Spatial and temporal variability of periglaciation of the ...

16 downloads 160 Views 6MB Size Report
f Department of Geography, University of Santiago de Compostela, Spain g Department ...... Albarracín en el contexto de la Cordillera Ibérica Oriental. In: Pe˜na ...
Quaternary Science Reviews 137 (2016) 176e199

Contents lists available at ScienceDirect

Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev

Spatial and temporal variability of periglaciation of the Iberian Peninsula mez-Ortiz c, M.J. Gonza lez-Amuchastegui d, M. Oliva a, *, E. Serrano b, A. Go rez-Alberti f, R. Pellitero-Ondicol g, A. Nieuwendam a, D. Palacios e, A. Pe h f rcel , G. Vieira a, D. Antoniades i ndez , M. Valca J. Ruiz-Ferna a

Centre for Geographical Studies e IGOT, Universidade de Lisboa, Portugal Department of Geography, University of Valladolid, Spain Department for Physical and Regional Geography, University of Barcelona, Spain d Department of Geography, Prehistory and Archaeology, University of the Basque Country, Spain e Department for Regional and Physical Geography, Complutense University of Madrid, Spain f Department of Geography, University of Santiago de Compostela, Spain g Department of Geography and Environment, University of Aberdeen, UK h Department of Geography, University of Oviedo, Spain i Department of Geography & Centre for Northern Studies (CEN), Universit e Laval, Canada b c

a r t i c l e i n f o

a b s t r a c t

Article history: Received 3 December 2015 Received in revised form 12 February 2016 Accepted 15 February 2016 Available online xxx

Active periglacial processes are currently marginal in the Iberian Peninsula, spatially limited to the highest mountain ranges. However, a wide variety of periglacial deposits and landforms are distributed in low and mid-altitude environments, which shows evidence of past periods of enhanced periglacial activity. The purpose of this paper is to summarize the present knowledge of past periglacial activity in the Iberian Peninsula. The chronological framework takes four main stages into account: the last glaciation, deglaciation, Holocene and present-day processes. This study focuses on the highest massifs (Pyrenees, Cantabrian Range, NW ranges, Central Range, Iberian Range, Sierra Nevada) as well as other lower elevation environments, namely the central Iberian Meseta. During the last glaciation the periglacial belt extended to much lower altitudes than today, reaching current sea level in the NW corner of the Iberian Peninsula. A wide range of geomorphological landforms and sedimentary records is indicative of very active periglacial processes during that phase, in some cases related to permafrost conditions (i.e., block streams, rock glaciers). Most of the inactive landforms and deposits in low and mid-elevations in Iberia are also related to this phase. The massive deglaciation of the Iberian massifs was caused by a gradual increase in temperatures. The deglaciation phase was only interrupted by a short period with colder conditions (the Younger Dryas) that reactivated periglacial processes in the formerly glaciated cirques of the highest lands, specifically with the widespread development of rock glaciers. During the Holocene, periglacial processes have been only active in the highest ranges, shifting in altitude according to temperature regimes and moisture conditions. The Little Ice Age saw the reactivation of periglacial activity in lower elevations than today. Currently, periglacial processes are only active in elevations exceeding 2500 m in the southern ranges and above 2000e2200 m in the northern massifs, higher in Sierra Nevada, in the south of Iberian Peninsula. © 2016 Elsevier Ltd. All rights reserved.

Keywords: Iberian Peninsula Periglacial processes Last glaciation Deglaciation Holocene Climate variability

1. Introduction

* Corresponding author. Centre for Geographical Studies e IGOT, Universidade de e Marques, Edifício do IGOT, 1600-276 Lisbon, Portugal. Lisboa, Rua Branca Edme E-mail address: [email protected] (M. Oliva). http://dx.doi.org/10.1016/j.quascirev.2016.02.017 0277-3791/© 2016 Elsevier Ltd. All rights reserved.

Research on cold-climate geomorphological processes in the Iberian Peninsula has attracted the attention of a large number of scientists and naturalists over the last two centuries. The first references to these topics were simple descriptions of the small glaciers located in the Pyrenees, the Cantabrian Mountains and the

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

lez-Trueba et al., Sierra Nevada (Gonz alez-Trueba, 2005; Gonza  mez-Ortiz et al., 2009). During the late XIX and early XX 2008; Go centuries scholars examined the glacial landscapes of the main mountain ranges (i.e., Bide, 1893; Obermaier, 1914). Gradually, and particularly during the second half of the XX century, scientists turned their attention to the study of periglacial phenomena. Until the 1980s and '90s periglacial studies were mostly focused on geomorphological mapping, description and relative dating of mez-Ortiz, 1980; inactive landforms and deposits (e.g., Go Gonz alez-Martín and Pellicer, 1988; García-Ruiz et al., 1988, 2001; rez-Alberti et al., 1994). More recently, this Chueca et al., 1994; Pe approach has been complemented with a significant increase in the number of studies centered on the monitoring of present-day  mez-Ortiz et al., 1999, 2004, Vieira et al., 2003; processes (Go n, 2005; Serrano et al., 2006, 2011a; Vieira, 2004; Chueca and Julia Oliva et al., 2008, 2009, 2014), including a few providing absolute  mez-Ortiz dating of periglacial features (Oliva et al., 2009, 2011; Go s et al., 2015). et al., 2012a, b; Andre French (2007) broadly defined the periglacial environment as those non-glacial areas where mean annual temperatures range between 2  C and þ3  C. By this definition, the periglacial zone in the Iberian Peninsula is currently found only in the highest mountain ranges, where no settlements and little infrastructure exists. As in other mid-latitude mountain environments, periglacial processes in the Iberian ranges are strongly controlled by altitude and latitude, which in turn determines mean annual air temperature. In the high mountains of the western Mediterranean basin winter precipitation is a crucial factor for present-day periglacial activity since it influences the duration and thickness of snow cover, which control soil moisture and the ground thermal regime (Zhang, 2005; Oliva et al., 2014a). Linked to climate conditions, the vegetation type and cover and the degree of soil development, together with other local factors such as the lithology and topography, are also decisive for periglacial activity (Vieira et al., 2003). Topography determines different microclimate regimes within the mountain ranges, imposing different amounts of radiation in northern and southern €llermann, 1985), which conditions the spatial distribution slopes (Ho and degree of activity of periglacial processes. Most of the studies that have monitored periglacial processes in Iberian mountains have shown that periglacial landforms show a weakly active to inactive pattern (i.e., Oliva et al., 2014a), being only active in the highest northern cirques and watersheds (i.e., Serrano  mez-Ortiz et al., 2014). This means that the et al., 2006, 2011b; Go majority of the periglacial landforms and deposits formed during past periods with colder climate conditions that promoted very active periglacial processes. Consequently, the distribution of periglacial phenomena in the Iberian Peninsula is a result of both present and past climate conditions. The periglacial belt expanded more or less according to the intensity of the cold during Quaternary glaciations, and receded to higher elevation areas during interglacials, such as has been the case during the Holocene (Oliva et al., 2014b). During the coldest phases, periglacial features also developed in central Spain at elevations of only 700 m (Serrano et al., 2010), as well as near the shoreline along the Atlantic coast rez-Alberti et al., 1998a; Vieira and Cordeiro, 1998). Furthermore, (Pe whilst many periglacial landforms formed during the last glaciation and subsequent deglaciation were related to permafrost conditions mez-Ortiz et al., 2012a, b; Andre s et al., 2015), (e.g., rock glaciers; Go during the Holocene the majority of the periglacial features have formed under a seasonal frost regime (e.g., solifluction landforms; Oliva et al., 2009). During the Holocene, periglacial and nivation activity were enhanced in some massifs by human-induced deforestation, which started around 5000e5500 cal yr BP in the Pyrenees rez-Díaz et al., 2015) and in the Cantabrian Mountains (Diez(Pe Castillo, 1995; Nieuwendam et al., 2015). This anthropogenic

177

deforestation led to a downslope shift in timberline in the Pyrenees and Cantabrian Mountains, which promoted an increase in solifluction and nival processes e avalanches included e at elevations several hundreds of meters lower than observed in undisturbed € llermann, 1985; Gonza lez-Trueba, 2007a, b). alpine landscapes (Ho The wide range of periglacial landforms and broad distribution of the periglacial deposits in the Iberian Peninsula must therefore be framed within its rough orography, its diverse climate regimes and the Late Pleistocene climate variability. The complexity of these factors makes it difficult to provide a chronological framework for the formation, development and/or stabilization of these features. A better understanding of the temporal and spatial variability of periglacial activity in the Iberian Peninsula will provide a better characterization of environmental dynamics in southern Europe since the last glaciation. This will allow for connections to be drawn between the evolution of geomorphological processes in the low latitudes of Europe with those that occurred in mid-high latitude environments. With the overall purpose of summarizing the present-day knowledge of the present and past distribution and activity of periglacial processes in the Iberian Peninsula, this paper has the following goals:  To identify the spatial distribution of landforms, deposits or processes of periglacial origin in the Iberian Peninsula region.  To establish a chronological sequence for periglacial activity in Iberia since the last glaciation.  To evaluate the state of the art of periglacial research, identify the gaps in the present-day knowledge and propose avenues for future research.

2. Regional setting The Iberian Peninsula extends over a surface of 582,925 km2 from latitude 43 470 N to 36 010 N and longitude 9 300 W to 3 190 E. It encompasses several mountain ranges, six of which exceed elevations above 2000 m a.s.l. (the Pyrenees, the Cantabrian Mountains, the NW ranges, the Central Range, the Iberian Range and the Betic Range), two of which contain massifs with peaks exceeding 3000 m: the Central Pyrenees and the Sierra Nevada, in the southern fringe of the Betic Range (Fig. 1). This paper focuses principally on the mountain ranges where the periglacial landscape is more evident, although geomorphological evidence in other ranges is also examined. The Iberian Peninsula is located between the high pressure subtropical belt and the mid-latitude westerlies, and its climate is regulated by the seasonal shifts of these systems. The mountainous geography of Iberia, together with these synoptic climate patterns and the fact that most of these ranges are aligned W-E, determines a wide spectrum of topoclimatic regimes not only generally across the Iberian Peninsula, but also within the individual mountain ranges (e.g., Mora, 2010). The 0  C isotherm lies at approximately ~ oz, 1982), 2725 m 2400e2500 m at the Cantabrian Mountains (Mun in the Central Pyrenees (Barrio et al., 1990) and at 3400 m in Sierra Nevada (Oliva et al., submitted). Precipitation at the highest elevations also varies significantly between mountain ranges, with values of over 2000e2500 m in the Atlantic-influenced rangescontrasted with 600e900 mm in the Sierra Nevada (Oliva, 2009) (Table 1). The high mountain landscapes in the Iberian Peninsula are a consequence of both Quaternary glaciations and post-glacial environmental dynamics driven (mainly) by periglacial, slope and alluvial processes and shallow and deep-seated landslides. Quaternary glaciers in Iberia were confined to the high mountain ranges, never reaching the surrounding lowlands. The elevation limit of the glaciated domain in the Iberian massifs during the last

178

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

Fig. 1. Location map of the main mountain ranges in the Iberian Peninsula.

glaciation increased towards the south and towards the east, due to the effect of latitude as well as of the difference in sea surface water temperatures between the cool Atlantic Ocean and the warm rez-Alberti et al., 2004). Accordingly, the Mediterranean Sea (Pe prevailing colder climate conditions during glacial periods determined the geography of the periglacial environment, which expanded to significantly lower elevations than today. The present periglacial belt extends from the treeline to the highest peaks, with the exception of the Pyrenees, where a small glaciated area still exists in the highest massifs. The periglacial zone above the timberline includes a lower and an upper periglacial subbelt. The lower sub-belt in Iberian mountains is broadly occupied by grasslands, including many inactive periglacial landforms and deposits. This area has been intensely affected over the last centuries by fire management policies that have entailed substantial

geomorphic and hydrologic changes, a common occurrence in Mediterranean mountain environments (Lasanta et al., 2006). The upper periglacial sub-belt is generally poorly vegetated, with a wide range of periglacial phenomena that show weak to moderate activity under present-day climate conditions. This zonation is translated into the geoecological processes prevailing in these high mountain environments (Troll, 1973). 3. Methodology We examined the available scientific literature existing for the different study areas, including papers in international peerreviewed SCI journals, books, book chapters and conference proceedings, theses, and national publications (Portuguese/Spanish journals and books, proceedings of Iberian/national conferences).

Table 1 Main elevations and present-day climate conditions at the highest elevations of the main massifs, together with the lower limits of the periglacial belt. Range

Highest peaks (m a.s.l.)

Annual precipitation (mm)

Altitude of 0  C isotherm Lower altitude of the periglacial sub(m) belt (m)

Pyrenees

Aneto (3404), Posets (3371), Monte Perdido (3355)

1200e2500

2800e2900

Cantabrian Mountains NW ranges

 n (2642) Torre Ceredo (2650), Torre del Llambrio

2000e2500

2400e2500

~ a Trevinca (2127), Pico Cuin ~ a (1998) Pen

1800e2200

2400e2500

~ alara 1200e2000 Pico Almanzor (2591), Canchal de la Ceja (2435), Pen (2428) n Moncayo (2313), San Lorenzo (2262), Pico de Urbio 1000e1500 (2228) n (3478), Veleta (3398), Alcabaza (3371) Mulhace 600e900

2400e2500

Central Iberian Range Iberian Range Betique Range

2400e2500 3400

2100 2300 1900 2100 1900 2100 2100 2300 2100 2300 2500 2650

(north) (south) (north) (south) (north) (south) (north) (south) (north) (south) (north) (south)

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

In total, 282 published works concerning the periglacial geomorphology in the Iberian mountains were examined (Fig. 2), with the following spatial distribution: Pyrenees (38), Cantabrian Mountains (60), NW ranges (21), Central Range (29), Iberian Range (37), Betic Range (36), and other areas (61). The available information was summarized in a table for each study area. Chronologically, it was organized according to four main periods: the last glaciation, deglaciation, the Holocene and presentday processes. In this paper the limit between the last glaciation and deglaciation is established at 19e20 ka BP, defined by Clark et al. (2009) as the onset of deglaciation in the Northern Hemisphere. Some stages were divided into different phases, such as deglaciation, with the purpose of separating the main deglaciation process in most of the massifs and the Younger Dryas cold period. The same has been done for the Holocene: for this period, our chronology follows the proposal by Walker et al. (2012), with the boundary between the EarlyeMiddle Holocene established at 8.2 ka BP and the limit between the Middle-Late Holocene at 4.2 ka BP. The Little Ice Age (14e19th centuries) was also incorporated as a specific period within the Holocene due to the large number of works that refer to this period. The information was subsequently organized including the environmental setting within each massif (altitude, topography, aspect) where periglacial processes and/or landforms developed, accompanied by the specific absolute age (if existing) and the corresponding scientific references. Periglacial landforms, deposits and processes for each period and study area are summarized in Fig. 10. 4. Periglacial processes and landforms. From the last glaciation to present-day 4.1. The Pyrenees The Pyrenees are a series of massifs that run 500 km W-E at latitude 42  N from the Cantabrian coast to the Mediterranean Sea.

179

The highest massifs exceed 2500e3000 m, such as Maladeta (3404 m), Posets (3371 m) and Monte Perdido (3355 m). These high elevations favoured the development of very active and widespread periglacial processes during the Quaternary. Some periglacial features formed during the last glaciation, such as cryoplanation surfaces, block fields and talus screes (Fig. 3). During this phase the periglacial belt was more extensive in the eastern Pyrenees, where the glacial environment was restricted to  mez-Ortiz and Serrat, 1977; Go  mez-Ortiz, higher elevations (Go 1980). Periglacial processes were active above 400 m in the central Pyrenees - where some glacier fronts reached elevations of 800 m e as revealed by the presence of stratified deposits and fragipan horizons (Chueca et al., 1994; Serrano, 1998; García-Ruiz et al., 2001, 2005; Boixadera et al., 2008; Hirsch and Raab, 2014). Deglaciation promoted widespread periglacial activity, with rock glaciers being the most conspicuous and common periglacial features developed during this phase. These landforms are very abundant above 2250 m in the central and western Pyrenees. This brought some researchers during the 80s and '90s to refer to this stage - within the Iberian geomorphological literature - as the “rock glacier phase” (Serrat, 1979). However, research since then has shown the existence of different generations of rock glaciers with ages spanning from the Last Glacial Maximum (LGM) to the LIA (Serrano, 1998; Serrano et al., 2000; Serrano and Agudo, 2004). The distribution of rock glaciers has been used to reconstruct paleoenvironmental conditions in the highlands of the Pyrenean massif. Many studies have attributed their formation to the Younger Dryas, implying that permafrost was widespread above 2490 m at that time (Chueca et al., 1994, 2000; Serrano, 1998; Serrano et al., 2000). However, recent studies that used exposure dating on rock glacier boulders indicate that they formed slightly earlier, between 14 and 15 ka, which suggests that their formation was driven by paras et al., glacial dynamics instead of having a climatic origin (Andre 2015; Palacios et al., 2015a, b). During the coldest phases of the deglaciation, periglacial processes expanded down to 700 m, with

Fig. 2. Number and typology of the scientific contributions for each of the study areas.

180

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

Fig. 3. Examples of periglacial phenomena in the Pyrenees for each of the phases.

stratified screes in valleys and slopes (García-Ruiz et al., 2001; García-Ruiz and Martí-Bono, 2001) and patterned ground landmez-Ortiz, 1980) (Table 2). forms on the summit plateaus (Go The Holocene is characterized by a lower intensity of periglacial activity as a result of warmer conditions. Several types of slope deposits associated with Holocene periglacial activity (scree, stratified, solifluction and colluviums) are distributed above 1300 m. Although some glacial advances occurred during the Holocene (Grove and Gellalty, 1995; García-Ruiz et al., 2005, 2014), many periglacial features are difficult to assign to the Holocene because of the absence of a clear morphostratigraphic correlation with landforms of former and/or later stages. This has been only done through morphostratigraphy and indirect methods for some rock glaciers that are still active, suggesting their formation during the Mid-Late Holocene (Serrano et al., 2009, 2011a, Serrano 2014). Glaciers expanded in the Pyrenees during the LIA (Martínez de  n and Arenillas, 1988; Chueca et al., 2005; Gonza lez-Trueba Piso et al., 2008) as did the periglacial environment. Patterned ground, frost mounds, solifluction landforms and protalus lobes developed above ~2000 m at this time. Many of these landforms are not active today despite their well-preserved appearance. Rock glaciers and protalus lobes were also reactivated during this cold stage. In addition, apart from the LIA moraines frost mounds are also still lez-García, 2014). preserved, probably of LIA age (Gonza Since the LIA, climate warming has induced the migration of periglacial processes to higher elevations in the Pyrenees, accompanied by growth enhancement and increased regeneration rates of treelines (Camarero et al., 2015). Today, periglacial activity is moderate above 2200 m and intense above 2400 m. ~99.5% of the existing rock glaciers in the Pyrenees are relict, and only 15 landforms above 2500 m showed movement rates of a few tens of cm/ n, 2005; Serrano et al., 2011a). Eight of the year (Chueca and Julia active landforms are located in granite massifs, seven in metamorphic areas and only one in limestone lithologies (Serrano et al.,

2011a). Their distribution suggests that probable permafrost conditions are distributed above ~2630 m. Today, cryonivation processes are the most extensive cold-climate geomorphological phenomena in the Pyrenees, including snow mass movements and nivation processes and landforms. A wide range of active periglacial processes and landforms are present, driven mostly by seasonal frost conditions, such as cryoturbation landforms, patterned ground, protalus lobes, solifluction processes, ploughing blocks, debris flows and slopes, intense frost shattering, etc (Serrano et al., lez-García, 2014). These 2001, 2009; 2011a; Feuillet, 2010; Gonza processes affect all lithologies, with solifluction being particularly relevant in limestone and metamorphic massifs, probably as a result of the high generation of fine-grained sediments in these areas. The existence of ice caves in the Monte Perdido and Cotiella massifs is indicative of cold regimes and periglacial environments (Serrano et al., 2009; Belmonte et al., 2014), in contrast to what occurs in several other European mountains (e.g., Alps, Tatras, Carpathians) where they are distributed within the montane and subalpine belts. 4.2. Cantabrian Mountains The Cantabrian Mountains stretch W-E for almost 500 km in northern Iberia from the Galician massifs to the Pyrenees. These mountains include massifs exceeding 2500e2600 m in the central ~ a Prieta), and were heavily part of the range (Picos de Europa, Pen glaciated during the Pleistocene glacial phases (RodríguezRodríguez et al., 2014). During the last glaciation periglacial processes were not confined to the mountain areas, but also extended to the lowlands down to the Cantabrian coast, where relict periglacial features are located in coastal cliffs and even below current sea level (Mary, 1979). Within the mountainous areas, stratified deposits are the

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

181

Table 2 Periglacial activity in the Pyrenees since the Last Glaciation. Phase

Periods

Deglaciation

Holocene

Present-day

Environment Landforms and processes

Patterned ground, cryoplanation, block field development Rock glaciers, scree talus Stratified debris slopes until 400 m, generalized above 700 m. Fragipan and permafrost evidences 1130 m Rock glacier formation above 2250 m, with Older Glacial Dryas cirques and widespread permafrost above 2490 m. Patterned ground formation summits Stratified debris slopes until 400 m, generalized Valley bottoms and above 700 m slopes Rock glaciers becoming gradually inactive below Younger Glacial Dryas cirques and 2300 m and new rock glaciers forming above 2350 m summits Permafrost widespread above 2525 m Valley bottoms and Stratified debris slopes above 900 m slopes Early Holocene Mid Cirques and Degradation of permafrost in the highest areas and probable complete deglaciation of the Holocene summits massif. Scree formation. Elevation rise of snow Mid slopes patches Solifluction processes, stratified debris slopes above 1300 m Late Holocene Cirques and Glacial advance, reactivation and formation of LIA (XIVeXIX high slopes rock glaciers centuries) High slopes Permafrost above 2560 m, patterned ground formation 2000 m Nivation hollows Talus scree, debris lobes, solifluction processes

Lastglaciation MIS 4 LGM

Summit plateaus Mid-low slopes Valleys

From the Cirques and high slopes LIA until the 2000 m present

Probable permafrost above ~2630 m (N), ~2800 m (S) Active rock glaciers above 2510 m Patterned ground above 2500 m Block fields, debris lobes, protalus lobes, protalus ramparts, ploughing blocks, nivation niches, cryoturbation landforms

most common and ancient periglacial evidence preserved ~o n and Frochoso, 1994). During this phase these deposits (Castan formed above 200e400 m in northern slopes and 600 m in southern areas (Table 3). They are also very common in the highlands of the northern Iberian Meseta, at the foot of the southern slope of the Cantabrian Mountains, at elevations between 600 and 1000 m. Patterned ground features in the Curavacas massifs show the effectiveness of cryogenic processes in non-glaciated summit surfaces during the Pleistocene glacial phases (Pellitero, 2012). Other periglacial landforms, such as block fields, rock glaciers and protalus ramparts, are also present in the Cantabrian Mountains and are mostly related to this phase (Pellitero, 2012; Ruizndez, 2013) (Fig. 4). Block fields and block streams occur Ferna mainly in areas near or above the glaciated domain, across slopes and plateaus that were glacier-free during the last glaciation, in

Chronology (ka BP)

References

Before 32 18e20 20e22

mez-Ortiz (1980), Go  mez-Ortiz and Serrat (1977), Go Chueca et al. (1994), Serrano (1998), García-Ruiz et al. ~ a et al. (2003), Chueca and Julia n (2001, 2005, 2015), Pen (2008), Boixadera et al. (2008)

Before 13e14

 (1980), Go mez-Ortiz (1980), Chueca et al. (1994), Soutade Serrano (1998), García-Ruiz et al. (2001, 2005, 2015), Hirsch and Raab (2014)

Serrano (1998), García-Ruiz et al. (2001, 2005, 2015), Hirsch et al. (2010)

Grove and Gellatly (1995), Serrano (1998), García-Ruiz et al. (2005)

(1) Maximum glacial expansion in last decades of XVII century (2) Minor readvances 1750 and 1800 (3) Glacial advance 1805e1830 (4) Glacial retreat 1870 (5) Minor readvances and equilibrium 1890e1920 (6) Glacier retreat during the 1930s (7) Drastic retreat since the end of 1980s

n and Arenillas (1988), García-Ruiz et al. Martínez de Piso (1988), Copons and Bordonau (1994), Grove and Gellatly (1995), Juli an and Chueca (1998), Lugon et al. (2004), Serrano et al. (2001, 2002), García-Ruiz and Martí-Bono lez-Trueba et al. (2008) (2001), Chueca et al. (2005), Gonza

 (1980), Go mez-Ortiz (1980), Ho €llermann (1985), Soutade Chueca (1992), Serrano and Agudo (1998), Serrano et al. (1999, 2001, 2002, 2006, 2009, 2011a), Chueca et al. n and Chueca (2007), Feuillet (2010), García(2000), Julia Ruiz et al. (2015), Gonz alez-García (2014)

quartzites, conglomerates and sandstones above 1900 m (García de Celis, 2002; Pellitero, 2012). Undoubtedly, they are of periglacial origin because of the high angularity of the clasts and the existence of secondary periglacial landforms, such as patterned ground, within the fine-grained sediments of the block fields. Their evolution during the Late Pleistocene is, however, not very welldescribed, as these landforms may have undergone several phases of activity and stability (Phillips et al., 2006). The presence of block fields, rock glaciers and block streams in the Cantabrian Mountains suggests the presence of a periglacial environment with permafrost conditions ranging from 900 to 2600 m during the Late Pleistocene glacial period (Pellitero et al., 2011; Serrano et al., 2015) and, in the case of the highest landforms (i.e., rock glaciers), they might be also attributed to the coldest Holocene phases. When glaciers started retreating, the periglacial domain

182

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

Table 3 Periglacial activity in Cantabrian Mountains since the Last Glaciation. Phase

Periods

Environment Landforms and processes

Chronology References (ka BP)

Last MIS3glaciation MIS2 MIS2

Cantabrian coast Mountains High mountains

Stratified deposits, screes, mass movements 1800 m LIA until the present

Active screes, solifluction lobes, ploughing boulders and formation of protalus ramparts. Nivation processes on upper slopes and summits Nivation erosional features and seasonal frost >1800 m

Chronology References (ka BP)

Valc arcel (1998)

XIVeXIX centuries

Fern andez-Cortizo (1996), Valc arcel (1998), Carrera and Valc arcel (2010, 2011)

rez-Alberti et al. (1998), Carrera et al. (2006), Carrera and Pe Valc arcel (2010, 2011)

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

185

Fig. 6. Examples of periglacial phenomena in the Central Range for each of the phases.

Periglacial dynamics has a limited geomorphic impact in the landscape of the highlands. However, nivation processes are very active since they provide water to unstable slopes during the snowmelt period, triggering solifluction activity during most of the spring and summer in this Mediterranean climate (Palacios and García, 1997; García-Sancho et al., 2001; Palacios et al., 2003). 4.5. Iberian Range The Iberian Range is a complex mountain range composed of different massifs and depressions stretching NW-SE 500 km from the Ebro depression to the Meseta. The main massifs exceed

n 2200 m, such as Moncayo (2316 m), Demanda (2262 m) and Urbio (2228 m), with several others reaching 1800e2100 m. Most of the research dealing with periglacial phenomena in the Iberian Range was conducted during the 1970se90s, with the majority focusing on landforms and deposits associated with the last glaciation and subsequent deglaciation. To understand the periglaciation of the Iberian Range it needs to be assessed considering the different geographic characteristics between the two climate sub-regions within this range: the North and Central Range (continental Atlantic influence) and the Eastern and Southern Iberian range (continental Mediterranean influence). The chronology of periglacial activity in this region still lacks absolute ages.

Table 5 Periglacial activity in the Central Range since the Last Glaciation. Phase

Periods

Last PREglaciation LGM LGM

Environment

Landforms and processes

Summit plateau Intermediate plateaus and high non-glaciated slopes Low elevation

Development of block fields and blockslopes in Before 35 non-glaciated plateaus. Macrogelivation boulders After 30 and stone-banked lobes on NW slopes Scarce rock glaciers Periglacial slope deposits (stratified and head) 1200e700 m

Deglaciation Older Dryas Younger Dryas Holocene

LIA

Highlands >1800 m

Present-day From the Highlands >1800 m LIA until the present

Chronology References (ka BP)

17e15 Scarce rock glaciers following glacial retreat, 12.5e11.3 deglaciation rockslides, active periglacial processes. Nival protalus ramparts Periglacial slope deposits, protalus ramparts 11.3 - LIA Gelivation, rock fall and scree activity Macrogelivation boulders, possible stone-banked lobes Nivation hollows Seasonal frost in north facing slopes above 1700 and 1900 m Debris-flows following forest fires in intermediate slopes Incipient solifluction above 1850 m Miniature patterned ground above 1600 m

Vidal-Box (1936, 1948), Alía-Medina et al. (1957), Franzle ~o n and Asensio-Amor (1973), Daveau (1973, (1959), Ontan ~o n (1985), Sanz-Herr 1978) Daveau et al. (1997), Ontan aiz ~ oz et al. (1995), Martínez de Piso n and Palacios (1988), Mun (1997), Vieira and Cordeiro (1998), Marcos (2000), Ferreira et al. (2000), Vieira (2004), Pedraza et al. (2011), Palacios et al. (2011a, b, 2012), Carrasco et al. (2012)  pez (1980), Ferreira et al. (2000), Vieira (2004), Pedraza and Lo Pedraza et al. (2011), Carrasco et al. (2012, 2015), Palacios et al. (2011a, b, 2012)

pez (1980), Saanz-Herra iz (1988), Palacios et al. Pedraza and Lo (2003)

iz (1988), Palacios and García (1997), Palacios and Sanz-Herra s (2000), Palacios et al. (1998, 2003), Mora et al. (2001), Andre Vieira et al. (2003), Vieira (2004)

186

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

A wide variety of periglacial landforms and deposits formed in the non-glaciated environments of the North and Central Ranges during the last glaciation (Table 6). These include block streams, protalus ramparts, and sedimentological evidence of periglacial lez-Martín and slope processes at elevations of only 1100 m (Gonza Pellicer, 1988) (Fig. 7). The deglaciation conditioned the migration of the periglacial belt towards higher elevations, particularly inside ez and García Ruiz, 2000). Since the formerly glaciated cirques (Arna then, and throughout the Holocene, periglacial processes have only been active in the highest points of the main massifs. The presence of different types of periglacial slope deposits (scree, debris flows, solifluction) serves as geomorphic evidence of this distribution in these areas. Under present-day climate, periglacial processes, such as debris flow and solifluction activity, are marginal, occurring above 1800 m (Arn aez and García Ruiz, 2000). The lower altitude of the Eastern and Southern Iberian range, and its southern location affected by continental Mediterranean climate conditions, determined scarce periglacial phenomena. Nevertheless, during the last glaciation a wide variety of periglacial landforms formed (block streams, block fields, rock glaciers), which suggests the existence of permafrost conditions starting in mid-altitude slopes, mainly in northern facing and ~ a et al., 2010). In limestone canyons at lower paleozoic massifs (Pen elevations there are also abundant stratified slope deposits formed during the last glaciation. There is little evidence of periglacial activity during the deglaciation and the Holocene. Rock glaciers were formed during

deglaciation inside the formerly glaciated cirques, and some scree deposits of Holocene age are interbedded within tufa buildups. Periglacial processes were reactivated at the highest elevations during the LIA, with slope regularization. Present-day active periglacial processes are very sparse, are always located above 1500 m and occur under a seasonal regime, such as weak solifluction pro~ a et al., 2000; cesses, frost creep, and seasonal pipkrake (Pen lez-Martín et al., 2000). Active scree deposits are very comGonza mon in the Eastern and Southern Iberian range landscapes, and especially frequent in limestone areas. However, their periglacial significance may be conditioned by the anthropogenic impact caused by deforestation in these areas, which increases the vulnerability of the limestone bedrock to physical weathering ndez-García, 1984). (Gonz alez-Martín and Ferna 4.6. Betic Range The Betic Range includes several massifs reaching elevations of 2000 m (Sierra Morena, Filabres, Baza) and Sierra Nevada, at >3300e3400 m including the highest elevations in Iberia and in southern Europe. Most of the research in this range has been carried out in the Sierra Nevada. Late Pleistocene climate variability resulted in a wide variety of periglacial landforms in the Sierra Nevada (Table 7). Periglacial features - such as sorted circles e that originated during the last glaciation include non-glaciated, flat summit surfaces above mez-Ortiz, 1987, 2002; Simo n 3000 m (Fig. 8) (Messerli, 1965; Go

Table 6 Periglacial activity in the Iberian Range since the Last Glaciation. Phase

Environment

Landforms and processes

Last LGM glaciation

NW and Central Iberian Range n, Cebollera (Demanda, Urbio and Moncayo) Higher altitudes and summits >2200 m E and S Iberian Range. Summits around 2000 m

Rock glaciers, protalus ramparts, debris flows, solifluction (>1100 m) Block streams, block fields, solifluction processes, protalus ramparts, rock glaciers and discrete manifestations of permafrost in summit areas, mainly in paleozoic massifs Stratified debris slope deposits in limestone canyons

Deglaciation

NW and Central Iberian Range

Protalus ramparts inside glacial cirques, scree deposits and debris flow Scree deposits, debris flows and solifluction processes Scree deposits located inside large tufa buildups

Holocene

Periods

Early NW and Central Iberian Range Holocene E and S Iberian Range

Mid NW and Central Iberian Range Holocene E and S Iberian Range

Late Holocene LIA Present-day From the LIA until the present

Chronology References (ka BP)

Scree deposits, debris flows and solifluction processes Scree deposits, located inside large tufa buildups

E and S Iberian Range

Scree deposits

E and S Iberian Range NW and Central Iberian Range E and S Iberian Range

Regularization of slopes XVIeXIX Active periglacial processes restricted to elevations >1800 m. Solifluction processes and debris flows >1470, screes >1660 m Weak activity of periglacial processes. Frost shattering >1500 m. In summit areas: frost creep, seasonal pipkrake. Solifluction, debris flows and some active screes

ez (1987), Arna ez and García-Ruiz (2000), Arna García-Ruiz et al. (1998), Ortigosa (1985, 1986), Pellicer (1980, 1984), Sanz and Pellicer (1994), rrez Thornes (1968), García-Ruiz (1979), Gutie ~ a (1975) and Pen lez-Martín (1976), Asensio-Amor and Gonza Asensio-Amor et al. (1994), García-Sainz (1962), s and Calvo (1987), Calvo et al. (1983), Gine Mateu (1977), Gonz alez-Amuchastegui and lez-Martín and Gonz alez-Martín (1990), Gonza lez-Martín Asensio-Amor (1977, 1978), Gonza and Pelllicer (1988), Gonz alez-Martín et al. rrez and Pen ~ a (1975, 1977), Jime nez (2000), Gutie  (1981), Pen ~ a and (1987), Lozano (1993), Pailhe ~ a et al. (2000), Pen ~ a and Lozano (1998), Pen nez (1993), Riba (1959), Rosello  (1977) Jime ez and García-Ruiz Sanz and Pellicer (1994), Arna (2000) ez and García-Ruiz Sanz and Pellicer (1994), Arna (2000) lez-Martín Gonz alez-Amuchastegui and Gonza ~a (1990), Gonz alez-Amuchastegui (2014), Pen ~ a et al. (2010), Sancho et al. et al. (2000), Pen (1998) ez and García-Ruiz (2000), Sanz and Pellicer Arna (1994) ~ a et al. (2000), Gonza lez-Amuchastegui and Pen lezGonz alez-Martín (1990), Gonza Amuchastegui (2014) ~ a et al. (2000) Burillo et al. (1981, 1983), Pen ~ a et al. (2000) Burillo et al. (1981, 1983), Pen Pellicer (1980), Thornes (1968), Arn aez and García-Ruiz (2000), García de Celis et al. (2006)  (1981), Gonz ndez (1984), Pailhe alez and Ferna ~ a et al. (2000), Gonza lezLozano (1993), Pen Martín et al. (2000)

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

187

Fig. 7. Examples of periglacial phenomena in the Iberian Range for each of the phases.

et al., 2000), one rock glacier formed at 2500 m and periglacial deposits preserved at elevations down to 1100e1200 m (Hempel,  mez-Ortiz and Salvador-Franch, 1992). Most of the 1960; Go mountain massifs in the Betic Range show evidence of periglacial processes (screes, solifluction, cryoturbation, etc.) in deposits at pez-Bermúdez, elevations between 700 and 1100 m (Pezzi, 1975; Lo mez-Ortiz et al., 1994; Schulte, 2002). 1976; Brosche, 1982a; Go Following deglaciation at 14e15 ka, rock glaciers started forming in the areas formerly occupied by glaciers (i.e., inside cirques)  mezwith unconsolidated rock fragments (Palade et al., 2011; Go Ortiz et al., 2012a, 2013). As temperatures rose during the Early Holocene, permafrost degraded and the activity of rock glaciers  mez-Ortiz et al., 2012a, decreased, finally stabilizing at 7.4 ka (Go 2013). Since then, widespread permafrost conditions have not existed in Sierra Nevada and periglacial processes have been mostly related to seasonal frost (Oliva et al., submitted). Solifluction landforms are widespread in the glacial valleys of Sierra Nevada, showing a wide variety of typologies (Oliva et al., 2009). The monitoring of these periglacial slope features revealed their inactivity or weak activity today in the massif, with displacement rates in all cases 2500 m Late Slopes and Holocene valley bottoms >2500 m Highlands above 2500 m

Chronology (ka BP)

References mez-Ortiz (1987, 2002), Simo n et al. (2000) Messerli (1965), Go pez-Bermúdez (1976), Brosche Hempel (1960), Pezzi (1975), Lo mez-Ortiz and Salvador (1992), Go  mez-Ortiz et al. (1994), (1982), Go Schulte (2002), Oliva (2011), Oliva et al. (2014)

Development of sorted circles in summit plateaus Formation of one rock glacier Periglacial deposits at elevations of 700 e1100 m (scree, solifluction, cryoturbation, etc) Formation of rock glaciers

12.8e7.4

Rock glaciers becoming gradually inactive

12.8e7.4

mez-Ortiz et al. (2012a, 2013), Palade et al. (2011), Go Oliva (2009), Oliva et al. (2014) mez-Ortiz et al. (2012a, 2013) Go

Active solifluction processes

5e4

Oliva (2009), Oliva et al. (2011)

Since 4.2 3.6e3.4, 3 e2.8, 2.5e2.3, 1.8 e1.6 XII and XIII centuries

mez-Ortiz (2010, Oliva (2009, 2011), Oliva et al. (2011), Oliva and Go 2011) mez-Ortiz (2012, Oliva (2009), Oliva et al. (2011, 2014c), Oliva and Go 2013) mez-Ortiz and Plana Castellví (2006), Go  mez-Ortiz et al. (2009, Go mez-Ortiz (2012) 2012b), Oliva and Go

Long-term trend of solifluction migrating to higher elevations Several phases with more intense activity of periglacial slope processes (i.e. solifluction processes) More extensive snow fields across the massif with possible presence of small glaciers in the massif More extensive snow fields across the massif LIA Highlands above 2500 m and presence of glaciers in the highest northern cirques Slopes and Two phases with more intense solifluction valley activity bottoms >2500 m Formation of rock glaciers Present-day From the Highest Degradation of buried ice and permafrost, cirques LIA with subsidence and collapses of the rock until the >3000 m glacier of the Veleta cirque present Summit Formation of debris flows, scree deposits and plateaus portalus ramparts >2650 m Highest valley Development of decimetric patterned ground features (e.g. Alto del Chorrillo, 2700 m) floors, 2800e3000 m Very weak solifluction rates, slightly higher in northern valleys (2500 m

Gonz alez-Martín, 1974), with occasional ice wedge morphologies in fine-grained sediments (Badorrey et al., 1970; Asensio-Amor and Gonz alez-Martín, 1974; Serrano et al., 2010). Although cryoturbation features do not imply the existence of permafrost conditions, the presence of ice wedges suggest very intense permafrost conditions. Some researchers considered that these deformed (cryoturbated) sediments are related to the presence of underlying gypsum and consequent collapse phenomena (Hamelin, 1958; Van  n and Soriano, 1986; Gonza lezZuidam, 1976; Bomer, 1977; Simo Martín and Pellicer, 1988). These structures are considered to have originated in Pleistocene cold-climate phases, attributed to the Würm, Riss or Mindel glaciations according to the old Alpine glacial chronology (Johnsson, 1960; Asensio-Amor et al., 1994). Subsequent to the formation of these periglacial features, there is no evidence of later periglacial conditions (Table 8). However, the chronology is inferred from a relative dating approach based on the elevation differences between river terraces. Outside these areas, there is other geomorphologic evidence of periglacial conditions in many low-altitude areas in the interior of the Iberian Peninsula, ze such as the presence of stratified deposits, often described as gre e, as well as local accumulations of loess suggesting cold and dry lite rezconditions (García-Sanz, 1957; Benayas and Riba, 1961; Pe Gonz alez, 1971; Gaibar-Puertas, 1974; Díez-Herrero and Bateman, 1998; Díez-Herrero et al., 2002). There have been several studies that have revealed the existence of periglacial processes in coastal environments, particularly along

mez-Ortiz and Plana Castellví (2006), Go  mez-Ortiz et al. (2009, Go XVII to XIX mez-Ortiz (2012) 2012b), Oliva and Go centuries 850e700,400 Esteban (1995), Oliva (2009), Oliva et al. (2011, 2014c) e150 yr BP

After deglaciation Accelerating during the last decades

mez-Ortiz et al. (1999, 2004) Go mez-Ortiz et al. (2004, 2014), Salvador-Franch et al. (2010, 2011) Go mez-Ortiz (2002), Tanarro et al. (2010), Oliva et al. (2014c) Go Oliva et al. (2008, 2009, 2014a)

the NW coast of the Iberian Peninsula but also across the Mediterranean coast (Chueca et al., 1994). The highly indented coast and the presence of mountainous areas with altitudes around 600 m contributed to develop a cold-climate morphogenetic environment during Pleistocene glacial phases. Since the first studies of the 60s these periglacial deposits distributed in coastal cliffs were ascribed to the Late Pleistocene (Fig. 9) (Nonn, 1966; Delibrias et al., 1964; Butzer, 1967; Brosche, 1972, 1982b, 1983; Mary et al., 1972; Asensio-Amor, 1974). The first observations were subsequently complemented with geomorphological, sedimentological and pedological analysis, as well as geochronological studies that placed their origin in a range between 11 and 40 ka cal BP (Costarez-Alberti et al., 1998b, Casais, 2001; Costa-Casais et al., 1996; Pe s, 2000, 2007; Blanco2002; Trenhaile et al., 1999; Alonso and Page Chao, 1999; Blanco-Chao et al., 2002, 2003, 2007; Feal et al., 2009). Therefore, cold-climate processes prevailed in NW coastal areas during the last glaciation and following millennia. However, the sea level increase during the transition to the Holocene triggered an intense erosion and retreat of these cliffs (Trenhaile et al., 1999; Blanco-Chao et al., 2003, 2007). 5. Discussion Periglacial processes and landforms in the Iberian Peninsula are concentrated in the principal mountain ranges, with minor evidence in mid- and low-mountainous regions and in the Iberian

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

189

Fig. 8. Examples of periglacial phenomena in the Betic Range for each of the phases.

basins (Tajo, Duero and Ebro) (Fig. 10). Many periglacial landforms and deposits are located in environments with high modern mean annual temperatures and are thus inactive or very weakly active (Oliva et al., 2009, 2014). By contrast, periglacial landforms still show activity in areas where mean annual temperatures are close n, 2005; Serrano et al., 2006; to or below 0  C (Chueca and Julia  mez-Ortiz et al., 2014). Go The lithology is an important element in periglacial landscapes that should not be underestimated (French, 2007). Periglacial phenomena are present in all mountain environments in Iberia, although the preservation of inactive periglacial features is greater in granitic and metamorphic massifs and lesser in limestone lithologies. Some processes show a better development in specific lithologies, such as solifluction processes in metamorphic and limestone massifs, while others are constrained by the material, such as rock glaciers, which are rare in limestone massifs. The chronology of the formation of periglacial features is largely unknown and mostly deduced through chronostratigraphic

inferences and relative dating techniques. Based on our extensive review of all available research, we can divide the activity of periglacial processes in the Iberian Peninsula since the last Pleistocene glaciation into four periods: i. The last glaciation, ii. The transition to the Holocene, iii. The Holocene, iv. The Present-day (Fig. 11). 5.1. The last glaciation The implementation of surface exposure dating techniques has transformed our understanding of the chronology of maximum ice expansion during the last glaciation. While recent research in the Central Range has established the maximum glacial advance as being close to the global Last Glacial Maximum (LGM), at between 23 and 26 ka (Palacios et al., 2011a, b; 2012; García-Ruiz et al., 2014), in the Sierra Nevada it precedes the LGM by several  mez-Ortiz et al., 2012a) and is millennia, at around 30e32 ka (Go significantly older than 30 ka in the NW and Central ranges and the rezCantabrian Mountains (Vieira, 2004; Moreno et al., 2010; Pe

Table 8 Periglacial activity in lowlands since the Last Glaciation. Phase

Periods

Environment

Between Pleistocene fluvial terraces Last (200e1000-m) glaciation 40 and Deglaciation 11 ka Coastal mountains (mainly NW Iberia), cliffs near present sea level

Iberian Meseta Fluvial depressions, lowaltitude slopes and valley bottoms below 400 m

Landforms and processes

Chronology References (ka BP)

Cryoturbation, ice wedges

Uncertain

Different periglacial slope deposits (debris flows, scree, head type), ploughing blocks

ze Stratified slope deposits (gre e), head deposits lite

rezImperatori (1955), Mensua (1964), Badorrey et al. (1970), Pe lez (1971), Gaibar-Puertas (1974), Brosche (1972), AsensioGonza lez-Martín (1974) Amor and Gonza From older Chueca et al. (1994), Costa-Casais (1995, 2001), Costa-Casais et al. rez-Alberti et al. (1998a, 1998b, 1999, 2002, than 40 to (1994, 1996, 2008), Pe s (2000, 2007), 2009), Trenhaile et al. (1999), Alonso and Page 11 Blanco-Chao (1999, 2001), Blanco-Chao et al. (2002, 2003, 2004, 2006, 2007), Feal et al. (2009) rez-Alberti (1979, 1988), Asensio-Amor and Lombardero-rico From older Pe rcel (1998) than 40 to (1991), Valca 11

190

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

Fig. 9. Examples of periglacial phenomena from NW coastal environments during the last glaciation: (a) Geomorphological sketch of periglacial deposits and paleosols (CostaCasais, 2001), (b) solifluction deposits and paleosols, and (c) debris flow deposit.

Alberti et al., 2011; Serrano et al., 2012, 2015; Rodríguez-Rodríguez et al., 2014; Nieuwendam et al., 2015) as well as in the Pyrenees at ~ a et al., 2003; García-Ruiz et al., 2015). In the around 60 ka (Pen Pyrenees, the Sierra Nevada and the Cantabrian Mountains, most studies have also inferred a second glacial advance coinciding with the LGM, followed subsequently by a rapid deglaciation. The combination of moisture and temperature conditions was decisive to explain the divergent timing of the local glacial maxima during the last glaciation. In mid-latitude environments like the Iberian Peninsula, in order to generate the observed periglacial

features land temperatures during the LGM would have had to have been between 6 and 11  C lower than present-day, in comparison to a diminution of 0e3  C in the tropics, over 10  C in central Europe, and more than 20  C in the high latitudes (Wu et al., 2007; Kuhlemann et al., 2008). The glacial conditions in the Iberian Mountains during the last glaciation must have been concomitant with an intensification of periglacial activity as well as its geographical expansion to other areas located at lower altitudes. However, the refinement of the periglacial chronology in most of the Iberian mountain ranges has not kept pace with the substantial

Fig. 10. Summary of the periglacial landforms and deposits observed in each of the study areas during the main periods examined in this research.

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

191

Fig. 11. Geomorphological sketch of periglacial activity in the highest Iberian mountain ranges since the last glaciation.

recent improvement of the glacial chronology. The periglacial deposits most clearly associated with the last glaciation are those of periglacial origin found in the lowest elevations in Iberia, both for high mountain ranges and the rest of the areas. This is clearly seen in the NW of the Iberian Peninsula, where periglacial deposits (i.e., talus screes) are found at present-day sea rez-Alberti et al., 1998a, b). Periglacial level, and even below it (Pe evidence in low-mountains is also widespread along the Atlantic (Daveau, 1973, 1978; Ferreira, 1985; Rodrigues, 1991) and Mediterranean coasts, at higher elevations in the latter (Chueca et al., 1994). In the high mountain ranges periglacial processes were very active in low-mid slopes, as well as in the highest summit surfaces, where the flat topography did not favour snow and ice accumulation due to strong winds redistributing the snow. At the summit surfaces, intense frost shattering generated the development of block fields. In some cases, the very active cryoturbation processes related to permafrost conditions in the summit plateaus  n et al., 2000) formed meter-scale patterned ground features (Simo

(Fig. 11). Even on mid-altitude slopes, the cold led to the formation of permafrost-related features, such as block streams or rock glaciers (Redondo et al., 2004; Pellitero et al., 2011). 5.2. The deglaciation period Deglaciation implied major changes in the intensity and spatial extent of periglacial processes in the Iberian Peninsula, as it gradually became confined to the highest mountain ranges. The shrinking of glaciers started at 19e20 ka BP and occurred in parallel to the deglaciation of most Northern Hemisphere mountain environments (Clark et al., 2009). The formerly glaciated environments in the Iberian mountains became ice-free by about 14e15 ka BP mez-Ortiz (Cowton et al., 2009; Palacios et al., 2011a, b, 2012; Go et al., 2012a, b), coinciding with the Bølling-Allerød warm phase, in association with the restart of the Atlantic meridional overturning circulation at 14.7 ka (Thiagarajan et al., 2014). At the same time, periglacial processes occupied the recently

192

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

deglaciated areas with very active dynamics during the paraglacial adjustment phase (Mercier, 2008). Deglaciation, particularly during the Oldest Dryas (García-Ruiz et al., 2001), caused very intense physical weathering processes feeding the talus screes. The paraglacial stage is characterized by very intense sediment transfer rates and gelivation (Cossart, 2008), which could have favoured the development of rock glaciers inside the glacial cirques where the last glaciers persisted. This interaction between periglacial and glacial processes in an area with permafrost brought Berthling (2011) to define rock glaciers as cryo-conditioned landforms. This is what occurred in the Sierra Nevada, the Central Range and the Pyrenees, where most of the presently inactive rock glaciers formed  mez-Ortiz et al., 2012a, b; Andre s et al., 2015; during that period (Go Palacios et al., 2015a, b). In other Mediterranean mountains, rock glaciers also formed during the deglaciation, such as in Greece (Hughes et al., 2003). It must be taken into account that rock glaciers are the main permafrost indicator in mountain environments of the Mediterranean region (Serrano, 2014). The warm conditions prevailing during the Bølling-Allerød were truncated by a short but very cold period, the Younger Dryas (11.7e12.9 ka). The onset of this period resulted in a decrease of temperatures of ~5  C (Clark et al., 2012), which is observed in both marine and terrestrial records in the Iberian Peninsula (Abreu et al., 2003; Ortiz et al., 2004; Combourieu-Nebout et al., 2009; Dormoy et al., 2009; Fletcher et al., 2010). The dry climate regime recorded at the beginning of the Younger Dryas was gradually substituted by wet conditions (Baldini et al., 2015;  et al., 2015). The cold and wet phase favoured a sigBartolome nificant glacial expansion in many Mediterranean mountain regions such as the Maritime Alps (Federici et al., 2012), Greece (Hughes et al., 2006), the Balkans (Hughes and Woodward, 2008) and the Atlas mountains (Hughes et al., 2011). In the Iberian s et al., 2010; mountains glaciers remained inside cirques (Palla mez-Ortiz et al., 2012a, b; Moreno et al., 2010; Serrano et al., Go ndez, 2013). However, in all Iberian Peninsula 2012; Ruiz-Ferna ranges the Younger Dryas promoted a down-valley expansion of periglacial activity. This very cold climate regime expanded permafrost conditions to lower elevations and probably favoured the formation of block streams in the highest mountain ranges, as well as reactivating patterned ground formation in the summit plateaus. Rock glaciers were active during this phase in most of s et al., 2015) (Fig. 11). the highest Iberian massifs (Andre 5.3. The Holocene During the present interglacial, periglacial processes have been restricted to the high mountains of the Iberian Peninsula, with glacial activity recorded only during the Holocene coldest phases  mez-Ortiz, 2012; García-Ruiz et al., 2014). Significant (Oliva and Go environmental shifts driven by the Holocene climate variability have occurred in the western Mediterranean region (Mayewski et al., 2004). As occurred in other Mediterranean mountains such as the Alps (Guglielmin et al., 2001) or the Apennines (Giraudi, 2005), cold-climate conditions during the Holocene favoured the appearance and/or expansion of small glaciers in the highest ranges and expanded periglacial processes to lower altitudes whilst warmer conditions diminished the effectiveness of periglacial activity and spread vegetation cover up-valley. Geomorphological evidence of Holocene periglacial processes in Iberian mountain ranges is mostly related to rock glaciers and solifluction, as well as other processes for which no age control exists (i.e., talus screes) (Fig. 11). The chronology of the Holocene activity of rock glaciers in Iberia is uncertain and uniquely limited  mez-Ortiz et al. (2012a, to the Sierra Nevada and the Pyrenees. Go b) suggested that the rock glaciers in the Sierra Nevada that

started forming between 14 and 15 ka were persistently active at progressively higher elevations until the Early Holocene, stopping at 7.5 ka. In the Pyrenees the study of the internal structure of one rock glacier has revealed the close interaction between glaciers and permafrost aggradation in the glacier forelands of this range during the Holocene (Lugon et al., 2004). Serrano and Agudo (2004) thus suggested that most of the Pyrenean rock glaciers may have formed during the last 6 ka BP, proposing a range between 2500 and 6250 yr for the formation of the Argualas rock glacier (Serrano and Agudo, 1998; Serrano et al., 2006). However, in other Mediterranean mountains the chronology is much more refined, such as in the Apennines where rock glaciers formed during several dry periods: 8000, 3700e3200, and possibly 1200 cal yr BP (Dramis et al., 2003). The elevation shift of the periglacial belt according to prevailing climate conditions is also recorded in the sedimentary sequence of solifluction landforms in the Sierra Nevada: warmer periods resulted in soil formation and colder phases favoured solifluction processes in seasonal frost environments, more or less intense according to the moisture regime (Oliva, 2009; Oliva et al., 2008, 2009). The increasing aridity that started at 4.2 ka cal BP in southern Iberia has also resulted in a long-term increase in the elevation of active solifluction processes in this semiarid massif (Oliva et al., 2011). This shift between periglacial processes and pedogenesis phases has also been detected in other European mountain regions, such as the Apennines (Giraudi, 2005) or the Alps, where Holocene solifluction activity shows a sequence similar to the Sierra Nevada (Steinmann, 1978; Gamper, 1983; Veit, 1988). The environmental dynamics associated with colder or warmer conditions during the Holocene is most clearly demonstrated by comparison to conditions during the LIA and the subsequent environmental evolution until the present. Apart from the appearance of small glacial spots in the Cantabrian Mountains lez-Trueba, 2005, 2006, 2007c) and the Sierra Nevada (Gonza  mez-Ortiz et al., 2009), as well as the expansion of those still (Go mezexisting in the Pyrenees (Gonz alez-Trueba et al., 2008; Go Ortiz et al., 2009), cold-climate geomorphological processes showed a greater activity and expanded to lower elevations. Some of the highest rock glaciers in the Iberian mountain ranges that are inactive or weakly active today formed and/or reactivated during mez-Ortiz et al., 2012a, b; Palacios et al., 2015a, b). A this phase (Go wide range of geomorphological evidence also demonstrated this pattern: debris flows, solifluction processes, protalus ramparts or protalus lobes, together with the reactivation of nivation prolezcesses in the highlands of the main Iberian ranges (Gonza García, 2014). 5.4. The present-day The post-LIA temperature increase until the early 21st century has been estimated at ~0.9  C in the Pyrenees (Gonz alez-Trueba  mez-Ortiz, et al., 2008) and the Sierra Nevada (Oliva and Go 2012). It is likely that the temperature increase has been of similar magnitude in the other Iberian mountain ranges. The current active periglacial environment in the Iberian mountain ranges, in general, resembles the glaciated domain during the last glaciation. The elevation difference between the lower LGM periglacial zone and present-day periglacial processes is about 800e1000 m. Contemporary periglacial processes are located in the upper parts of the highest mountain ranges (Table 1), mostly related to seasonal frost dynamics. Marginal permafrost conditions have only been detected in isolated patches close to the summits of the Pyrenees (Lugon et al., 2004; Serrano mezet al., 2001, 2006; Gonz alez-García, 2014), Sierra Nevada (Go Ortiz et al., 2001, 2014), and probably in the Cantabrian Mountains

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

lez-Trueba, 2007a; Serrano et al., 2011b; Ruiz-Fern (Gonza andez, 2013). Most of these sites are located inside the LIA glacier limits, and are today undergoing a rapid degradation of permafrost. By contrast, seasonal frost has been detected in the highs and Palacios, lands of the Central Range (Vieira et al., 2003; Andre rcel, 2010) and other sites 2010), the NW ranges (Carrera and Valca lez et al., 2009; in the Cantabrian Mountains (Santos-Gonza lez-Trueba and Serrano, 2010; Santos-Gonza lez, 2010; Gonza Ruiz-Fern andez et al., 2014; Pisabarro et al., 2015) and the Pyrlez-García, 2014). enees (Serrano et al., 2000; Gonza With the exception of the Pyrenees and the Sierra Nevada, very few studies have addressed a systematic monitoring of the current dynamics of periglacial landforms. Most of these focused on peri mezglacial mass wasting processes, specifically rock glaciers (Go n, 2005; Serrano et al., Ortiz et al., 1999, 2014; Chueca and Julia 2006, 2012) and solifluction landforms (Creus and García-Ruiz, n, 1995; Oliva et al., 2008, 2009, 2014a). In 1977; Chueca and Julia the case of rock glaciers the rates of movement are on the order of a few tens of cm per year, generally lower than those reported in other alpine environments (Serrano et al., 2011a). The same is true for solifluction processes, which show deformation rates of a few cm per year or even less, which is far below the rates measured in many other periglacial environments with seasonal frost (Matsuoka, 2001). Pioneering experiments in the early '80s also detected centi mezmetric frost heave rates in patterned ground features (e.g., Go Ortiz, 1982). Vieira (2004) monitored needle-ice activity and miniature patterned ground formation in the northwest and western Iberian ranges and showed significant activity associated to diurnal frost cycles. Recently, in post-LIA deglaciated environments of the French Pyrenees some studies have shown the strong control of microtopographic conditions in the development of patterned ground phenomena (Feuillet and Mercier, 2012). Snowpush moraines and subnival abrasion of snowpatches have recently been described and monitored in the Cantabrian Range rcel, 2010; Pellitero, 2012). Other processes (Carrera and Valca characteristic of periglacial environments are known to be active but have not yet been thoroughly studied, such as the development of protalus ramparts. Within the periglacial zone, in some ranges there is a strong relationship between human activities and geomorphic processes. This includes increasing activity of debris flows after fire events, as has been observed in the Serra da Estrela (Vieira, 2004), as well as grazing, vegetation degradation and increases of frost processes (Vieira et al., 2003), or decreases in runoff and soil erosion due to the abandonment of grazing practices in the lower periglacial belt in the Pyrenees (García-Ruiz et al., 2015). However, some of these environments are returning to their natural states with the upslope migration of treeline that has occurred during the last decades (Camarero et al., 2015) in response to both climate warming and lower human pressure in the periglacial belt. According to climate projections, the warming trend recorded in the Iberian Peninsula over the last several decades will continue and intensify in the near future (IPCC, 2013). This climate pattern will doubtlessly have significant consequences for environmental dynamics in the present-day periglacial belt in the Iberian Mountains through complex feed-back processes, driven largely by changes in snow depth and spatial variability associated with var pez-Moreno et al., 2013, 2014a), in the iations in surface runoff (Lo  pez-Moreno et al., duration and recurrence of warm events (Lo 2014b), upslope vegetation shifts (Pauli et al., 2012) and/or changes in soil thermal regimes (Oliva et al., 2014b). Consequently, during the coming decades it is expected that periglacial activity in Iberian mountains will become weaker and more restricted to increasingly higher elevations.

193

6. Conclusions The study of the periglaciation of the Iberian Peninsula has advanced significantly during the second half of the XX century. Hundreds of studies have examined the impact of present and past periglacial activity in the Iberian mountain ranges as well as in other mid and low-altitude Iberian environments. However, many of these references date from the 1970e90s, with few papers appearing after 2005. Despite substantial progress in understanding the distribution, characteristics and present-day monitoring of periglacial phenomena, our understanding of the chronology of the past activity of periglacial processes in Iberia remains imprecise. The improvement of the glacial chronology for the last glaciation and subsequent deglaciation achieved during recent years has not been paralleled by significant advances in the understanding of Iberian periglaciation. The main periglacial landforms preserved in the Iberian Peninsula correspond to the deglaciation phase and present-day processes, and are best preserved in granitic and metamorphic massifs. Periglacial processes were very intense in the Iberian mountains during the last glaciation near the glaciated domain, accompanied by a decrease in the altitude of periglacial activity. The lowest periglacial deposits and landforms in Iberia formed during this glacial stage. Although lowlands record well-documented periglacial conditions in both coastal environments of NW Iberia as well as the inland Meseta, the study of these records needs a critical review and update. Deglaciation resulted in an increased minumum altitude of periglacial activity, withformerly glaciated areas being replaced by active periglacial processes during the paraglacial stage. The transition to the Holocene saw the reactivation and intensification of periglacial processes during the very cold and dry Younger Dryas, when most of the rock glaciers inactive today in the highest mountain ranges were formed. During the Holocene, the periglacial belt remained at the highest elevations in the Iberian mountains, shifting up or down-valley by hundreds of meters in altitude according to the combination of cold and moisture availability. In general, during colder periods, periglacial processes were more intense and expanded to lower elevations, whilst warmer stages restricted periglacial activity to higher areas. This alternation was last seen during the historical LIA cold phase and the subsequent evolution until the present, when periglacial activity is weak to moderate in the highlands of the highest mountain ranges. Future periglacial research should address several uncertainties, especially related to mountain ranges and specific time periods. Apart from certain areas in the Pyrenees and the Sierra Nevada, new studies should be carried out in other mountain ranges to understand the chronology as well as the geographical importance of periglacial phenomena in the Iberian mountains, especially for the Holocene period. This is of crucial importance to better assess the geomorphological impacts derived from the projected future warming scenarios in a context of rapidly changing high mountain ecosystems in southern Europe.

Acknowledgements This paper is the result of many years of periglacial research in the Iberian Peninsula, in many cases funded by national and international projects. Many contributions are focused on protected areas, namely Natural and National Parks. The authors acknowledge all the institutions that made the advances in the knowledge of periglacial processes in the Iberian Peninsula possible. Many  M. García-Ruiz (Pyrenean Institute of Ecology thanks to Prof Dr Jose e CSIC, Spain) for his comments on an early draft of this paper.

194

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

References Abreu, L., Shackleton, N.J., Schonfeld, J., Hall, M., Chapman, M., 2003. Millennialscale oceanic climate variability of the Western Iberian margin during the last two glacial periods. Mar. Geol. 196, 1e20. ndez-Amor, J., Vidal-Box, C., 1957. Livret-guide de L'e xcursion Alía-Medina, M., Mene ~ alara et variation El Escorial-Manzanares el C3 et C4: Guadarrama, Massif Pen s International, INQUA, pp. 17e29. Real. In: V Congre s, J.L., 2000. El registro sedimentario del final del Cuaternario en el Alonso, A., Page rica. Ma rgenes cant litoral noroeste de la Península Ibe abrico y atl antico. Rev. Soc. Geol. Esp. 23 (1), 17e29. s, J.L., 2007. Stratigraphy of Late Pleistocene coastal deposits in Alonso, A., Page northern Spain. J. Iber. Geol. 33 (2), 207e220. siles en el a rea Degan ~ a-Leitariegos (Occidente Alonso, V., 1989. Glaciares rocosos fo brica). Cuat. Geomorfol. 3 (1e4), 9e15. de Asturias, Cordillera Canta Alonso, V., Trombotto, D., 2009. Periglacial geomorphology of El Miro area, Cantabrian Mountains, NW Spain. Z. Geomorphol. 53, 335e357. s, N., Palacios, D., 2010. Cobertura nival y distribucio n de la temperatura en el Andre ~ a Cuad. Investig. Geogr. suelo en las cumbres de la Sierra de Guadarrama. Espan 36 (2), 7e38. s, N., Palacios, D., Go mez-Ortiz, A., García-Ruiz, J.M., Lo  pez-Moreno, J.I., SalAndre n de los glaciares vador-Franch, F., Oliva, M., 2015. Origen, cronología y evolucio siles de las cordilleras ibe ricas (Pirineos, Sistema Central y Sierra rocosos fo Nevada). In: Serrano, E. (Ed.), Proceedings of the V Iberian Conference of the International Permafrost Association, Valladolid (Spain), p. 35.  n de vertientes de la Sierra de la Arn aez, J., 1987. Formas y procesos de evolucio rico. Cuad. Investig. Geogr. 13 (1e2), 1e153. Demanda, Sistema Ibe rico NorArn aez, J., García Ruíz, J.M., 2000. El periglaciarismo en el Sistema Ibe ~ a, J.L., Sa nchez-Fabre, M., Lozano, M.V. (Eds.), Procesos y occidental. In: Pen ~ a mediterra nea. Instituto de Estudios Turformas periglaciares en la montan olenses, Teruel, pp. 113e126. n al estudio de acciones periglaciares en el límite Asensio-Amor, I., 1974. Contribucio galaico-astur. Bol. Inst. Est. Astur. 83, 805e809. lez-Amuchastegui, M.J., Gonza lez-Martín, J.A., Lozano, M.V., Asensio-Amor, I., Gonza ~ a, J.L., 1994. Formas y procesos de ambientes fríos en la Cordillera Ibe rica y Pen mez-Ortiz, A., Simo  n-Torres, A., Salvador-Franch, F. (Eds.), Submeseta Sur. In: Go rica, Canarias y Baleares, Monografias de la Periglaciarismo en la Península Ibe SEG, 7, pp. 119e145. n en altos Asensio-Amor, I., Gonz alez-Martín, J.A., 1974. Formas de crioturbacio niveles cuaternarios del valle del Jarama. Est. Geogr. 137, 579e591. lez-Martín, J.A., 1976. Manifestaciones periglaciares en los Asensio-Amor, I., Gonza alrededores de Cifuentes. Estud. Geol. 32, 443e449. Asensio-Amor, I., Lombardero-Rico, J.M., 1991. Materiales detríticos ordenados en el ~ a). Cuad. Lab. Xeol. Laxe 16, 65e73. valle del Eo (Lugo, Espan menos de periglaciarismo en paleoBadorrey, T., Guerra, A., Pinilla, A., 1970. Feno suelos de la meseta castellana. Anal. Edaf. Agrob. 11e12, 931e940. Baldini, L.M., McDermott, F., Baldini, J.U.L., Arias, P., Cueto, M., Fairchild, I.J., ~o n, R., GarcíaHoffmann, D.L., Mattey, D.P., Muller, W., Nita, D.N., Ontan , C., Richards, D.A., 2015. Regional temperature, atmospheric circulation, Monco and sea-ice variability within the Younger Dryas Event constrained using a speleothem from northern Iberia. Earth Planet. Sci. Lett. 419, 101e110. Barrio, G., Creus, J., Puigdef abregas, J., 1990. Thermal seasonality on the high mountain belts of the Pyrenees. Mt. Res. Dev. 130, 29e31. , M., Moreno, A., Sancho, C., Stoll, H.M., Cacho, I., Spo €tl, C., Belmonte, A., Bartolome Edwards, R.L., Cheng, H., Hellstrom, J.C., 2015. Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1. PNAS 112, 28.  pez-Martínez, J., Bartolome , M., 2014. PreBelmonte, A., Sancho, C., Moreno, A., Lo sent-day environmental dynamics in ice cave A294, Central Pyrenees, Spain. Geog. Fis. Din. Quat. 37, 131e140. n de un depo sito cuaternario de tipo loess Benayas, J., Riba, O., 1961. Caracterizacio  n Sedimentología Sevilla. C.E.S.I.C., Inst. Edafología, seccio n en Toledo. II Reunio Petrografía sedimentaria, pp. 135e153. Berthling, I., 2011. Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131, 98e106. me excursion dans la Sierra Nevada. Annu. Club Alp. Fr. XX, Bide, J., 1893. Deuxie 276e305. gicos diferenciados en las Blanco-Chao, R., 1999. Formas y procesos geomorfolo costas de Galicia. PhD Thesis. University of Santiago de Compostela.  Blanco-Chao, R., 2001. Influencia de formas y depositos antiguos en la din amica litoral: un ejemplo de la costa sur de Pontevedra (Galicia). In: Rodríguez  ~ Guterrez, F. (Ed.), Actas del XVI Congreso de Geografos Espanoles. Universidad de Oviedo, pp. 137e140. rez-Alberti, A., Costa-Casais, M., Valca rcel, M., 2006. Abrasion Blanco-Chao, R., Pe processes in coarse-clastic beaches linked to rocky shore platforms. J. Coast. Res. 48, 21e28. rez-Alberti, A., Blanco-Chao, R., Costa-Casais, M., Martínez-Cortizas, A., Pe Trenhaile, A.S., 2003. Evolution and inheritance of a rock coast: western Galicia, northwestern Spain. Earth Surf. Proc. Landf. 28 (7), 757e775. rez-Alberti, A., V Blanco-Chao, R., Costa-Casais, M., Martínez-Cortizas, A., Pe azquezPaz, M., 2002. Holocene evolution on Galician coast (NW Spain): an example of paraglacial dynamics. Quat. Int. 93e94, 149e159. rez-Alberti, A., 2004. Blanco-Chao, R., Martínez-Cortizas, A., Costa-Casais, M., Pe n de los depo  sitos antiguos en la Factores determinantes en la sedimentacio

pez-Bedoya, J., Pe rezcosta occidental de Galicia. In: Blanco-Chao, R., Lo gicos y evolucio  n costera, Santiago de Alberti, A. (Eds.), Procesos geomorfolo Compostela. University of Santiago de Compostela, pp. 295e306. rez-Alberti, A., Trenhaile, A.S., Costa-Casais, M., Valc Blanco-Chao, R., Pe arcel, M., 2007. Shore platform abrasion in a para-periglacial environment, Galicia, northwestern Spain. Geomorphology 83 (1), 136e151. Boixadera, J., Antúnez, M., Poch, R.M., 2008. Soil evolution along a toposequence on glacial and periglacial materials in the Pyrenees Range. In: Kapur, S., Mermut, A., Stoops, G. (Eds.), New Trends in Soil Micromorphology. Springer Verlag, Berlin, pp. 39e65. nome nes pe riglaciaires dans le bassin de L'Ebre et ses Bomer, B., 1977. Les phe riglaciaire d’altitude du domaine mediterrane en et marges. In: Coloque sur le pe abords. Strasburg 12e14 mai 1977. Assoc. Geogr. D'Alsace, pp. 169e176. Brosche, K.U., 1972. Vorzeitliche Periglazialerscheinungen im Ebrobeken in der Umgebung von Zaragoza sowie eim Beitrag zur Ausdehnung von Schutt-und €tt. Geograr. Blockdecken im Zentral Und W-Teil der Iberischen Halbinsel. Go Abh. 60, 293e316. Brosche, K.U., 1978. Formas actuales y límites inferiores periglaciares en la Penínrica. Estud. Geog. 151, 131e161. sula Ibe rica. PosBrosche, K.U., 1982a. Formas periglaciares antiguas en la Península Ibe  n clima tica. Estud. Geog. 166, 5e16. ibilidades de una consideracio €nen un holoz€ Brosche, K.U., 1982b. Studien zu jungpleistoza anen sedimenten und €den in Küstengebiet von West-Galizien (NW-Spanien). Eiszeitalt. fossilen bo Ggw 32, 63e80. Brosche, K.U., 1983. Die geomorphologisch-bodengeographische deutung der €nen sedimente und bo € den an der Playa de Barran ~ ~ a) pleistoza an (westl. La Corun und bei Cangas de Foz (Nord-Galizien). Eiszeitalt. Ggw 33, 95e117. rrez, M., Pen ~ a, J.L., 1981. El cerro del castillo de Alfambra (Teruel). Burillo, F., Gutie Estud. Interdiscip. Geomorfol. Arqueol. Kalathos 1, 7e63. rrez, M., Pen ~ a, J.L., 1983. La Geoarqueología como ciencia auxiliar. Burillo, F., Gutie  n a la Cordillera Ibe rica turolense. Rev. Arqueol. 36, 6e13. Una aplicacio Butzer, K.W., 1967. Geomorphology and Stratigraphy of the Paleolithic Site os ~ o (Pontevedra, Spain). Eiszeitalt. Ggw 33, 95e117. Budin ~ a del País Valenciano. Alfons Calvo, A., 1987. Geomorfología de laderas en la montan nim, 301 pp. el Magna rrez, M., Pen ~ a, J.L., Simo n, J.L., 1983. Morfología de vertientes y Calvo, A., Gutie nica en el macizo de Javalambre (Provincia de Teruel). In: VI Reunio n neotecto ~ ol Trabajo Cuaternario, pp. 429e448. del Grupo Espan n, J.D., Alla, A.Q., Camarero, J.J., García-Ruiz, J.M., Sangüesa-Barreda, G., Galva n, Y., Beguería, S., Gutie rrez, E., 2015. Recent and intense dynamics in a Sanjua formerly static Pyrenean treeline. Arct. Antarc. Alp. Res. 47 (4), 773e783. Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Villa, J., Willenbring, J.K., 2012. The jar (Iberian Central System) during its plateau glacier in the Sierra de Be maximum extent. Reconstr. Chronol. Geomorph. 196, 83e93. Carrasco, R.M., Pedraza, J., Domínguez-Villar, D., Willenbring, J.K., Villa, J., 2015. Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quat. Sci. Rev. 129, 163e177.  n geomorfolo  gica del manto nivoso estaCarrera, P., Valc arcel, M., 2010. La accio ~ a (Leo  n). Cuad. cional en la Sierra de Ancares: vertiente nororiental del Pico Cuin Investig. Geogr. 36, 85e98. rcel, M., 2011. La cubierta nival y su accio n geomoforfolo gica en el Carrera, P., Valca ~ a, Sierra de Ancares (NO de la Península Ibe rica). In: Valca rcel, M., Pico Cuin Carrera, P. (Eds.), Criosfera, suelos congelados y Cambio Clim atico, II Congreso rico IPA. Universidad de Santiago de Compostela, Santiago de Compostela, Ibe pp. 169e201. rcel, M., Pe rez-Alberti, A., 2006. Ejemplos de formas erosivas de Carrera, P., Valca  n. origen nival en las vertientes del alto Ancares, noroeste de la provincia de Leo rez-Alberti, A., Lo pez Bedoya, J. (Eds.), Geomorfología y territorio. Actas de In: Pe n Nacional de Geomorfología. University of Santiago de Compostela, la IX Reunio Santiago de Compostela, pp. 59e65. ~o  n, J.C., Frochoso, M., 1994. El periglaciarismo de la Cordillera Canta brica. In: Castan mez-Ortiz, A., Simo  n-Torres, M., Salvador-Franch, F. (Eds.), Periglaciarismo en Go rica, Canarias y Baleares. Estudios significativos, 7. Sociedad la Península Ibe ~ ola de Geomorfología, Universidad de Granada and Servei de Gestio  i Espan  del Paisatge de la Universitat de Barcelona, Granada, pp. 75e91. Evolucio ~o  n, J.C., Frochoso, M., 1998. La alta montan ~ a cant rmicas Castan abrica: condiciones te micas en los Picos de Europa. In: Go  mez-Ortiz, A., Salvadory morfodina Franch, F., Schulte, L., García-Navarro, A. (Eds.), Procesos biofísicos actuales en medios fríos. Universidad de Barcelona, Barcelona, pp. 113e132. gico de la fenomenología glaciar y periglaciar Chueca, J., 1992. An alisis geomorfolo  n-Sierra de Ballabriga (Pirineo oscense). Instituto de en el Macizo del Turbo Estudios Altoaragoneses, Huesca, 212 pp. mez-Ortiz, A., Lampre, F., Pen ~ a, J.L., 1994. El periglaciarismo heredado y Chueca, J., Go mez actual de la cordillera pirenaica y del sistema costero catal an. In: Go n, M., Dalvador, F. (Eds.), Periglaciarismo en la Península Ibe rica, Ortíz, A., Simo Canarias y Baleares. Monografías SEG, nº7, Granada, pp. 93e117. n de movimientos en masa lentos en medios Chueca, J., Juli an, A., 1995. Cuantificacio ~ a: Pirineo Central. Lurralde 18, 173e196. de montan n, A., 2005. Movement of Besiberris rock glacier (Central Pyrenees, Chueca, J., Julia Spain): data from a ten-year geodetic survey. Arct. Antarc. Alp. Res. 37 (2), 163e170. n, A., 2008. Geomorphological map of the Alta Ribagorza (Central Chueca, J., Julia Pyrenees, Spain). J. Maps 4, 235e247. n, A., Pen ~ a, J.L., 2000. El periglaciarismo funcional en las Sierras Chueca, J., Julia ~ a, J.L., Sanchez, M., Lozano, M.V. (Eds.), Procesos y Exteriores Oscenses. In: Pen

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199 ~ a mediterra nea. Instituto de Estudios Turformas periglaciares en la montan olenses, Teruel, pp. 97e112. pez, J.I., 2005. Responses to climatic Chueca, J., Juli an, A., Saz, M.A., Creus, J., Lo changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68, 167e182. brica, northern Spain. Clark, R., 1981. Cold climate features of the Cordillera Canta Biul. Peryglac. 28, 5e13. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710e714. Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., Cheng, H., Kaufman, D.S., Liu, Z., Marchitto, T.M., Mix, A.C., Morrill, C., OttoBliesner, B.L., Pahnke, K., Russell, J.M., Whitlock, C., Adkins, J.F., Blois, J.L., Clark, J., Colman, S.M., Curry, W.B., Flower, B.P., He, F., Johnson, T.C., LynchStieglitz, J., Markgraf, V., McManus, J., Mitrovica, J.X., Moreno, P.I., Williams, J.W., 2012. Global climate evolution during the last deglaciation. Prog. Natl. Acad. Sci. 109 (19), E1134eE1142. Combourieu-Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., Marret, F., 2009. Rapid climatic variability in the west Mediterranean 25,000 years from high resolution pollen data. Clim. Past. 5, 503e521. ~ a Edad de Hielo en el Macizo de la MalCopons, R., Bordonau, J., 1994. La Pequen  adeta (Alta cuenca del Esera, Pirineos Centrales). In: Martí-Bono, C., GarcíaRuiz, J.M. (Eds.), El glaciarismo surpirenaico: nuevas aportaciones. Geoforma Ediciones, Zaragoza, pp. 111e124. Cossart, E., 2008. Landform connectivity and waves of negative feedbacks during the paraglacial period, a case study: the Tabuc subcatchment since the end of  the Little Ice Age (massif des Ecrins, France). Geomorphol. Relief Process. Environ. 4, 249e260. n paleoambiental da Costa-Casais, M., 2001. An alise sedimentaria e reconstruccio ntica de Galicia. PhD thesis. University of Santiago. costa Atla rez-Alberti, A., 2008. Los Costa-Casais, M., Blanco Chao, R., Martínez-Cortizas, A., Pe rica). Un episodios Heinrich en la costa de Galicia (NW de la Península Ibe lisis a trave s de los sedimentos continentales. Territoris 7, 39e53. ana rez-Alberti, A., 1994. Caracterizacio  n de Costa-Casais, M., Martínez-Cortizas, A., Pe sito costero de la Ría de Muros-Noia (La Corun ~ a, Galicia). In: Arna ezun depo mez-Villar, A. (Eds.), Geomorfología en Espan ~ a. Vadillo, J.M., García-Ruiz, J.M., Go ~ o, pp. 355e367. Tomo II. S.E.G. Logron rez-Alberti, A., 1996. Tipos de depo sitos Costa-Casais, M., Martínez-Cortizas, A., Pe rez-Alberti, A., costeiros antiguos entre o Cabo de Fisterra e Corrubedo. In: Pe mica y evolucio  n de Martini, P., Chesworth, W., Martínez-Cortizas, A. (Eds.), Dina medios Cuaternarios. Xunta de Galicia, Santiago, pp. 417e430. Cowton, T., Hughes, P.D., Gibbard, P.L., 2009. Palaeoglaciation of Parque Natural Lago de Sanabria, northwest Spain. Geomorphology 108, 282e291. n en el Alto valle del Creus, J., García-Ruiz, J.M., 1977. Observaciones sobre solifluxio n Nac. G.E. T.C., Jaca, pp. 57e64. río G allego. In: Actas II Reunio volution quaternaire des versants au Daveau, S., 1973. Quelques exemples d'e Portugal. Finisterra 8, 5e47. riglaciaire d’altitude au Portugal. Colloque sur le pe riglaciaire Daveau, S., 1978. Le pe diterrane en et ses abords. Estrasburgo 63e78. d’altitude du domaine me ~es sobre a Daveau, S., Ferreira, A.B., Ferreira, N., Vieira, G., 1997. Novas observaço ~o da Serra da Estrela, Portugal. Estud. Quat. 1, 41e51. glaciaça po ^t pe riglaciaire Delibrias, G., Nonn, H., Van Campo, M., 1964. Age et flore d'un de s de Burela (Galice). Esp. C.R.Ac.Sc 259, reposant sur la “rasa” cantabrique pre 4092e4094. ~ a Oviedo (Camaleno, Cantabria): la Diez-Castillo, A., 1995. El asentamiento de la Pen  n de las  ~ osas de la cornisa canta brica. Cuadernos de colonizacio areas montan n. Prehistoria-Arqueología. Eusko Ikaskun. 6, 105e120. Seccio n paleoambiental y datacio n Díez-Herrero, A., Bateman, M.D., 1998. Interpretacio mediante luminiscencia del manto arenoso de la Tierra de Pinares oriental (Segovia). Geogaceta 24, 107e110. pez-Sa ez, J.A., Vegas, J., 2002. Procesos eo  licos Díez-Herrero, A., Bateman, M.D., Lo tardiglaciares en la submeseta septentrional: cronología del manto arenoso de rez-Gonz la Tierra de Pinares oriental. In: Pe alez, A., Vegas, J., Machado, M.J. ~ a en el inicio del tercer milenio. (Eds.), Aportaciones a la geomorfología de Espan gico y Minero de Espan ~ a, Madrid, pp. 167e175. Instituto Geolo Dormoy, I., Peyron, O., Combourieu-Nebout, N., Goring, S., Kotthoff, U., Magny, M., Pross, J., 2009. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15,000 and 4000 years BP deduced from marine pollen records. Clim. Past. 5, 615e632. Dramis, F., Giraudi, C., Guglielmin, M., 2003. Rock glacier distribution and paleoclimate in Italy. In: Phillips, M., Springman, S.M., Arenson, L. (Eds.), Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 1, pp. 199e204. n del paisaje durante los últimos 10.000 an ~ os en las Esteban, A., 1995. Evolucio ~ as del Mediterra neo Occidental: ejemplos del Pirineo Oriental y Sierra montan Nevada. PhD thesis. University of Barcelona. rcel, M., 2009. Influencia de formas y procesos Feal, A., Blanco-Chao, R., Valca  n reciente y en los procesos morfodina micos actuales heredados en la evolucio brica gallega. Rev. Soc. en un sector de costa rocosa: Punta Gallín, costa canta Geol. Esp. 22 (1e2), 67e78. Federici, P.R., Granger, D.E., Riobolini, A., Spagnolo, M., Pappalardo, M., Cyr, A.J., 2012. Last glacial maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41, 277e291. ndez-Cortizo, C., 1996. Neveras y cosecha de nieve en Galicia (Siglos XVIeXFerna VIII). Rev. Obradoiro Hist. Mod. 5, 41e66.

195

^ncia de climas frios na morfoge nese quaterna ria da regi~ Ferreira, A.B., 1985. Influe ao rio Ibe rico, Lisboa, a norte de Lisboa. In: Actas da I Reuni~ ao do Quaterna pp. 85e103. ~es herdadas e actuais Ferreira, A.B., Rodrigues, M.L., Vieira, G.T., 2000. Manifestaço ~ a-Monne , J.L., Sa nchez-Fabre, M., Lozanode climas frios em Portugal. In: Pen ~ a mediterra nea, Tena, M.V. (Eds.), Procesos y formas periglaciares en la montan Teruel, pp. 161e190. riglaciaires dans les Pyre ne es centrales francaises: Feuillet, T., 2010. Les formes pe analyse spatiale, chronologique et valorisation. PhD Thesis. University of Nantes. Feuillet, T., Mercier, D., 2012. Post-Little Ice Age patterned ground development on two Pyrenean proglacial areas: from deglaciation to periglaciation. Geog. Ann. Ser. A Phys. Geog. 94, 363e376. nchez-Gon ~ i, M.F., Peyron, O., Dormoy, I., 2010. Abrupt climate Fletcher, W.J., Sa changes of the last deglaciation detected in a Western Mediterranean forest record. Clim. Past. 6, 245e264. €nzle, O., 1959. Glaziale und periglaziale Formbildung im o €stlichen kastilischen Fra Scheidegebirge Zentral-spainen. Bonner Geographische Abhandlungen, Bonn. French, H.M., 2007. The Periglacial Environment, third ed. Wiley, London. Gaibar-Puertas, C., 1974. Descubrimiento de las terrazas Würmienses en la margen ticas. Nuevos restos y izquierda del río Manzanares: aportaciones paleoclima ~ o hombre prehisto rico y protohisto rico. Est. Geol. 30, testimonios del madrilen 235e252. Gamper, M.V., 1983. Controls and rates of movement of solifluction lobes in the eastern Swiss Alps. In: Proceedings of the Fourth International Permafrost Conference. Fairbanks, Alaska, pp. 328e333. mez, F., van Hoof, T.B., García-Alvarez, S., García-Amorena, I., Wagner, F., Go Visscher, H., 2008. CO2 radiative forcing during the Holocene Thermal Maximum revealed by stomatal frequency of Iberian oak leaves. Biogeosci. Discuss. 5, 3945e3964. n (Leo n). García de Celis, A., 1991. Los glaciares rocosos de la Sierra del Suspiro Polígonos 1, 9e20. n García de Celis, A., 2002. Formas periglaciares relictas en la Sierra de Suspiro brica, Leo n): campos de bloques. In: Serrano, E., García de (Cordillera Canta ~ a y altas latitudes. Universidad de Celis, A. (Eds.), Periglaciarismo en montan Valladolid, Valladolid, pp. 37e52. rez, P., Gandía-Fern García de Celis, A., Arroyo-Pe andez, A., 2006. Los bloques aran): un ejemplo singular de solifluxio n activa en dores de “Laguna Helada” (Urbio rica. Polígonos 16, 119e132. la Cordillera Ibe García-Ruiz, J.M., 1979. El glaciarismo cuaternario en la Sierra de la Demanda ~ o-Burgos, Espan ~ a). Cuad. Investig. (Geog. His.) 5 (2), 3e25. (Logron bregas, J., 1988. Geomorphic García-Ruiz, J.M., Alvera, B., del Barrio, G., Puigdefa processes above the timberline in the Spanish Pyrenees. Mt. Res. Dev. 10 (3), 201e214.  pez-Moreno, J.I., Lasanta, T., Vicente-Serrano, S.M., Gonz García-Ruiz, J.M., Lo alezriz, P., Valero-Garce s, B.L., Sanju Sampe an, Y., Beguería, S., Nadal-Romero, E., mez-Villar, A., 2015. Los efectos geoecolo gicos del cambio Lana-Renault, N., Go ~ ol: una revisio  n a distintas escalas espaciales y global en el Pirineo Central espan temporales. Pirineos 170. http://dx.doi.org/10.3989/Pirineos.2015.170005. gico del Parque Nacional García-Ruiz, J.M., Martí-Bono, C., 2001. Mapa geomorfolo de Ordesa y Monte Perdido. Ministerio de Medio Ambiente, Madrid, p. 106. riz, P., 2005. Central García-Ruiz, J.M., Martí Bono, C., Valero, B., Gonz alez-Sampe Spanish Pyrenees: Glacial and Periglacial Landforms. Field Trip 8. Sixth International Conference on Geomorphology, Field Trip Guides t-1. SEG-University of Zaragoza, pp. 311e340. ez, J., 1998. Geomorfología glaciar del García-Ruiz, J.M., Ortigosa, L., Pellicer, F., Arna rico. In: Go mez-Ortiz, A., Pe rez-Alberti, A. (Eds.), Las huellas glaSistema Ibe ~ as espan ~ olas. Universidad de Santiago de Compostela, ciares de las montan pp. 347e381. s, N., Valero-Garce s, B.L., Lo pez-Moreno, J.I., García-Ruiz, J.M., Palacios, D., Andre n, Y., 2014. Holocene and ‘Little Ice Age’ glacial activity in the Marbore  Sanjua Cirque, Monte Perdido Massif, Central Spanish Pyrenees. Holocene 24 (11), 1439e1452. s, B.L., Gonza lez-Sampe riz, P., Lorente, A., MartíGarcía-Ruiz, J.M., Valero-Garce Bono, C., Beguería, S., Edwards, L., 2001. Stratified scree in the Central Spanish Pyrenees: Palaeoenvironmental implications. Permafr. Periglac. Process. 12, 233e242. García-Sancho, L., Palacios, D., Marcos, J., Valladares, F., 2001. Geomorphological significance of lichen colonization in a present snow hollow: Hoya del Cuchillar de las Navajas, Sierra de Gredos (Spain). Catena 43 (4), 323e340. García-Sanz, L., 1957. Influencia de la paleoclimatología local o zonal en las distintas ricas. In: Actas V Congreso INQUA, pp. 231e235. estructuras periglaciares ibe García-Sainz, L., 1962. Frostbodenformen im Idubeda-Gebirge (Spain). Z. Geomorph. N.F. 5, 33e50. s, A., Mateu, J., 1977. Feno menos de clima frío en el Alt Maestrat. In: Actas II Gine n Nacional del Grupo Espan ~ ol Trabajo Cuaternario, 6, pp. 93e103. Reunio Giraudi, C., 2005. Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quat. Res. 64, 176e184. mez-Lende, M., Berenguer, F., Serrano, E., 2014. Morphology, ice types and Go thermal regime in a high mountain ice cave. First studies applying terrestrial ~ a Castil Ice Cave (Picos de Europa, Northern Spain). laser scanner in the Pen Geog. Fis. Din. Quat. 37, 141e150. mez-Ortiz, A., 1980. Estudio geomorfolo gico del Pirineo catal nesis Go an: morfoge glacial y periglacial de los altos niveles y vertientes merdionales de los macizos

196

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

s, Tossa Plana de Lle s y Port Negre (Cerdanya-Alt Urgell). PhD de Calmquerdo thesis. University of Barcelona. mez-Ortiz, A., 1982. La experimentacio n periglaciar en la alta montan ~ a mediGo nea. El caso de las microfiguras geome tricas. Cuad. Investig. Geogra fica 8, terra 71e84. mez-Ortiz, A., 1987. Morfología glaciar en la vertiente meridional de Sierra Go n). Estud. Geog. 193, 527e558. Nevada ( area Veleta-Mulhace mez-Ortiz, A., 2002. Mapa geomorfolo  gico de Sierra Nevada. Consejería de Medio Go Ambiente de la Junta de Andalucía, Granada. mez-Ortiz, A., Díaz del Olmo, F., Simo  n Torres, M., 1994. Periglaciarismo en las Go ticas. In: Go mez-Ortiz, A., Simo n Torres, M., Salvador-Franch, F. Cordilleras Be rica, Canarias y Baleares. Estudios (Eds.), Periglaciarismo en la Península Ibe significativos. SEG-Universidad de Granada, Granada, pp. 165e188. mez-Ortiz, A., Oliva, M., Salvador, F., Salva , M., Palacios, D., Sanjose , J.J., Tanarro, L., Go Galindo-Zaldívar, J., Sanz de Galdeano, C., 2014. Degradation of buried ice and permafrost in the Veleta cirque (Sierra Nevada, Spain) from 2006e2013. Solid Earth 5, 979e993. mez-Ortiz, A., Palacios, D., Palade, B., Va zquez-Selem, L., Salvador-Franch, F., Go 2012a. The deglaciation of the Sierra Nevada (Southern Spain). Geomorphology 159e160, 93e105. mez-Ortiz, A., Palacios, D., Palade, B., Va zquez-Selem, L., Salvador, F., Tanarro, L., Go n glaciar de Sierra Nevada y la formacio n de glaciares Oliva, M., 2013. La evolucio rocosos. Bol. Asoc. Geog. Esp. 61, 139e162. mez-Ortiz, A., Palacios, D., Ramos, M., 2004. Permafrost, evolution of associated Go landforms and thermal control in the Veleta Cirque (Sierra Nevada, Spain). New results. Bol. R. Soc. Esp. Hist. Nat. 99 (1e4), 47e63. mez-Ortiz, A., Palacios, D., Ramos, M., Schulte, L., Salvador, F., Tanarro, L., 1999. Go  n del permafrost en Sierra Nevada. Repercusiones geomorfolo gicas: Degradacio el caso del Corral del Veleta. Resultados preliminares. Bol. Asoc. Geog. Esp. 27, 7e21. mez-Ortiz, A., Palacios, D., Schulte, L., Salvador-Franch, F., Plana, J.A., 2009. EviGo dences from historical documents of landscape evolution after Little Ice Age of a Mediterranean high mountain area, Sierra Nevada, Spain (eighteenth to twentieth centuries). Geog. Ann. Ser. A Phys. Geog. 91, 279e289. mez-Ortiz, A., Plana Castellví, J.A., 2006. La Pequen ~ a Edad del Hielo en Sierra Go poca (siglos XVIII y XIX) y relaciones con el Nevada a partir de los escritos de la e ~ ola. Bol. Asoc. Geog. Esp. progreso de la geografía física y geomorfología espan 42, 71e98. mez-Ortiz, A., Salvador-Franch, F., 1992. Aportaciones significativas al conGo ocimiento del glaciarismo y periglaciarismo de Sierra Nevada. Notes Geog. Fis. 20e21, 89e101. mez-Ortiz, A., Salvador-Franch, F., Sanjose , J.J., Palacios, D., Oliva, M., Salv Go a, M., Tanarro, L., Raso, J., Atkinson, A., Schulte, L., Plana, J., Milheiro, B., Serrano, D.,  n de hielo fo sil y permafrost y cambio clima tico en Sierra 2012b. Degradacio n en parques Nevada. In: Ramírez, L., Asensio, B. (Eds.), Proyectos de investigacio n Naturaleza y Parques Nacionales. Organismo nacionales: 2008e2011. Coleccio nomo Parques Nacionales. Ministerio de Agricultura, Alimentacio n y Medio Auto Ambiente, Madrid, pp. 25e43. mez-Ortiz, A., Serrat, D., 1977. Las formaciones geome tricas periglaciares de los Go altos niveles del Pirineo Oriental. In: V Coloquio de Geografía. Universidad de Granada, Granada, pp. 75e81. mez-Villar, A., Gonz rrez, R.B., Redondo, J.M., Santos-Gonz Go alez-Gutie alez, J., 2011. n de glaciares rocosos relictos en la Cordillera Canta brica. Cuad. Distribucio Investig. Geogr. 37 (2), 49e80. lez-Amuchastegui, M.J., 2014. Las tobas del Alto Tajo. In: Gonz Gonza alezlez-Amuchastegui, M.J. (Eds.), Las tobas en Espan ~ a. Sociedad Martín, J.A., Gonza ~ ola de Geomorfología, Madrid, pp. 185e198. Espan lez-Amuchastegui, M.J., Gonza lez-Martín, J.A., 1990. Derrrubios criocla sticos y Gonza rea de Molina de Arago n. In: Actas 1ª Reunio n Nacional de etapas frías en el a Geomorfología, pp. 169e178. lez-Amuchastegui, M.J., Serrano, E., 2014. Tufa buildups, landscape evolution Gonza and human impact during the Holocene in the Upper Ebro Basin. Quat. Int. 364, 54e64. lez-García, M., 2014. La Alta montan ~ a periglaciar en el Pirineo Central espaGonza ~ ol. Procesos, formas y condiciones ambientales. PhD thesis. University of n laga. Ma lez-Gutie rrez, R.B., 2002. El relieve de los valles del Torío y Cururen ~ o (MonGonza ~ a Cant  n. tan abrica Leonesa). University of Leo lez-Martín, J.A., Asensio-Amor, I., 1977. Contribution a  l’e tude des actions Gonza riglaciaires dans le bord SW du Syste me Iberique (Espagne). In: Actes du pe riglaciaire d’altitude du domaine mediterrane en et abords. Symposium sur le pe Association Geographique d’Alsace, pp. 177e185. lez-Martín, J.A., Asensio-Amor, I., 1978. Contribucio n al estudio de las conGonza rico (Cifuentesdiciones periglaciares en el Borde SW. Del Sistema Ibe  n, Guadalajara). In: Colloque sur le periglaciaire d’ltitude du domaine Marancho en et abords. Strasbourg 12e14 mai 1977. Assoc. Geograf. D'Alsace, mediterrane pp. 177e185. lez-Martín, J.A., Asensio-Amor, I., Fern Gonza andez, A., García, R., Gonz alezndez, V., 2000. Acumulaciones de Amuchastegui, M.J., Guerrero, L., Rubio-Ferna origen frío en el modelado de los paisajes de la Rama Castellana del Sistema rico y de la Submeseta Sur. In: Pen ~ a, J.L., S Ibe anchez-Fabre, M., Lozano, M.V. ~ a mediterra nea. Instituto de (Eds.), Procesos y formas periglaciares en la montan Estudios Turolenses, Teruel, pp. 149e160. lez-Martín, J.A., Ferna ndez-García, F., 1984. Estudio de las heladas en la zona Gonza  n (Guadalajara) y su influencia en la morfoge nesis actual. In: de Molina de Arago

 n de Estudios Regionales de Castilla-La Mancha, 3. Servicio de Actas 1ª Reunio Publicaciones de Castilla-La Mancha, pp. 69e94. Gonz alez-Martín, J.A., Pellicer, F., 1988. Rasgos generales del periglaciarismo de la rica: dominio continental de las tierras del interior. Cuad. Investig. Península Ibe Geogr. 14, 23e82. ~ a Edad del Hielo en los Picos de Europa Gonz alez-Trueba, J.J., 2005. La Pequen brica, NO de Espan ~ a). Ana lisis morfolo gico y reconstruccio n del (Cordillera Canta rico. Cuatern. Geomorf. 19 (3e4), 79e94. avance glaciar histo Gonz alez-Trueba, J.J., 2006. Topoclimatical factors and very small glaciers in Atlantic mountain of SW Europe: the little ice age glacier advance in Picos de Europa (NW Spain). Z. für Gletsch. Glazialgeol. 39, 115e125. Gonz alez-Trueba, J.J., 2007a. El paisaje natural del Macizo Central de los Picos de  gicas en la alta montan ~a Europa: Geomorfología y sus implicaciones geoecolo brica. CIMA-Medio Ambiente de Cantabria, Santander. canta Gonz alez-Trueba, J.J., 2007b. Geomorfología del macizo central del Parque Nacional de Picos de Europa. OAPN-Ministerio de Medio Ambiente, Madrid. ~ a edad del hielo en los Picos de Europa. Gonz alez-Trueba, J.J., 2007c. La pequen n del avance glaciar histo  rico (s. XIX). Universidad de An alisis y reconstruccio n Marcelino Botín, Santander. Cantabria y Fundacio n, E., Serrano, E., 2008. Little Ice Gonz alez-Trueba, J.J., Martín, R., Martínez de Piso Age and current glaciers, Iberian Peninsula. Holocene 18, 551e568. Gonz alez-Trueba, J.J., Serrano, E., 2010. La nieve en los Picos de Europa. Cuad. Investig. Geogr. 36 (2), 61e84. Grove, J.M., Gellatly, A.F., 1995. Little Ice Age fluctuations in the Pyrenees. Z. Gletsch. Glacialgeol. 31, 199e206. Guglielmin, M., Cannone, N., Dramis, F., 2001. Permafrost-Glacial evolution during the Holocene in the Italian Central Alps. Permafr. Periglac. Process. 12 (1), 111e125. n-Rivera, L., Pe rez-Alberti, A., 1992. Biogeografía y procesos periglaciares en la Guitia Serra do Courel y su entorno. University of Santiago, Santiago de Compostela. rrez, M., Pen ~a , J.L., 1975. Karst y periglaciarismo en la Sierra de Javalambre Gutie (provincia de Teruel). Bol. Geol. Min. 86 (6), 561e572. rrez, M., Pen ~ Gutie a, J.L., 1977. Las acumulaciones periglaciares del Macizo del Temedal (Sierra de Albarracín). Bol. Geol. Min. 88 (2), 109e115. riaux de ge omorphologie pe riglaciaire dans lEspagne du Hamelin, L.E., 1958. Mate nne es Sud Ouest 25, 241e256. Nord. Rev. Geog. Pyre gicos en Sierra Nevada. Estud. Hempel, L., 1960. Límites altitudinales geomorfolo Geog. 78, 81e93. Hirsch, F., Raab, T., 2014. Geophysical prospection on Late Quaternary sediments in llego Valley, Central Spanish Pyrenees. Z. für Geomorphol. 58, 47e62. the Ga Hirsch, F., Raab, T., Schuhart, S., 2010. Quaternary Deposits and Soil Formation in the n Pyrenees (Spain) e First Results from Sedimentological Studies. GeoArago phys. Res. Abstr., 12, EGU General Assembly, Vienna, Austria, EGU2010e3935. €llermann, P., 1985. The periglacial belt of midlatitude mountains from a geoHo ecological point of view. Erdkunde 39, 259e270. Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2003. Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) in northwest Greece. J. Quat. Sci. 18, 431e440. Hughes, P.D., Fenton, C.R., Gibbard, P.L., 2011. Quaternary glaciations of the Atlas Mountains, North Africa. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary GlaciationsdExtent and Chronology: a Closer Look, Developments in Quaternary Science, 15. Elsevier, Amsterdam, pp. 1065e1074. Hughes, P.D., Woodward, J.C., 2008. Timing of glaciation in the Mediterranean mountains during the last cold stage. J. Quat. Sci. 23 (6e7), 575e588. Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006. Glacial history of the Mediterranean mountains. Prog. Phys. Geog. 30, 334e364. ~ o. Imperatori, L., 1955. Documentos para el estudio del Cuaternario madrilen menos de crioturbacio n en la terraza superior del Manzanares. Est. Geol. Feno 26, 139e143. IPCC, 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp. Jalut, G., Turu, V., Dedoubat, J.J., Otto, T., Ezquerra, J., Fontugne, M., Belet, J.M., Bonnet, L., García de Celis, A., Redondo-Vega, J.M., Vidal-Romaní, J.R., Santos, L., 2010. Palaeoenvironmental studies in NW Iberia (Cantabrian range): vegetation history and synthetic approach of the last deglaciation phases in the western Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297 (2), 330e350. nez, A., 1987. Estudio geomorfolo gico de las Muelas de San Juan y Frías de Jime Albarracín (provincia de Teruel). Inst. Estud. Turol. 81 (I), 57e77. nez-Sa nchez, M., 1996. El glaciarismo en la cuenca alta del río Nalo n (NO de Jime ~ a): una propuesta de evolucio n de los sistemas glaciares cuaternarios en Espan brica. Rev. Soc. Geol. Esp. 9 (3e4), 157e168. la Cordillera Canta nez-Sa nchez, M., Farias-Arquer, P., 2002. New radiometric and geomorphologic Jime evidences of a last glacial maximum older than 18 ka in SW European mountains: the example of Redes Natural Park (Cantabrian Mountains, NW Spain). Geodin. Acta 15 (1), 93e10. Johnsson, G., 1960. Cryoturbation at Zaragoza. Norther Spain. Z. für Geomorph. N. F. 4, 74e80. ^ n, A., Chueca, J., 1998. Le Petit Age ne es Centrales MerJulia Glaciaire dans les Pyre otempe ratures a  partir d’infe rences idionales: estimation des pale omorphologiques. Sud-Ouest Eur. 3, 79e88. ge n, A., Chueca, J., 2007. Permafrost distribution from BTS measurements (Sierra Julia de Telera, Central Pyrenees, Spain): assessing the importance of solar radiation in a mid-elevation shaded mountainous area. Permafr. Periglac. Process. 18, 137e149.

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199 Kuhlemann, J., Rohling, E.J., Kumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science 321, 1338e1340. Lasanta, T., Beguería, S., García-Ruiz, J.M., 2006. Geomorphic and hydrological effects of traditional shifting agriculture in a Mediterranean mountain, Central Spanish Pyrenees. Mn. Res. Dev. 26 (2), 146e152. pez-Bermúdez, F., 1976. Depo  sitos de ladera en Sierra Espun ~ a (Cordilleras Lo ticas). Pap. Geog. 6, 9e27. Be pez-Moreno, J.I., El-Kenawy, A., Revuelto, J., Azorín-Molina, C., Mor Lo an-Tejeda, J., Lorenzo-Lacruz, J., Zabalza, J., Vicente-Serrano, S.M., 2014b. Observed trends and future projections for winter warm events in the Ebro basin, Northeastern Iberian Peninsula. Int. J. Climatol. 34 (1), 49e60. pez-Moreno, J.I., Pomeroy, J., Revuelto, J., Vicente-Serrano, S.M., 2013. Response of Lo snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrol. Process. 27 (18), 2637e2650. pez-Moreno, J.I., Revuelto, J., Gilaberte, M., Mor Lo an-Tejeda, E., Pons, M., Jover, E., Esteban, P., Garcia, C., Pomeroy, J., 2014a. The effect of aspect on the response of snowpack to climate warming in the Pyrenees. Theor. Appl. Climatol. 117 (1e2), 207e219. Lozano, M.V., 1993. El modelado de las laderas de las sierras de Gúdar (Cadena rica Oriental, provincia de Teruel). El Cuaternario en Espan ~ a y Portugal, ITGEIbe AEQUA, vol. 2. University of Coimbra, pp. 861e868. , R., Serrano, E., Reynard, E., Lambiel, C., Gonza lez-Trueba, J.J., Lugon, R., Delaloye 2004. Permafrost and Little Ice Age relationships, Posets massif, Central Pyrenees, Spain. Permafr. Periglac. Process. 15 (3), 207e220. ~ aMarcos, J., 2000. Procesos actuales en el Alto Gredos: Garganta del Pinar. In: Pen , J.L., S Monne anchez-Fabre, M., Lozano-Tena, M.V. (Eds.), Procesos y formas ~ a mediterr periglaciares en la montan anea, Teruel, pp. 213e232.  pez-Sa ez, J.A., 2009. Environmental Martínez-Cortizas, A., Costa-Casais, M., Lo change in NW Iberia between 7000 and 500 cal. BC. Quat. Int. 200, 77e89. rcel, M., Pe rez-Alberti, A., Castillo-Rodríguez, F., BlancoMartínez-Cortizas, Valca tico e paleoambientes cuaternarios. In: MartínezChao, R., 1999. Cambio clima rez-, A. (Eds.), Atlas Clima tico de Galicia. Xunta de Galicia, Cortizas, A., Pe pp. 167e185. n, E., Arenillas, M., 1988. Los glaciares actuales del Pirineo espan ~ ol. Martínez de Piso ~ ol. MOPU, Madrid, pp. 29e98. La nieve en el Pirineo Espan  n, E., Palacios, D., 1997. Significado del episodio glaciar en la Martínez de Piso n morfolo gica y en el paisaje de la Sierra de Gredos. Sistema Central. In: evolucio mez Ortiz, A., Pe rez-Alberti, A. (Eds.), Las huellas glaciares de las montan ~ as Go ~ olas. University of Santiago, Santiago de Compostela, pp. 163e207. espan ^ tiere asturienne (Espagne) du Neo gene  Mary, G., 1979. Evolution de la bordure co a l'actuel. PhD thesis. University of Caen. Mary, G., Medus, J., Delibrias, G., 1972. Documents sur la evolution de la flore du litoral nord espagnol au Würm. Bull. Assoc. Fr. Etude Quat. 50, 23e31. Matsuoka, N., 2001. Solifluction rates, processes and landforms: a global review. Earth Sci. Rev. 55, 107e134. Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., 2004. Holocene climate variability. Quat. Res. 62, 243e255. nesis de los glacis del valle del Ebro y su posterior Mensua, S., 1964. Sobre la ge n morfolo gica. In: Aportacio n espan ~ ola al XX Congreso geogra fico evolucio internacional, pp. 191e195. Mercier, D., 2008. Paraglacial and paraperiglacial landsystems; concepts, temporal scales and spatial distribution. Geomorphol. Relief Process. Environ. 4, 223e233. €ge zur Geomorphologie der Sierra Nevada (Andalusien). Messerli, B., 1965. Beitra Juris Verlag, Zürich.  , P., Vieira, G., 2014. Granite geomorphology and its geological controls, Serra Migon da Estrela, Portugal. Geomorphology 226, 1e14. Mora, C., 2010. A synthetic map of the climatopes of the Serra da Estrela (Portugal). J. Maps v2010, 591e608. Mora, C., Vieira, G., Alcoforado, M.J., 2001. Daily minimum air temperatures in Serra da Estrela, Portugal. Finisterra 71, 49e60. pez-Merino, L., Leira, M., Barba, J., Gonz riz, P., Valero, B.L., Moreno, A., Lo alez-Sampe pez-S Lo aez, J.A., Santos, L., Mata, M.P., Ito, E., 2011. Revealing Holocene environmental history from multiproxy record of a mountain lake (Lago Enol, N Iberian Peninsula). J. Paleolimnol. 46 (3), 327e349. s, B.L., Jime nez-Sa nchez, M., Domínguez-Cuesta, M.J., Moreno, A., Valero-Garce riz, P., Stoll, H., Farias, P., Morello n, M., Mata, M.P., Navas, A., Gonz alez-Sampe Corella, J.P., Rico, M., 2010. The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). J. Quat. Sci. 25 (7), 1076e1091. n de Aso n y su evolucio n morfolo gica. In: Cuad. Mugnier, C., 1969. El karst de la regio de Espeleología, 4. ~ oz, J., 1982. Geografía Física. El relieve, el clima y las aguas. In: Quiro s, F. (Ed.), Mun Geografía de Asturias, Ayalga Ediciones, vol. 1, pp. 1e271. ~ oz, J., Palacios, D., Marcos, J., 1995. The influence of the geomorphologic heriMun tage on present slope dynamics. The Gredos Cirque, Spain. Pirineos 145e146, 35e63. Nieuwendam, A., Ruiz-Fern andez, J., Oliva, M., Freitas, C., Paio, V., Cruces, A., 2015. Postglacial landscape changes and cryogenic processes in the Picos de Europa (Northern Spain) reconstructed from geomorphological mapping and microstructures on quartz grains. Permaf. Perigl. Proc. http://dx.doi.org/10.1002/ ppp.1853. gions co ^ tie res de la Galice (Espagne): e tude Nonn, H., 1966. Les Re

197

omorphologique. Ann. Geog. 76 (415), 349e352. ge Obermaier, H., 1914. Estudio de los glaciares de los Picos de Europa. Museo Nacional de Ciencias Naturales, Madrid, 41 pp. Oliva, M., 2009. Holocene Alpine Environments in Sierra Nevada (Southern Spain). PhD thesis. University of Barcelona.  n cuaternaria del paisaje de cumbres en Sierra Nevada. Oliva, M., 2011. Evolucio Cuat. Geomorfol. 25 (1e2), 21e44. mez-Ortiz, A., 2010. Late Holocene reconstruction of landscape changes Oliva, M., Go in Sierra Nevada from sedimentary records and documentary sources. In: Proceedings of the Global Change and the World's Mountains Conference (CDRom). Perth (Scotland), 26e30 September, 2010. mez-Ortiz, A., 2011. Holocene slope dynamics in Sierra Nevada Oliva, M., Go (Southern Spain). Sedimentological analysis of solifluction landforms and lake rez-Alberti, A. (Eds.), Ice-marginal and deposits. In: Martini, I.P., French, H.M., Pe Periglacial Processes and Sediments, vol. 354. Geological Society, London, pp. 227e239. Special Publications.  mez-Ortiz, A., 2012. Late Holocene environmental dynamics and Oliva, M., Go climate variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) inferred from lake sediments and historical sources. Holocene 22 (8), 915e927.  mez-Ortiz, A., 2013. Multi-proxy reconstruction of past environmental Oliva, M., Go changes and climate conditions over the last millennium in Southern Iberia (Sierra Nevada, Spain). In: Holocene: Perspectives, Environmental Dynamics and Impact Events. Nova Science Publishers, pp. 111e128. mez-Ortiz, A., 2008. Solifluction lobes in Sierra Nevada Oliva, M., Schulte, L., Go (Southern Spain): morphometry, process monitoring and palaeoenvironmental changes. In: Kane, D.L., Hinkel, K.M. (Eds.), Proceedings of the Ninth International Conference on Permafrost, vol. 2. University of Alaska Fairbanks, Fairbanks, pp. 1321e1326.  mez-Ortiz, A., 2009. Morphometry and Late Holocene acOliva, M., Schulte, L., Go tivity of solifluction landforms in the Sierra Nevada (Southern Spain). Permafr. Periglac. Process. 20 (4), 369e382. mez-Ortiz, A., 2011. The role of aridification in constraining Oliva, M., Schulte, L., Go the elevation range of Holocene solifluction processes and associated landforms in the periglacial belt of the Sierra Nevada (Southern Spain). Earth Surf. Proc. Landf. 36, 1279e1291. mez-Ortiz, A., Palacios, D., Salvador-Franch, F., Salva -Catarineu, M., Oliva, M., Go 2014c. Environmental evolution in Sierra Nevada (South Spain) since the Last glaciation based on multi-proxy records. Quat. Int. 353, 195e209. mez-Ortiz, A., Salvador-Franch, F., Salv Oliva, M., Go a-Catarineu, M., 2014a. Presentday solifluction processes in the semiarid range of Sierra Nevada (Spain). Arct. Antarc. Alp. Res. 46 (2), 73e78.  mez-Ortiz, A., Salvador-Franch, F., Salv Oliva, M., Go a-Catarineu, M., Pererira, P., Geraldes, M., 2014b. Long term soil temperature dynamics in the Sierra Nevada, Spain. Geoderma 235e236, 170e181.  mez-Ortiz, A., Salvador-Franch, F., Salv Oliva, M., Go a-Catarineu, M., Ramos, M., ndez, J., 2016. Inexistence of Palacios, D., Tanarro, L., Pereira, P., Ruiz-Ferna permafrost at the top of Veleta peak (Sierra Nevada, Spain). Sci. Total Environ. submitted for publication. Oliveira, D., 2012. Vegetation Response to Holocene Climate Variability in Southwestern Europe. ThMs. Universidade de Lisboa, Faculdade de Ciencias, Departamento de Geologia. ~o n, J., 1985. Evolucio n cuaternaria del valle del Paular. Publicaciones de la Ontan Universidad Complutense de Madrid, Madrid. ~o n, J., Asensio-Amor, I., 1973. Observaciones sobre los frentes morre nicos en el Ontan alto valle del Lozoya. Estud. Geog. 29, 559e562. Ortigosa, L.M., 1985. Los glaciares rocosos de la Sierra Cebollera. In: Actas del I Coloquio sobre Geografía de La Rioja. Inst. de Estud., Rioja, pp. 55e68. rico). Ortigosa, L.M., 1986. Geomorfología glaciar de la Sierra Cebollera (Sistema Ibe Inst. de Estud., Rioja, 77 pp. , R., Lucini, M., Llamas, F.J., 2004. The palaeOrtiz, A., Torres, T., Delgado, A., Julia oenvironmental and palaeohydrological evolution of Padul peat bog (Granada, Spain) over one million years from elemental, isotopic and molecular organic geochemical proxies. Org. Geochem. 35, 1243e1260. , P., 1981. Quelques modele s d’orige pe riglaciaire nivale et e oliennne de la Pailhe rique Orientales. Rech. Geog. Strasbg. 16e17, 101e105. Ch^ aine Ibe s, N., 2000. Morfodin Palacios, D., Andre amica supraforestal actual en la Sierra de  n con la cubierta nival: el caso de Dos HermanasGuadarrama y su relacio ~ alara. In: Pen ~ a Monne , J.L., Sa nchez Fabre, M., Lozano Tena, M.V. (Eds.), Pen ~ a mediterra nea, Teruel, Procesos y formas periglaciares en la montan pp. 235e264. s, N., Lo  pez-Moreno, J.I., García-Ruiz, J.M., 2015a. Late Pleistocene Palacios, D., Andre deglaciation in the upper G allego Valley, central Pyrenees. Quat. Res. 83 (3), 397e414. s, N., Luengo, E., 2003. Distribution and effectiveness of nivation Palacios, D., Andre ~ alara (Spain). Geomorphology 54, 157e178. in Mediterranean mountains: Pen s, N., Marcos, J., V Palacios, D., Andre azquez-Selem, J., 2011b. Glacial landforms and their paleoclimatic significance in Sierra de Guadarrama, Central Iberian Peninsula. Geomorphology 139e140, 67e78. s, N., Marcos, J., Va zquez-Selem, J., 2012. Maximum glacial Palacios, D., Andre advance and deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the Mediterranean context. Geomorph 177e178, 51e61. Palacios, D., García, M., 1997. The influence of geomorphologic heritage on present ~ alara, Spain. Geog. Ann. Ser. A Phys. Geog. 79, 25e40. nival erosion: Pen  mez-Ortiz, A., de Andre s, N., V Palacios, D., Go azquez-Selem, L., Salvador-Franch, F.,

198

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199

Oliva, M., 2015b. Maximum extent of Late Pleistocene glaciers and Last Deglaciation of La Cerdanya mountains, Southeastern Pyrenees. Geomorphology 231, 116e129.  gicos de la accio n Palacios, D., Marcos, J., Tanarro, L.M., 1998. Los efectos geomorfolo  meznival en la Hoya del Cuchillar de las Navajas. Sierra de Gredos. In: Go Ortiz, A., Salvador-Franch, F., Schulte, L., García, A. (Eds.), Procesos biofísicos actuales en medios fríos. University of Barcelona, Barcelona, pp. 263e287. Palacios, D., Marcos, J., V azquez-Selem, L., 2011a. Last Glacial Maximum and Deglaciation of Sierra de Gredos, Central Iberian Peninsula. Quat. Int. 233, 16e26. mez-Ortiz, A., Palacios, D., 2011. Glaciares rocosos de Sierra Nevada y Palade, B., Go tico: una primera aproximacio n. Cuad. Investig. Geogr. su significado paleoclima 37, 95e118. s, R., Rode s, A., Braucher, R., Bourle s, D., Delmas, M., Calvet, M., Gunnell, Y., Palla 2010. Small isolated glacial catchments as priority targets for cosmogenic surface exposure dating of Pleistocene climate fluctuations. Southeast. Pyrenees. Geol. 38, 891e894. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., BenitoAlonso, J.L., Coldea, G., Dick, J., Erschbamer, B., Fern andez-Calzado, R., Ghosn, D., r, J., Larsson, P., Moiseev, P., Moiseev, D., Holten, J.I., Kanka, R., Kazakis, G., Kolla Molau, U., Molero-Mesa, J., Nagy, L., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P., Grabherr, G., 2012. Recent plant diversity changes on Europe's mountain summits. Science 336, 353e355. Pedraza, J., Carrasco, R.M., Domínguez-Villar, D., Willenbring, J.K., 2011. Late Pleistocene Glacial Evolutionary Stages in the Spanish Central System. XVIII INQUA, Abstract, ID 1438, Bern, Switzerland.  pez, J., 1980. Gredos: geología y glaciarismo, Obra Social de la Caja de Pedraza, J., Lo Ahorros de Avila. Avila, 31 pp. Pellicer, F., 1980. El periglaciarismo del Moncayo. Geographicalia 7e8, 3e25. ricas entre el Jalo  n y el Moncayo. Pellicer, F., 1984. Geomorfología de las Cadenas Ibe Cuad. Estud. Borj. 11e14, 390 pp. Pellitero, R., 2009. Application of an alpine geomorphological mapping system to an atlantic mountain environment: the Curavacas Massif (Cantabrian Range, northest Spain). J. Maps 194e205. Pellitero, R., 2012. Geomorfología, paleoambiente cuaternario y geodiversidad en el ~ a Palentina. PhD thesis. University of Macizo de Fuentes Carrionas-Montan Valladolid. Pellitero, R., 2014. Geomorphology and geomorphological landscapes of Fuentes Carrionas. J. Maps 10 (2), 313e323. lez-Trueba, J.J., 2011. Glaciares rocosos del sector Pellitero, R., Serrano, E., Gonza ~ a Canta brica: indicadores paleoambientales. Cuad. Investig. central de la Montan Geogr. 37, 119e144. ~ a, J.L., Jime nez, A., 1993. El modelado de laderas en el curos medio del río Pen ~a Guadalaviar (Sierra de Albarracín, provincia de Teruel). El Cuaternario Espan Port. I, 129e134. ~ a, J.L., Lozano, M.V., 1998. Las formas periglaciares de la Cordillera Ibe rica Pen ~ a, J.L. (Ed.), Geomorfología de campo de la Sierra de Centroritnal. In: Pen Albarracín. Universidad de Verano de Teruel, pp. 159e177. ~ a, J.L., Lozano, M.V., Sa nchez-Fabre, M., Jime nez-Martínez, A., Longares, L.A., Pen Chueca, J., Juli an, A., 2000. Las acumulaciones de clima frío de la Sierra de rica Oriental. In: Pen ~ a, J.L., Sa nchezAlbarracín en el contexto de la Cordillera Ibe ~a Fabre, M., Lozano, M.V. (Eds.), Procesos y formas periglaciares en la montan mediterr anea. Instituto de Estudios Turolenses, Teruel, pp. 127e147. ~ a, J.L., Sancho, C., Lewis, C., McDonald, E., Rhodes, E., 2003. Las morrenas terPen minales de los valles glaciares del G allego y Cinca (Pirineo de Huesca). Datos gicos. Bol. Glaciolo  gico Aragon. 4, 91e109. cronolo rez-Alberti, A., 1979. Nuevas observaciones sobre glaciarismo y periglaciarismo Pe rica. La Galicia sud oriental. Acta Geol. Hisp. 14, en el NW de la Península Ibe 441e444. rez-Alberti, A., 1988. Procesos periglaciares e glaciares no nordeste de Galicia. Pe Terra. Soc. Galega Xeog. 3, 78e85. rez-Alberti, A., Blanco-Chao, R., Costa-Casais, M., 1998a. Depo  sitos sedimentarios Pe ntica gallega ana lisis comparativo. In: Go mez-Ortiz, A., antiguos en la costa atla Salvador-Franch, F. (Eds.), Investigaciones Recientes de la Geomorfología ~ ol. Universitat de Barcelona, Huesca, pp. 341e346. Espan rez-Alberti, A., Costa-Casais, M., Blanco-Chao, R., 2002. Stability of sedimentary Pe cliffs in the Coast of Galicia (NW Spain): long term inheritance influence in rocky coastal systems. Changing Coast 281e285. rez-Alberti, A., Costa-Casais, M., Martínez-Cortizas, A., 1999. Nuevas aportaciones Pe ntica de Galicia. Geoal conocimiento del cuaternario reciente en la costa atla arqueologia i Quaternari litoral. Memorial M.P: Fumanal, pp. 381e390. rez-Alberti, A., Martínez-Cortizas, A., Moares, C., 1994. Los procesos periglaciares Pe rica y sus implicaciones en la din en el Noroeste de la Península Ibe amica de nesis de suelos. In: Go  mez-Ortiz, A., Simo n Torres, M., Salvadorvertientes y ge rica, Canarias y Baleares. Franch, F. (Eds.), Periglaciarismo en la Península Ibe Monografías de la SEG, Granada. Estudios significativos, 7, pp. 33e54. rez-Alberti, A., Rodríguez-Guiti sitos de Pe an, M., Valc arcel, M., 1993. Formas y depo macroclastos y manifestaciones actuales de periglaciarismo en las sierras seprez-Alberti, Guitia n, L., Ramil, P. (Eds.), tentrionales y orientales de Galicia. In: Pe  n del paisaje en las montan ~ as del entorno del Camino de Santiago. La evolucio Xunta de Galicia, pp. 91e105. rez-Alberti, A., Valca rcel, M., 2000. Depo sitos de ladera de estructura estratificada Pe rico). In: Pen ~ a Monne, J.L., Sanchez-Fabre, M., en la Galicia Oriental (Noroeste Ibe ~a Lozano, M.V. (Eds.), Procesos y formas periglaciares en la montan

nea. Instituto de Estudios Turolenses, Teruel, pp. 25e44. mediterra rez-Alberti, A., Valc Pe arcel, M., Blanco, R., 2004. Pleistocene glaciation in Spain. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations- Extent and Chronology. Elsevier, London, pp. 389e394. rez-Alberti, A., Valca rcel, M., Martínez-Cortizas, A., Blanco, R., 1998b. Evidencias Pe rica. In: de procesos periglaciares actuales en el noroeste de la Península Ibe mez-Ortiz, A., Salvador-Franch, F., Schulte, L., García Navarro, A. (Eds.), Go Procesos biofísicos actuales en medios fríos. Universidad de Barcelona, Barcelona, pp. 245e261. rez-Alberti, A., Valca rcel, M., Martini, I.P., Pascucci, V., Andreucci, 2011. Upper Pe Pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW rez-Alberti, A. (Eds.), Ice-marginal and Spain. In: Martini, I.P., French, H., Pe Periglacial Processes and Sediments. The Geological Society, 354, pp. 93e110. Special Publication, London. rez-Díaz, S., Lo  pez-Sa ez, J.A., Galop, D., 2015. Vegetation dynamics and human Pe activity in the Western Pyrenean Region during the Holocene. Quat. Int. 364, 65e77. rez-Gonza lez, A., 1971. Estudio de los procesos de hundimiento en el valle del río Pe Jarama y sus terrazas. Est. Geol. XXVII, 317e324. rez-Obiol, R., Jalut, G., Juli lachs, A., Iriarte, M.J., Otto, T., Hern Pe a, R., Pe andezBeloqui, B., 2011. Mid-Holocene vegetation and climatic history of the Iberian Peninsula. Holocene 21, 75e93. Pezzi, M.C., 1975. Algunas observaciones sobre sistemas morfclim aticos y karst en ticas. Cuad. Geog. serie monogr las cordilleras Be afica Granada 1, 59e83. Phillips, W.M., Hall, A.M., Mottram, R., Fifield, L.K., Sugden, D.E., 2006. Cosmogenic 10Be and 26Al exposure ages of tors and erratics, Cairngorm Mountains, Scotland: timescales for the development of a classic landscape of selective linear erosion. Geomorphology 73, 222e245. lez-Trueba, J.J., 2015. Re gimen te rmico de suelos del Pisabarro, A., Serrano, E., Gonza ~ a). Pirineos 170. http://dx.doi.org/ macizo central de Picos de Europa (Espan 10.3989/Pirineos.2015.170003. rrez, R.B., Go mez-Villar, A., 2002. Redondo, J.M., Carrera, P., Gonz alez-Gutie n de los Macizos que dominan los glaciares rocosos fo  siles de la Caracterizacio n): influencia de la fracturacio n en la ge nesis y desarrollo Sierra de Gistredo (Leo de esas formas periglaciares. In: Serrano, E., García de Celis, A. (Eds.), Peri~ a y altas latitudes. University of Valladolid, Valladolid, glaciarismo en montan pp. 27e36. mez-Villar, A., Gonza lez-Gutie rrez, R.B., 2004. Localizacio n y Redondo, J.M., Go n morfome trica de los glaciares rocosos relictos de la Sierra de caracterizacio ~ a Canta brica, Leo n). Cuad. Investig. Geogr. 30, 35e60. Gistredo (Montan mez-Villar, A., Gonz rrez, R.B., Santos, J., 2010. Los glaRedondo, J.M., Go alez-Gutie brica. University of Leo  n, Leo  n, 158 pp. ciares rocosos de la Cordillera Canta gico de la Sierra de Albarracín, 16. C.S.I.C. Instituto Lucas Riba, O., 1959. Estudio geolo Mallada, Monografía, p. 283. sitos e evoluç~ Rodrigues, M.L., 1991. Depo ao quatem arta das vertentes nas ~ es de Minde e de Alvados (Maciço Calca reo Estremenho). Finisterra 51, depresso 5e26. rez, C., 1995. Estudio geomorfolo gico del Puerto de San Isidro. Ería 36, Rodríguez-Pe 63e87. rez, C., 2009. Geomorfología de la montan ~ a astur-leonesa entre los Rodríguez-Pe puertos de Ventana y de Somiedo. PhD thesis. University of Oviedo. nez, M., Domínguez Cuesta, M.J., Aranburu, A., 2014. Rodríguez-Rodríguez, L., Jime Research history on glacial geomorphology and geochronology of the Cantabrian Mountains, north Iberia (43e42 degrees N/7-2 degrees W). Quat. Int. 364, 6e21. , V.M., 1977. Los canchales de montan ~ a calca rea y los factores termocla sticos. Rosello n Grupo de Trabajo del Cuaternario. In: Actas II Reunio Ruiz-Fern andez, J., 2013. Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cant abrica). PhD thesis. University of Oviedo. Ruiz-Fern andez, J., 2015. Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cant abrica). Bol. Asoc. Geog. Esp. 68, 581e587. ticas y Ruiz-Fern andez, J., Poblete, M.A., García, C., 2014. Características morfoclima procesos y formas periglaciares actuales en el Macizo Occidental de los Picos de mez-Ortiz, A., Salvador, F., Oliva, M., Europa (Cordillera Cant abrica). In: Go , M. (Eds.), Avances, me todos y te cnicas en el estudio del periglaciarismo. Salva University of Barcelona, Barcelona, pp. 91e103.  mez-Ortiz, A., Palacios, D., 2010. Comportamiento te rmico Salvador-Franch, F., Go ~ a mediterr del suelo en un enclave de alta montan anea con permafrost residual: ~ a). In: Blanco, J.J., de Corral del Veleta (Sierra Nevada, Granada. Espan Pablo, M.A., Ramos, M. (Eds.), Ambientes periglaciares, permafrost y variatica. Publicaciones de la Universidad de Alcala , Alcal bilidad clima a de Henares (Spain), pp. 61e68.  mez-Ortiz, A., Salv Salvador-Franch, F., Go a-Catarineu, M., Palacios, D., 2011.  n te rmica de la capa activa de un glaciar rocoso en medio periCaracterizacio ~ a mediterr glaciar de alta montan anea: El ejemplo del Corral del Veleta (Sierra ~ a). Cuad. Investig. Geogr. 37 (2), 25e48. Nevada, Espan ~ a, J.L., Mele ndez, A., 1998. Controls on Holocene and present-day Sancho, C., Pen travertine formation in the Guadalaviar River (Iberian Chain, NE Spain). Z. Geomorphol. 41 (3), 289e307. Santos-Gonz alez, J., 2010. Glaciarismo y periglaciarismo en el Alto Sil, provincia de  n (Cordillera Cant  n. Leo abrica). PhD thesis. University of Leo lez-Gutie rrez, R.B., Go mez-Villar, A. y, RedondoSantos-Gonz alez, J., Gonza Vega, J.M., 2009. Ground termal regime in the vicinity of relict rock glaciares

M. Oliva et al. / Quaternary Science Reviews 137 (2016) 176e199 (Cantabrian Mountains, NW Spain). Finisterra 87, 35e44. iz, C., 1988. El relieve del Guadarrama Oriental. Consejería de Política Sanz-Herra Territorial, Madrid. Sanz, E., Pellicer, F., 1994. El periglaciarismo de la Sierra Cebollera (Soria y La Rioja). Cuatern. Geomorfol. 8 (1e2), 123e138. Schimtz, H., 1969. Glacialmorphologische Untersuchungen im Bergland Nordwestspanien (Galicien/Leon). Kolncr Geograph. Arbeiten, Hetf 23. n cuaternaria de la depresio n de Vera y de Sorbas oriental Schulte, L., 2002. Evolucio rica). Publicacions de la Universitat de Barcelona, Barcelona. (SE Península Ibe llego (Pirineo aragone s). Fundacio n Serrano, E., 1998. Geomorfología del Alto Ga lico, Zaragoza. Fernando El Cato  mezSerrano, E., 2014. Glaciares rocosos. Controversias y certidumbres. In: Go todos y te cnicas en Ortiz, A., Salvador, F., Oliva, M., Salv a, M. (Eds.), Avances, me el estudio del periglaciarismo. Universitat de Barcelona, Barcelona, pp. 115e134. Serrano, E., Agudo, C., 1998. Los glaciares rocosos de los Pirineos. Implicaciones mez Ortíz, A., Salvador-Franch, F., Shulte, L., García ambientales. In: Go Navarro, A. (Eds.), Procesos biofísicos actuales en medios fríos. Estudios recientes. Universidad de Barcelona, Barcelona, pp. 133e154. n en la alta montan ~ a de Serrano, E., Agudo, C., 2004. Glaciares rocosos y deglaciacio ~ a). Boletín de la Real Sociedad Espan ~ ola de Hislos Pirineos aragoneses (Espan toria Natural 99 (1e4), 159e172. , R., Gonza lez-Trueba, J.J., 2001. Permafrost distriSerrano, E., Agudo, C., Delaloye bution in the Posets massif, Central Pyrenees. Nor. J. Geog. 55, 245e252. ~a Serrano, E., Agudo, C., Gonz alez-Trueba, J.J., 2002. El dominio de alta montan periglaciar en el macizo del Posets (Pirineo Aragones). In: Serrano, E., García, A. ~ a y altas latitudes. Universidad de Valladolid, (Eds.), Periglaciarismo en montan Valladolid, pp. 163e184. n, E., 1999. Rock glaciers in the Pyrenees. Serrano, E., Agudo, C., Martínez De Piso Permafr. Periglac. Process. 10, 101e106. mez-Lende, M., Pellitero, R., Gonza lez-Trueba, J.J., 2015. Deglaciation Serrano, E., Go in the Cantabrian Mountains. Pattern and evolution. Cuad. Investig. Geogr. 41 (2), 389e408. lez-Trueba, J.J., 2004. Morfodin ~a Serrano, E., Gonza amica periglaciar en el grupo Pen Vieja (Macizo Central de los Picos de Europa -Cantabria-). Cuat. Geomorfol. 18 (3e4), 73e88. lez-Trueba, J.J., Gonza lez García, M., 2012. Mountain glaciation Serrano, E., Gonza and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quat. Res. 78, 303e314. lez-García, M., Go mezSerrano, E., Gonz alez-Trueba, J.J., Pellitero, R., Gonza Lende, M., 2013. Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology 196, 65e82. lez-Trueba, J.J., San Jose , J.J., 2011a. Dina mica, evolucio n y Serrano, E., Gonza estructura de los glaciares rocosos de los Pirineos. Cuad. Investig. Geog. 37, 145e169. lez-Trueba, J.J., San Jose , J.J., Del Río, L.M., 2011b. Ice patch origin, Serrano, E., Gonza evolution and dynamics in a temperate maritime high mountain: the Jou Negro, Picos De Europa (NW Spain). Geogr. Ann. 93 (2), 57e70. n, E., Agudo, C., 2000. El medio periglaciar de alta Serrano, E., Martínez de Piso ~ a en el Pirineo Central: aportaciones recientes. In: Pen ~ a, J.L., montan ~a Sanchez, M., Lozano, M.V. (Eds.), Procesos y formas periglaciares en la montan mediterr anea. Instituto de Estudios Turolenses, Teruel, pp. 45e62. Serrano, E., Morales, C., Gonz alez-Trueba, J.J., Martín, R., 2009. Cartografía del ~ a en los Pirineos espan ~ oles. Finisterra 87, 45e54. permafrost de montan Serrano, E., Pellitero, R., Otero, M., 2010. Huellas pleistocenas de frío intenso en la ~ as de arena relictas en las terrazas del Pisuerga. In: Cuenca del Duero: cun ~ a, Úbeda, X., Vericat, D., Batalla, R.J. (Eds.), Avances de la Geomorfología en Espan 2008e2010. SEG-Universitat de Barcelona, Barcelona, pp. 417e420. , J.J., Agudo, C., 2006. Rock glacier dynamics in a marginal Serrano, E., San Jose periglacial high mountain environment: flow, movement (1991e2000) and structure of the Argualas rock glacier, the Pyrenees. Geomorphology 74, 285e296. Serrat, D., 1979. Rock glaciar morainic deposits in the eastern Pyrenees. In: Schluchter, C. (Ed.), Moraines and Varves. Balkema, Rotterdam, pp. 93e100. n, M., Sa nchez, S., García, I., 2000. Soil-landscape evolution on a Mediterranean Simo high mountain. Catena 39, 211e231. n, J.L., Soriano, A., 1986. Diapiric deformations in the Quaternary deposits of Simo

199

the central Ebro basin. Spain. Geol. Mag. 123, 45e57. , G., 1980. Modele  et dynamique actualle des versants supraforestiers des Soutade  ne es Orientales. Imp. Coop. du Sud-Ouest, Albi, 452 pp. Pyre Steinmann, S., 1978. Postglaziale Reliefgeschichte und gegenw€ artige Vegetationsdifferenzierung in der alpinen Stufe der Südtiroler Dolomiten (Puez- und € kologie 2, 1e93. Sellagruppe). Landschaftsgenes. Landschaftso mez, A., 2010. Cubierta nival, permafrost Tanarro, L.M., Palacios, D., Zamorano, J.J., Go  n de flujos superficiales en un talud detrítico de alta montan ~ a (Corral y formacio ~ a). Cuad. Investig. Geogr. 36 (2), 39e60. del Veleta, Sierra Nevada, Espan Thiagarajan, N., Subhas, A., Southon, J., Eiler, J., Adkins, J.F., 2014. Abrupt pre-Bolling/ Allerod warming and circulation changes in the deep North Atlantic ocean. Nature 511, 75e78. n Mountains. Spain. Thornes, J.B., 1968. Glacial and periglacial features in the Urbio Estud. Geol. 24, 249e258. rez-Alberti, A., Martínez-Cortizas, A., Costa-Casais, M., BlancoTrenhaile, A.S., Pe Chao, R., 1999. Rock coast inheritance: and example from Galicia, northwestern Spain. Earth Surf. Proc. Landf. 24 (7), 605e621. Tricart, J., Alberti, A.P., 1988. Problemas de paleoclimatología: importancia e impacto del frío durante el Cuaternario. Conselho da Cultura Galega. Troll, C., 1973. The upper timberlines in different climatic zones. Arct. Alp. Res. 5 (3), 3e18. Ugarte, F.M., 1992. Glacial and periglacial morphogenesis in the Basque mountains. In: Cearreta, A., Ugarte, F. (Eds.), The Late Quaternary in the Western Pyrenean Region. University of of the Basque Country, Bilbao, pp. 235e250. rcel, M., 1998. Evolucio n geomorfolo gica y dina mica de vertientes en el NE de Valca ~ as Galicia. Importancia de los procesos de origen frío en un sector de las montan lucenses. PhD thesis. University of Santiago de Compostela. rcel, M., Pe rez-Alberti, A., 1996. Caracterizacio n y cartografía de las forValca maciones superficiales de origen periglaciar en el valle de Moia (Cuenca alta del rico). In: Pe rez-Alberti, A., Martini, P.I., Chesworth, W., Marrío Navia-NW Ibe n de Medios Cuaternarios. Xunta tínez-Cortizas, A. (Eds.), Din amica y Evolucio de Galicia, pp. 191e202. rcel, M., Pe rez-Alberti, A., 2002. Los campos de bloques en montan ~ as del Valca rica: Ge nesis y significado paleoambiental. In: noroeste de la Península Ibe ~ a y altas latiSerrano, E., García de Celis, A. (Eds.), Periglaciarismo en montan tudes. University of Valladolid, Valladolid, pp. 13e26. Van Zuidam, R.A., 1976. Geomorphological Development of the Zaragoza Region. Spain. Inter. Institut Aerial Survey and Earth Sciences, Utrech. €t- und postglazials Veit, H., 1988. Fluviale und solifluidale morphodynamik des spa in einem zentralalpinen flusseinzugsgebiet (Südliche Hohe Tauern, Osttirol). Bayreuth. Geowiss. Arb. 13, 1e167. n al conocimiento morfolo gico del segmento occiVidal-Box, C., 1936. Contribucio dental de la Sierra de Gredos (Bohoyo). Bol. R. Soc. Esp. Hist. Nat. 36, 17e31.  gico de la Vidal-Box, C., 1948. Nuevas aportaciones al conocimiento geomorfolo Cordillera Central. Estud. Geog. 30, 5e52. Vieira, G., 2004. Geomorphology of the High Valleys and Plateaus of Serra da Estrela. Pleistocene cold environments and present-day processes. PhD thesis. University of Lisbon. Vieira, G., Cordeiro, A.M.R., 1998. Periglacial geomorphology in Portugal: state of the art. In: Gomez Ortiz, A., Salvador, F., Schulte, L., García, A. (Eds.), Procesos biofísicos actuales en medios fríos. University of Barcelona, Barcelona, pp. 347e371. Vieira, G., Mora, C., Ramos, M., 2003. Ground temperature regimes and geomorphological implications in a Mediterranean mountain (Serra da Estrela, Portugal). Geomorphology 52, 57e72. €rck, S., Cwynar, L.C., Fisher, D.A., Long, A.J., Walker, M.J.C., Berkelhammer, M., Bjo Lowe, J.J., Newnham, R.M., Rasmussen, S.O., Weiss, H., 2012. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (International Commission on Stratigraphy). J. Quat. Sci. 27, 649e659. Wu, H., Guiot, J., Brewer, S., Guo, Z., 2007. Climatic changes in Eurasia and Africa at the Last Glacial Maximum and Mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn. 29, 211e229. Zhang, T., 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys 43, RG4002.

Suggest Documents