = βˆ‘π‘†=𝑆̸ 𝑒 π‘‘π‘ˆ(𝑆) + π‘‘π‘ˆ(𝑆𝑒2 ) + 𝑑𝑅𝐼 (𝑒2 ) ≀ βˆ‘π‘†=𝑆̸ 𝑒 |𝑆| + (|𝑆𝑒2 | βˆ’ 1) 2 2 + 2 = |𝑃[V1 , V2βˆ’ ]| + 1. Suppose π‘‘π‘ˆ(𝑒2 ) = 2. Then, by Claim 8, 𝑑𝑅𝐼 (𝑒2 ) ≀ 1. Thus π‘‘π‘ˆ(𝑃[V1 , V2βˆ’ ]) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒2 (𝑧) = βˆ‘π‘†=𝑆̸ 𝑒 π‘‘π‘ˆ(𝑆) + π‘‘π‘ˆ(𝑆𝑒2 ) + 2 𝑑𝑅𝐼 (𝑒2 ) ≀ βˆ‘π‘†=𝑆̸ 𝑒 |𝑆| + |𝑆𝑒2 | + 1 = |𝑃[V1 , V2βˆ’ ]| + 1. 2

It follows that π‘‘π‘ˆ(𝑃[V1 , V2βˆ’ ]) + βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑒2 (𝑧) ≀ |𝑃[V1 , V2βˆ’ ]| + βˆ’ 1. Similarly, for any 𝑖 ∈ [1, π‘š βˆ’ 1], π‘‘π‘ˆ(𝑃[V𝑖 , V𝑖+1 ]) ≀ βˆ’ |𝑃[V𝑖 , V𝑖+1 ]|+1. By Claim 5, π‘‘π‘ˆ(𝑃[Vπ‘š , 𝑦]) ≀ |𝑃[Vπ‘š , 𝑦]|βˆ’1. Thus βˆ’ π‘‘π‘ˆ(𝑃)+βˆ‘π‘§βˆˆπ‘…πΌ 𝑑𝑃 (𝑧) ≀ βˆ‘π‘šβˆ’1 𝑖=0 (|𝑃[V𝑖 , V𝑖+1 ]|+1)+|𝑃[Vπ‘š , 𝑦]|βˆ’1 ≀ |𝑃| + π‘š βˆ’ 1.

Claim 10. 𝑑𝑃 (𝑅) = π‘˜ and 𝑅 is hamiltonian-connected for each component 𝑅 of 𝐺 βˆ’ 𝑃. Proof. π‘πΊβˆ’π‘ƒ (V𝑖 ) ∩ π‘πΊβˆ’π‘ƒ (V𝑗 ) = 0 from Lemma 8(a), for 0 ≀ 𝑖 =ΜΈ 𝑗 ≀ π‘š, and then βˆ‘π‘š 𝑖=0 π‘‘πΊβˆ’π‘ƒ (V𝑖 ) ≀ 𝑛 βˆ’ |𝑃| βˆ’ |𝑅|. By the connectedness of 𝐺, π‘š β‰₯ π‘˜. If π‘š β‰₯ π‘˜ + 2, then we get an independent set {V0 , V1 , . . . , Vπ‘š } of order at least π‘˜ + 3. By π‘š π‘š Claim 9, βˆ‘π‘š 𝑖=0 𝑑(V𝑖 ) = βˆ‘π‘–=0 π‘‘πΊβˆ’π‘ƒ (V𝑖 ) + βˆ‘π‘–=0 𝑑𝑃 (V𝑖 ) ≀ (𝑛 βˆ’ |𝑃| βˆ’ |𝑅|) + (|𝑃| βˆ’ 1) = 𝑛 βˆ’ 1 βˆ’ |𝑅|, a contradiction to πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2. Suppose π‘š = π‘˜ + 1 and 𝑧 ∈ 𝑉(𝑅). Then we can get an independent set {𝑧, V0 , V1 , . . . , Vπ‘š } of order π‘˜+3. By Claim 9, 𝑑𝑃 (𝑧) + βˆ‘π‘˜+1 𝑖=0 𝑑𝑃 (V𝑖 ) ≀ (π‘˜ + 1) βˆ’ 1 + |𝑃| = |𝑃| + π‘˜. π‘˜+1 π‘˜+1 𝑑(V ) Then 𝑑(𝑧)+βˆ‘π‘˜+1 𝑖 = βˆ‘π‘–=0 π‘‘πΊβˆ’π‘ƒ (V𝑖 )+𝑑𝑅 (𝑧)+βˆ‘π‘–=0 𝑑𝑃 (V𝑖 )+ 𝑖=0 𝑑𝑃 (𝑧) ≀ (𝑛 βˆ’ |𝑃| βˆ’ |𝑅|) + (|𝑅| βˆ’ 1) + (|𝑃| + π‘˜) = 𝑛 + π‘˜ βˆ’ 1, a contradiction to πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2 by π‘˜ β‰₯ 2. Thus π‘š = π‘˜. Suppose that 𝑅 is not hamiltonian-connected. Then by Ore’s theorem [20], suppose 𝑧1 , 𝑧2 ∈ 𝑉(𝑅) with 𝑧1 𝑧2 βˆ‰ 𝐸(𝐺) and 𝑑𝑅 (𝑧1 ) + 𝑑𝑅 (𝑧2 ) ≀ |𝑅|. We can get an independent set {𝑧1 , 𝑧2 , V0 , V1 , . . . , Vπ‘˜ } with order π‘˜ + 3. By Claim 9,

𝑑(𝑧1 ) + 𝑑(𝑧2 ) + βˆ‘π‘˜π‘–=0 𝑑(V𝑖 ) = 𝑑𝑅 (𝑧1 ) + 𝑑𝑅 (𝑧2 ) + βˆ‘π‘˜π‘–=0 π‘‘πΊβˆ’π‘ƒ (V𝑖 ) + (βˆ‘π‘˜π‘–=0 𝑑𝑃 (V𝑖 ) + 𝑑𝑃 (𝑧1 ) + 𝑑𝑃 (𝑧2 )) ≀ |𝑅| + (𝑛 βˆ’ |𝑃| βˆ’ |𝑅|) + (|𝑃| + π‘˜ βˆ’ 1) = 𝑛 + π‘˜ βˆ’ 1, a contradiction to πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2 by π‘˜ β‰₯ 2. If 𝐺 βˆ’ 𝑃 contains only one component 𝑅, then, by Claim 10, there is a spanning 3-ended tree in 𝐺. Thus we only consider the case that 𝐺 βˆ’ 𝑃 contains at least two components and suppose 𝑅󸀠 is a component in 𝐺 βˆ’ 𝑃 βˆ’ 𝑅. Claim 11. Consider the following: 𝑁𝑅󸀠 (V𝑖 ) =ΜΈ 0 for some 𝑖 ∈ [1, π‘˜]. Proof. Suppose 𝑁𝑅󸀠 (V𝑖 ) = 0 for any 𝑖 ∈ [1, π‘˜]. Then βˆ‘π‘˜π‘–=0 π‘‘πΊβˆ’π‘ƒ (V𝑖 ) ≀ 𝑛 βˆ’ |𝑃| βˆ’ |𝑅| βˆ’ |𝑅󸀠 |. Let 𝑧1 ∈ 𝑉(𝑅), 𝑧2 ∈ 𝑉(𝑅󸀠 ). Then we get an independent set {𝑧1 , 𝑧2 , V0 , V1 , . . . , Vπ‘˜ } of order π‘˜ + 3. By Claim 10, 𝑑𝑃 (𝑧2 ) ≀ π‘˜ and, by Claim 9, βˆ‘π‘˜π‘–=0 𝑑(V𝑖 ) + 𝑑𝑃 (𝑧1 ) ≀ |𝑃| + π‘˜ βˆ’ 1. Thus βˆ‘π‘˜π‘–=0 𝑑(V𝑖 ) + 𝑑(𝑧1 ) + 𝑑(𝑧2 ) = 𝑑𝑃 (𝑧2 ) + 𝑑𝑅 (𝑧1 ) + 𝑑𝑅󸀠 (𝑧2 ) + (βˆ‘π‘˜π‘–=0 𝑑𝑃 (V𝑖 ) + 𝑑𝑃 (𝑧1 )) + βˆ‘π‘˜π‘–=0 π‘‘πΊβˆ’π‘ƒ (V𝑖 ) ≀ π‘˜ + (|𝑅|βˆ’1)+(|𝑅󸀠 |βˆ’1) + (|𝑃|+π‘˜βˆ’1)+(π‘›βˆ’|𝑃|βˆ’|𝑅|βˆ’|𝑅󸀠 |) = 𝑛+2π‘˜βˆ’3, a contradiction to πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2. By Claim 11, we assume 𝑁𝑅󸀠 (V𝑖 ) =ΜΈ 0 for some 𝑖 ∈ [1, π‘˜]. By Lemma 8(a), 𝑁𝑅󸀠 (V𝑗 ) = 0 for 𝑗 ∈ [0, 𝑖 βˆ’ 1] βˆͺ [𝑖 + 1, π‘˜]. Claim 12. 𝑆𝑖 βˆ’ {𝑒𝑖+1 } contains a second noninsertible vertex V𝑖󸀠 . Proof. Suppose 𝑆𝑖 βˆ’ {𝑒𝑖+1 } contains only one noninsertible vertex V𝑖 . Then we can get a path 𝑃1 [𝑒𝑖+1 , 𝑒𝑖 ] such that 𝑉(𝑃1 ) = 𝑉(𝐢) βˆ’ {V𝑖 } by inserting all the vertices in 𝑆𝑖 βˆ’ {V𝑖 } to 𝐢[𝑒𝑖+1 , 𝑒𝑖 ]. Suppose |𝑉(𝑅)| = {𝑒}. Then we get a cycle 𝐢󸀠 = 𝑃1 [𝑒𝑖+1 , 𝑒𝑖 ]𝑒𝑒𝑖+1 . Let 𝑃󸀠 = 𝑉(𝐢󸀠 )βˆ’{𝑒0 }. Then 𝑀(πΊβˆ’π‘ƒσΈ€  ) < 𝑀(𝐺 βˆ’ 𝑃), a contradiction to (T1). Suppose |𝑉(𝑅)| β‰₯ 2. If 𝑁𝑅 (𝑒𝑖 )βˆͺ𝑁𝑅 (𝑒𝑖+1 ) = {𝑧}, then 𝑁𝑃 (𝑅)βˆͺ{𝑧}βˆ’{𝑒𝑖 , 𝑒𝑖+1 } is a vertex cut of 𝐺 with order π‘˜ βˆ’ 1, a contradiction to Claim 10. Thus |𝑁𝑅 (𝑒𝑖 ) βˆͺ 𝑁𝑅 (𝑒𝑖+1 )| β‰₯ 2. By Claim 10, there is a hamiltonian path 𝑒𝑖 𝑃2 𝑒𝑖+1 of 𝑅 βˆͺ {𝑒𝑖 , 𝑒𝑖+1 }. Thus we can get a cycle 𝐢1 = 𝑒𝑖+1 𝑃1 𝑒𝑖 𝑃2 𝑒𝑖+1 longer than 𝐢, a contradiction. Now, we complete the proof of Theorem 5. By Claim 12 and Lemma 9, π‘ˆσΈ€  = {V0 , . . . , Vπ‘–βˆ’1 , V𝑖󸀠 , V𝑖+1 , . . . , Vπ‘˜ } is an independent set. Then, by the preceding proof, π‘ˆσΈ€  has the same properties as π‘ˆ. By Lemma 9, π‘πΊβˆ’π‘ƒ (V𝑖 ) ∩ π‘πΊβˆ’π‘ƒ (V𝑗 ) = 0, for any two distinct vertices V𝑖 , V𝑗 ∈ π‘ˆσΈ€  . Thus βˆ‘Vβˆˆπ‘ˆσΈ€  π‘‘πΊβˆ’π‘ƒ (V) ≀ 𝑛 βˆ’ |𝑃| βˆ’ |𝑅| βˆ’ |𝑅󸀠 |. By Claim 9, βˆ‘Vβˆˆπ‘ˆσΈ€  𝑑𝑃 (V) ≀ |𝑃| βˆ’ 1. Let 𝑧1 ∈ 𝑉(𝑅), 𝑧2 ∈ 𝑉(𝑅󸀠 ). Then π‘ˆσΈ€  βˆͺ {𝑧1 , 𝑧2 } is an independent set of order π‘˜ + 3 in 𝐺. Thus βˆ‘Vβˆˆπ‘ˆσΈ€  𝑑(V) = βˆ‘Vβˆˆπ‘ˆσΈ€  𝑑𝑃 (V) + βˆ‘Vβˆˆπ‘ˆσΈ€  π‘‘πΊβˆ’π‘ƒ (V) ≀ (|𝑃|βˆ’1)+(π‘›βˆ’|𝑃|βˆ’|𝑅|βˆ’|𝑅󸀠 |) = π‘›βˆ’1βˆ’|𝑅|βˆ’|𝑅󸀠 |. By Claim 10, 𝑑(𝑧1 ) ≀ |𝑅| βˆ’ 1 + π‘˜, 𝑑(𝑧2 ) ≀ |𝑅󸀠 | βˆ’ 1 + π‘˜. Thus 𝑑(𝑧1 )+𝑑(𝑧2 )+βˆ‘Vβˆˆπ‘ˆσΈ€  𝑑(V) ≀ (|𝑅|βˆ’1+π‘˜)+(|𝑅󸀠 |βˆ’1+π‘˜)+(π‘›βˆ’1βˆ’ |𝑅| βˆ’ |𝑅󸀠 |) = 𝑛 + 2π‘˜ βˆ’ 3, a contradiction to πœŽπ‘˜+3 (𝐺) β‰₯ 𝑛 + 2π‘˜ βˆ’ 2. It follows that Theorem 5 holds.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Discrete Dynamics in Nature and Society

Acknowledgments This research is supported by the National Natural Science Foundation of China (Grant nos. 11426125 and 61473139), Program for Liaoning Excellent Talents in University LR2014016, and the Educational Commission of Liaoning Province (Grant no. L2014239).

References [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier Science, 1976. [2] Y.-J. Liu and S. C. Tong, β€œAdaptive fuzzy control for a class of nonlinear discrete-time systems with backlash,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp. 1359–1365, 2014. [3] Y. J. Liu and S. C. Tong, β€œAdaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine deadzone input,” IEEE Transactions on Cybernetics, vol. 45, no. 3, pp. 497–505, 2015. [4] S. S. Ge, C. Yang, Y. Li, and T. H. Lee, β€œDecentralized adaptive control of a class of discrete-time multi-agent systems for hidden leader following problem,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’09), pp. 5065–5070, IEEE, St. Louis, Mo, USA, October 2009. [5] Y.-J. Liu, L. Tang, S. Tong, C. L. P. Chen, and D.-J. Li, β€œReinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 1, pp. 165–176, 2015. [6] C. Yang, H. Ma, and M. Fu, β€œAdaptive predictive control of periodic non-linear auto-regressive moving average systems using nearest-neighbour compensation,” IET Control Theory & Applications, vol. 7, no. 7, pp. 936–951, 2013. [7] Y.-J. Liu, L. Tang, S. Tong, and C. L. P. Chen, β€œAdaptive NN controller design for a class of nonlinear MIMO discrete-time systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 5, pp. 1007–1018, 2015. [8] C. Yang, L. Zhai, S. S. Ge, T. Chai, and H. L. Tong, β€œAdaptive model reference control of a class of MIMO discrete-time systems with compensation of nonparametric uncertainty,” in Proceedings of the American Control Conference (ACC ’08), pp. 4111–4116, Seattle, Wash, USA, June 2008. [9] A. Boukerche, X. Cheng, and J. Linus, β€œA performance evaluation of a novel energy-aware data-centric routing algorithm in wireless sensor networks,” Wireless Networks, vol. 11, no. 5, pp. 619–635, 2005. [10] P. Bonsma and F. Zickfeld, β€œSpanning trees with many leaves in graphs without diamonds and blossoms,” in LATIN 2008: Theoretical Informatics, vol. 4957 of Lecture Notes in Computer Science, pp. 531–543, 2008. [11] S. Win, β€œOn a conjecture of Las Vergnas concerning certain spanning trees in graphs,” Resultate der Mathematik, vol. 2, no. 2, pp. 215–224, 1979. [12] G. Gutin, β€œOut-branchings with maximal number of leaves or internal vertices: algorithmic results and open problems,” Electronic Notes in Discrete Mathematics, vol. 32, pp. 75–82, 2009. [13] H. Matsuda, K. Ozeki, and T. Yamashita, β€œSpanning trees with a bounded number of branch vertices in a claw-free graph,” Graphs and Combinatorics, vol. 30, no. 2, pp. 429–437, 2014.

5 [14] A. Kyaw, β€œSpanning trees with at most 3 leaves in 𝐾1,4 -free graphs,” Discrete Mathematics, vol. 309, no. 20, pp. 6146–6148, 2009. [15] A. Kyaw, β€œSpanning trees with at most k leaves in 𝐾1,4 -free graphs,” Discrete Mathematics, vol. 311, no. 20, pp. 2135–2142, 2011. [16] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito, and T. Yamashita, β€œSpanning trees with a bounded number of leaves in a claw-free graph,” Ars Combinatoria, vol. 103, pp. 137–154, 2012. [17] Y. Chen, G. Chen, and Z. Hu, β€œSpanning 3-ended trees in kconnected K 1,4 -free graphs,” Science China Mathematics, vol. 57, pp. 1579–1586, 2014. [18] Z. RyjΒ΄acΛ‡ek, β€œAlmost claw-free graphs,” Journal of Graph Theory, vol. 18, no. 5, pp. 469–477, 1994. [19] G. Chen and R. Schelp, β€œHamiltonicity for K 1,4 -free Graphs,” Journal of Graph Theory, vol. 20, pp. 423–439, 1995. [20] O. Ore, β€œHamiltonian connected graphs,” Journal de MathΒ΄ematiques Pures et AppliquΒ΄ees, vol. 42, pp. 21–27, 1963.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014