Spatial Separation of Litter Decomposition and Mycorrhizal Nitrogen Uptake in a Boreal Forest Author(s): Björn D. Lindahl, Katarina Ihrmark, Johanna Boberg, Susan E. Trumbore, Peter Högberg, Jan Stenlid and Roger D. Finlay Source: New Phytologist, Vol. 173, No. 3 (2007), pp. 611-620 Published by: Wiley on behalf of the New Phytologist Trust Stable URL: http://www.jstor.org/stable/4131193 . Accessed: 14/06/2014 16:27 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp
. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
[email protected].
.
Wiley and New Phytologist Trust are collaborating with JSTOR to digitize, preserve and extend access to New Phytologist.
http://www.jstor.org
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New
Re
e
rc
Phytologist
Spatial separation nitrogen uptake
of in
litter a
boreal
and mycorrhizal decomposition forest
Bjorn D. Lindahl1, Katarina Ihrmark', Johanna Boberg', Susan E. Trumbore2, Peter H6gberg3, Jan Stenlid' and Roger D. Finlay1 of Earth Box7026,SE-75007 Uppsala, of ForestMycology Swedish of Agricultural Sweden; Sciences, & Pathology, University 2Department 'Department ofAgricultural of California of ForestEcology, Swedish atIrvine,Irvine,CA92697-3100,USA;3Department Sciences, University SystemScience,University SE-901 83 Umef, Sweden
Summary Authorforcorrespondence: Bj6rnLindahl Tel:+46 18 672725 Fax:+46 18 673599 Email:
[email protected] Received:30 August2006 Accepted:22 September2006
* Our understandingof how saprotrophicand mycorrhizalfungi interactto recirculatecarbonand nutrientsfrom plantlitterand soil organicmatteris limitedby poor understandingof theirspatiotemporaldynamics. * In orderto investigatehow differentfunctionalgroups of fungi contributeto carbon and nitrogen cycling at differentstages of decomposition,we studied changes in fungal communitycompositionalong verticalprofilesthrougha Pinus sylvestrisforestsoil.We combinedmolecularidentificationmethodswith 14Cdating of the organic matter,analysesof carbon:nitrogen(C:N) ratiosand 15Nnatural abundancemeasurements. * Saprotrophic confinedto relativelyrecently(< 4 yr)shed litter fungiwere primarily the forest on the surface of floor,whereorganiccarbonwas mineralized components while nitrogenwas retained.Mycorrhizal fungi dominatedin the underlying,more litter and where humus, they apparentlymobilizedN and made it decomposed availableto theirhost plants. * Our observationsshow that the degradingand nutrient-mobilizing components for of the fungalcommunityarespatiallyseparated.Thishas importantimplications forest studies of boreal ecosystems. biogeochemical Keywords: carbon, community, fungi, nutrient cycling, podzol, soil, terminal restrictionfragmentlengthpolymorphism(T-RFLP). New Phytologist (2007) 173: 611-620
? TheAuthors(2006). Journalcompilation? New Phytologist(2006) doi: 10.1111/j.1469-8137.2006.01936.x
Introduction Borealforestscover c. 11% of the land surfacesof the earth and rivaltropicalrainforestsas the largestterrestrialbiome. by cold climate,a long periodof snow They arecharacterized cover,slow decompositionof organicmatterand poor plant nitrogen(N) supply(Persson,1980). In borealforests,fungi play pivotal roles in the circulation of carbon (C) and nutrientsthroughthe ecosystem.Saprotrophicfungi arethe principaldecomposersof wood and litter (Rayner& Boddy, 1988) and obtain energyby degradingdead organicmatter. Mycorrhizalfungi, in contrast, obtain energy mainly as
photoassimilatesprovidedby symbioticallyassociatedplants and in return provide their plant hosts with soil-derived nutrients (Smith & Read, 1997). More than half of the biological activity in boreal forest soils is driven by the to roots, supply of recentlyphotosynthesizedcarbohydrates mycorrhizalfungi and other root-associatedmicroorganisms andmycorrhizal (H6gbergetaL,2001). Althoughsaprotrophic fungi are likely to play fundamentallydifferentroles in the ecosystem, many ecological theories and methods treat as a single,ubiquitously them and othersoil microorganisms occurring, functional group. Little is known about the spatiotemporaldistributionof these functional groups of 611
www.newphytologist.org
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist
1 612
fungi and how they interact during decomposition of plant litter. We used DNA-based identification methods to study the vertical distribution and temporal succession of fungi within a boreal Pinus sylvestrisforest soil. Typical boreal forest podzol soils are characterized by accumulation of organic matter on top of the mineral soil, and the absence of mixing soil animals leads to a profound vertical stratification, with the age of the organic matter increasing with depth (Trumbore & Harden, 1997). The temporal succession of fungi within the organic matter may therefore be studied by analysing the vertical distribution of fungal taxa within the soil. Previous studies of vertical niche differentiation among fungi have been limited to easily culturable saprotrophic microfungi (Sbderstrdm & Baith, 1978) or ectomycorrhizal fungi (Dickie et al., 2002; Landeweert et al., 2003; Rosling et al, 2003; Tedersoo et al., 2003; Genney et al., 2006). The present study encompasses the total fungal community, focusing on the upper organic soil horizons. Frequent switches between saprotrophism and symbiosis have occurred during evolution, and both strategies may be represented within groups of relatively closely related fungal taxa (Hibbet et al., 2000). It is therefore necessary to use molecular techniques to analyse communities down to the level of genera and species in order to draw any conclusions about their functional potential. Here, polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) region of the ribosomal genes was combined with the community fingerprinting technique terminal restriction fragment length polymorphism (T-RFLP) (Dickie etal., 2002). In order to identify taxa in the T-RFLP profiles, PCR products from representative samples were cloned, enabling sequencing of the ITS region of the ribosomal RNA (rRNA) genes for individual taxawithin the mixed samples (Landeweert et at, 2003; O'Brien et al, 2005) and subsequent identification by database comparisons. To investigate how different fungi influence C and nutrient cycling at different soil depths, we compared the fungal
community composition in the samples with vertical patterns in soil C:N ratio and 15N abundance (Nadelhoffer & Fry, 1988). Analysis of 14Cderived from nuclear bomb tests (Gaudinski et al., 2001) enabled us to determine the age of the organic matter and convert the vertical gradient to a true temporal gradient.
Materialsand Methods Samplingand DNAextraction Soil samples were collected from a Pinus sylvestrisL. forest with an understory of ericaceous dwarf shrubs (Vaccinium vitis-ideae L. and Calluna vulgaris (L.) Hull) and mosses (Pleurozium schreberi(Bridel) Mitten and Dicranum majus Turner).The study was conducted in Jidrals IhV (60o49' N, 16030' E, altitude 185 m), which is a well-documented (Persson, 1980) field site in central Sweden. In total, 27 soil cores (28 mm diameter) were collected and subdivided into eight verticalhorizons each, according to Table 1. Soil samples were freeze-driedand ground in a ball mill. DNA was extracted from 50 to 100 mg of dry matter (500 mg of mineralsoil fractions) in a CTAB buffer (3% cetyltrimetylammoniumbromid, 2 mM EDTA, 150 mM Tris-HCI and 2.6 M NaC1, pH 8) at 65'C for 1 h and precipitated from the supernatant with 2-propanol. The extracts were further purified through the Wizard Plus Minipreps DNA Purification System (Promega, Madison, WI, USA), the Geneclean Kit (Qbiogene, Irvine,CA, USA) or the QIAprep Spin Miniprep Kit (Qiagen, Venlo, the Netherlands), all of which are commercially available DNA cleaning kits.
PCR,cloning,sequencingand sequenceanalysis DNA from all the different horizons was used for PCR, cloning and sequencing (Landeweert et al., 2003; O'Brien et al, 2005). In total, PCR products from 38 samples were
Table1 Subdivisionof soil coresintoverticalhorizons Thickness (mm)
Layer
Description
Needles Litter1 Litter2 (needles) Litter2 (mosses) Fragmentedlitter Humus1 Humus2 E-horizon B-horizon
Recentlyabscisedneedles Pineneedlesamonggreen partsof mosses intactneedlesamongdead mosses Structurally Dead but structurally intactpartsof mosses The upperhalfof the organichorizon The uppertwo-thirdsof the lowerhalfof the organichorizon Lowerthirdof the lowerhalfof the organichorizon The paleeluvialhorizonof the mineralsoil The rust-redilluvialhorizonof the mineralsoil
A14C (%o) 86 (84-90) 95 (93-96) 103 (93-130)
15 (7-25) 10 (5-15) 5 (3-10)
155 (125-181) 211 (184-247) 174 (144-230)
Estimated age (yr) 0 1 3 10 16 > 45
Thethicknessof the organichorizonsis givenas the meanvaluewith the rangein parentheses.The 14Cabundanceis givenas the meanA14C of threesamplesperhorizon(fivefor litter2 (needles))withthe rangein parentheses.Theestimatedage is basedon the meanA14Cvalues, and needleabscissionage (3 yr) is subtractedfor allfractions.
New Phytologist (2007) 173: 611-620
www.newphytologist.org
(2006) ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New
Phytologist
ReseatO~B~
cloned, and up to 25 clones were sequenced from each sample, resulting in 248 sequenced clones. PCR was carried out using the primers ITS1-F (Gardes & Bruns, 1993) and ITS4 (White et al., 1990) with 550C annealing temperature. PCR products were cloned with the TOPO TA Cloning Kit with the pCR?2.1-TOPO vector and One Shot TOP10 chemically competent Escherichiacoli (Invitrogen, Carlsbad, CA, USA). Small amounts of bacteria were used directly for PCR, which was carried out us above, but with primers M 13 Forward (GTAAAACGACGGCCAG) and M13 Reverse (CAGGAAACAGCTATGAC). The PCR products were purified with the QIAquick PCR purification kit (Qiagen) and sequenced with a CEQ 8000 Genetic Analysis System with the CEQ DTCS Quick Start Kit (Beckman Coulter, Fullerton, CA, USA). Sequences from cloned fragments were compared with database sequences (NCBI) using the BLASTNalgorithm (Altschul et al., 1997), and database sequences with high homology to soil-derived sequences were selected as references. Sample sequences and database referenceswere aligned (DNAStar Inc., using the CLUSTALWalgorithm of MEGALIGN Madison, WI, USA) with the 'gap penalty' parameterreduced to 6 for pair-wise alignment and 10 for multiple alignment. Aligned sequences were compared for similarity by neighbour 4.0b10 (Swofford, 2002). joining using PAUP*
T-RFLP In order to enable processing of a large set of samples, the cloning approach was combined with T-RFLP analysis (Dickie et al., 2002). All samples (27 cores x 8 horizons = 216 samples) were used for T-RFLP analysis. In addition, to enable matching of T-RFLP patterns with sequences, all clones that were sequenced were also subjected to T-RFLP analysis. PCR was carried out as above, but the primers were labelled with WellRED fluorescent dyes, ITS 1-F with D3-PA and ITS4 with D4-PA (Proligo, Boulder, CO, USA). The PCR amplicons were digested with restriction enzymes according to the manufacturers' instructions. The library clones were digestedwith AluI (AmershamBiosciences,Freiburg,Germany), BsuRI(Fermentas,Burlington, Canada), CfoI(Promega),Hinfl (Promega) and TaqI (Fermentas), separately. PCR products from soil samples were digested with TaqIand Cfol, separately, and, when further resolution was needed, with one or more of the other enzymes included in the library. The T-RFLP patterns were analysed with a Beckman Coulter CEQ 8000 Genetic Analysis System, using the CEQ DNA Size Standard Kit-600. Sample T-RFLP patterns were compared with the reference database constituted by T-RFLP patterns from the clones using the program TRAMP(Dickie et al., 2002). To account for base calling during analysis on the Beckman Coulter CEQ 8000 Genetic Analysis System and for withintaxa variation of the ITS region, the threshold level for was set to +2 bp. fragment size in TRAMP
Elementand isotope analyses Threesamplesfromeachof the uppersix organicsoil horizons (five samples of 'litter 2 (needles)')were analysedfor 14C content at the Centerfor AcceleratorMass Spectrometryat LawrenceLivermoreNational Laboratory(Gaudinskiet al., 2001). Radiocarbon data are expressed as A14C, defined as the
differencein permillebetweenthe 14C:12C ratioin the sample and thatof a universalstandard(oxalicacidI, decay-corrected to 1950). The age of the organicmatterwas estimatedby relating the
14C
content of the samples to published records
of atmospheric '4C concentrations from the last 50 yr (Levin& Kromer,2004). Averageresidencetime on theforest floor for the sampled organic matter was estimated by subtractingthe age of recentlyabscised needles from the averageage of the samples.All sampleswere analysedfor N and C content and 615Nusinga C and N elementalanalyser coupledon-line to an isotoperatiomassspectrometer(Model 20-20 IRMS;EuropaScientificLtd,Crewe,UK) accordingto the proceduresoutlined in Ohlsson & Wallmark(1999). Resultsare expressedin 815N deviationsfrom the standard - 1) 1000, where atmospheric N2: g15N = X (Rsample/Rstandard R denotesthe ratio15N: 14N.
Statisticalanalyses The fungal community compositionwas relatedto spatial locationof the samplesandchangesin elementalcomposition by canonicalcorrespondence analysis(CCA)(terBraak,1986) version 4.5 for Windows (Microcomputer using CANOCO Power, Ithaca, NY, USA). Two separateCCA tests were conducted,one with soil horizonsincludedin the analysisas dummyvariables,and one with changesin C:N ratioand 15N natural abundanceas explainingvariables.In the second analysis,only litter 1 (LI), litter2 (needles)(L2), fragmented litter (F) and humus 1 (H1) sampleswere included.Changes in C:N ratioand15Ncontentthroughoutspecifichorizonswere estimatedby comparingdatafrom the horizonsimmediately above and below a subsample.For L1 samples,valuesfrom recentlyabscisedneedleswere subtractedfrom L2 (needles) values.ForL2 (needles)samples,L1valuesweresubtracted from F values. For F samples,L2 values (averageof needles and mosses)weresubtractedfromH1 values,and forHi samples, valuesfromF samplesweresubtractedfromH2 values.Monte Carlo analysiswith 1000 permutationswas used to test for statisticalsignificanceof the environmentalparametersin explaining the variationin community composition. Two taxa,whichwerehighlydominating Thelephoralean mat-forming in two soil cores,wereexcludedfromthe multivariateanalyses, as the samplesfrom these coresdrasticallydeviatedfrom the othersin communitycomposition.Differencesbetweensoil horizonsin C:N ratiosand 15Nnaturalabundanceweretested for statisticalsignifianceusing analysisof variance(ANOVA) and Fisher'sprotectedleastsignificantdifferencetest (PLSD).
(2006) www.newphytologist.org ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist (2007) 173: 611-620
New Phytologist
614
Results PCR productsandT-RFLPcommunityprofileswereobtained from 204 of the 216 collected samples. Among the 248 sequencedclones, 100 differentgenotypeswere identified, which all yielded unique combinations of restriction fragments,and 91 of thesewereencounteredin the sampleTRFLPprofiles.The nine taxathatwerenot retrievedprobably had T-RFLP patterns with amplitudes below the 5% detectionthreshold. The samplesseparatedinto two distinctgroupsaccording to the compositionof the fungalcommunity,with samplesof intact needles containing different fungi from those in samplesof fragmentedlitter,humus and mineralsoil. Taxa recordedfrom intactneedleswereonly detectedsporadically in the more degradedmaterialand vice versa.Dead partsof mossescontainedan intermediatefungalcommunity(Fig. 1). Withinthe deeperhorizons,changesin the fungalcommunity with soil depth could be observed,with some speciesfound predominantlyin the fragmentedlitterandhumusandothers being most common in the mineralsoil. Canonicalcorrespondenceanalysisattributed10%of the totaleigenvalue(the variationin species composition between samples)of the datasetto the verticalpositionof the samples.A Monte Carlo permutation test found the relationshipbetween vertical positionandcommunitycompositionof samplesto be highly significant(P= 0.001). The 'early'fungalcommunity,definedasthe taxaoccurring with a higherfrequencyin littersamplescomparedwith older organicmatterandmineralsoil,wasdominatedby unidentified ascomyceteswithin the Helotiales and Dothideomycetes. Known saprotrophicfungi, such as Mycenaand Marasmius spp., as well as plant parasiticLophodermium spp., were also found in the surfacelitter. In the 'late'fungal community, defined as taxa occurringwith a higher frequencyin fragmented litter and humus than in litter, ectomycorrhizal fromthe generaCortinarius and basidiomycetes, predominantly Piloderma,constituteda significantfraction.Ascomycetous ericae(D.J.Read)W.Y.Zhuang Capronia spp.andRhizoscyphus & Korf,whichboth formmycorrhizalassociationswith ericaceousplants(Allenet al, 2003), werealsocommon.The 'late' fungalcommunitycontainedtaxafromwithin the Helotiales, buttheseweredifferenttaxafromthehelotialeanfungidetected in surfacelitter. Zygomycetes(Mortierellaand Umbelopsis spp.) as well as a distinctgroup of unidentifiedascomycetes (groupG) alsocontributedto the 'late'community(Fig. 1). The average14Cabundanceof the samplesincreasedwith depth and peakedin the upperhumus layer,but was lower again in the bottom part of the humus, where the organic matterwasassumedto be derivedfromplantmatterproduced before the rapid increase in atmospheric 14C content associ-
ated with thermonuclearweaponstestingduringthe 1960s. The averageage of the C in the upperhumuswas estimated at 16 yr, whereas the fragmentedlitter, older litter and
New Phytologist (2007) 173: 611-620
youngerlitter were estimatedto have residedon the forest floorfor on average10, 3 and 1 yr,respectively(Fig.2). Throughoutthe upperlitter layers,C:N ratiosdecreased threefoldfrom recentlyshed litter down to the fragmented litter.Fromthe fragmentedlitterdown to the oldesthumus, C:N ratiosincreasedsignificantlyby22%,followedbya minor but significantdeclinein the mineralsoil. In contrast,the 15N abundancewasconstantin the litterlayers,but increasedwith soil depthfrom the fragmentedlitterand downward(Fig.2). In a canonical correspondenceanalysis,where the fungal communitiesin litter, fragmentedlitter and upper humus sampleswere relatedto changesin organicmatterC:N ratio and15Ncontentacrossthehorizons,7.3%of thetotaleigenvalue of the datasetwas attributedto thesetwo variables.A Monte Carlo permutationtest found the relationshipbetweenthe community composition of samples and changes in C:N ratioor 15Nabundanceto be highly significant(P= 0.001). Accordingto the multivariateanalysis,fungaltaxaknownto be mycorrhizalwereassociatedwith positivechangesin C:N ratio and largeincreasesin 15N naturalabundance,whereas known saprotrophicfungi were associatedwith negative changes in C:N ratio and small changes in 15N natural abundance(Figs2, 3).
Discussion We found a clear shift in fungal community composition betweenthe surfacelitter(the L horizon)and the underlying F horizon,in which the litterhad lost its structuralintegrity (Figs1, 2). Accordingto the 14C enrichmentof the organic matter,the oldestmaterialin the L horizonhad beenresiding on the forestfloor for c. 3 yr, whereasthe averageage of the organicmatterin the F layerwas 10 yr.As the C in the uppermost partof theF layeris youngerthanthe averageageforthe entirehorizon,the shiftin fungalcommunitycompositionis likelyto takeplaceafterc. 3-5 yr of decomposition. species,which werefrequentlyrecordedin Lophodermium the L1 samples,are well-knownneedle endophytes,which havealreadycolonizedthe needleswhen they enterthe forest floor, but seem to be replacedby other fungi at a relatively earlystageof decomposition(Fig. 1). The only saprotrophic basidiomycetethatwasrecordedwith a high frequencywasa Mycenaspecies.The most commonly detected taxa in the 'early'communitywereascomyceteswithinthe Helotialesand Dothideomyceteswith uncertain taxonomy and ecology. However,astheyrarelyextendedbelowthe surfacelayerof the forestfloor,which is devoidof roots,it seemslikelythatthey aresaprotrophs. A large proportionof the 'late' community consists of ectomycorrhizalspecieswithin the genera Cortinariusand Piloderma. Whereasborealtreesgenerallyformectomycorrhizal associations,ericaceousdwarf-shrubs,such as Callunaand Vaccinium spp., formericoidmycorrhizalassociations(Smith & Read,1997). In thisstudy,Rhizoscyphus ericae,whichis the
www.newphytologist.org
(2006) ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist Sequence
I
ReseBr
Taxon
test2.2b.2 Venturiaceae test2.1b.11 Helotiales(Phialophora sp.) Blz 2.1 HelotialesgroupA A2z 3.6 HelotialesgroupA B2z 2.5 O Mycenasp. A3x2.1 Helotiales test2.1b.12 Helotiales Aix 3.13 Dothideomycete groupB test2.lb.9 Lophodermium pinastri O]Cantharellales Aly 2.11 test2.2b.11 El Marasmius androsaceus Cantharellales A3y2.14 A3x2.3 ElO Lophodermium sp. A2z 3.10 Helotiales testl.8a.27 Helotiales test2.2b.3 Rhytismataceae groupC C3x 1.9 Cantharellales A2z 5.3 Basidiomycete Blz 2.3 Basidiomycete Mollisiasp. A3y3.11 A2x2.8 Helotiales A2z 3.11 Caproniasp. Clz 3.5 Cantharellales HelotialesgroupD A3y3.5 test2.2b.15 Ascomycete A2z 3.5 Caproniasp. A3x2.2 HelotialesgroupA Venturia A3y3.14 sp. Unknown B2z 2.4 Dothideomycete groupB A2z 4.7 Rhytismataceae groupC A2x2.7 Cladosporium sp. 3.4 Venturiaceae A3y test2.3b.16 M Sebacinasp. HelotialesgroupA A3y3.3 A2x2.6 Basidiomycete test2.1b.10 HelotialesgroupD Clz 3.1 Caproniasp. Aix 3.16 Cortinarius sp. Clz 3.6 O Galerinaatkinsoniana B3z4.13 Basidiomycete testl.8a.2 Helotiales testi.8a.25 Tremellales Blz 4.9 Cortinarius sp. Cortinarius armeniacus C2y4.9 A2z 5.8 HelotialesgroupE Unknown Biz 4.3 testl.8a.6 Caproniasp. Sebacinasp. test2.3b.13 A2z 5.4 Unknown A2z 3.3 Helotiales testl.8a.8 Morteriella sp. test2.3b.15 Dermocybesp. testi.8a.5 Basidiomycete Helotiales Aly 2.14 test2.1b.15 Basidiomycete 8.3 C2y Caproniasp. test2.3b.6 Caproniasp. Cly 8.5 AscomycetegroupG Cortinarius A3y3.7 sp. Clz 5.10 Ascomycete Aix 3.11 Atheliacceae A2x5.1 Thelephorales Cly 8.4 Umbelopsisisabellina A3x7.3 Umbelopsissp. test2.3b.10 Basidiomycete A2z 5.13 Umbelopsissp. C3z4.1 Mollisiaminutella A2z 4.9 A Rhizoscyphusericae testl.5b.1 Morteriella sp. aurantiacum Aly 5.3 Hydnellum C3z 4.2 Dermocybesemisanguinea B3z4.4 Cortinarius sp. Helotiales Aly 5.4 A3z 7.4 fortinii Phialocephala testl.5b.4 Unknown U Cortinarius Blz 4.2 armillatus testl.8a.1 HelotialesgroupF U Cortinarius A3z 6.7 sp. C2y8.6 Umbelopsissp. test2.4b.10 A2z 3.1 test1.8a.4 C2y 8.2 A2z 5.11 A3z 7.2 Clz 5.6 A3z 6.8 Clz 5.7 test2.4b.9 A2z 4.6
U
A U
Rozites caperatus Capronia sp. Helotiales group F Ascomycete group G Ascomycete group G Piloderma sp. Helotiales group E Ascomycete group G Unknown (Ascomycete group G) Piloderma reticulatum Ascomycete group G
Litter1
Litter2 (needles)
0.69 0.38 0.35 0.12 0.23 0.27 0.31 0.04 0.46 0.15 0.15 0.12 0.19 0.19 0.19 0.08 0.08 0.04
0.85 0.41 0.30 0.48 0.33 0.22 0.22 0.44 0.04 0.15 0.11 0.07
0.04 0.04 0.04 0.08 0.08 0.08 0.12 0.04 0.04
0.04 0.07 0.04 0.07 0.19 0.07 0.04 0.04 0.04 0.04 0.07
Litter2 Fragmented Humus1 litter (mosses) 0.70 0.48 0.41 0.59 0.26 0.22 0.04 0.30
0.11 0.07 0.11 0.11 0.11
0.05
0.04 0.04 0.11
0.04 0.04 0.04 0.04
0.04
0.26 0.11 0.04 0.07 0.37
E-horizon B-horizon
0.04 0.07
0.07
0.04 0.26 0.30 0.15 0.07 0.07 0.19 0.04
Humus2
0.04
0.05 0.05
0.04 0.04 0.11
0.04 0.07 0.11 0.04
0.04
0.04
0.04
0.07
0.04
0.04 0.04 0.11 0.04 0.04 0.04
0.08
0.11
0.04 0.04 0.04 0.04 0.04 0.04
0.04
0.04 0.11 0.04 0.11 0.07 0.04 0.15 0.07 0.07 0.04 0.04
0.07 0.04
0.04 0.04
0.04
0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.04 0.07
0.04
0.04 0.04 0.04
0.04
0.08 0.08 0.04
0.04 0.04
0.22 0.19 0.19 0.11
0.19 0.04 0.07 0.04 0.04 0.07
0.04 0.08 0.05
0.04 0.07 0.04
0.04 0.08
0.15 0.07
0.26 0.04 0.04
0.04 0.04
0.22 0.11
0.04 0.12
0.04 0.04 0.11
0.15 0.07 0.37 0.15 0.04
0.04 0.08 0.04
0.07 0.04
0.04 0.04
0.04 0.07
0.11 0.04 0.07 0.04 0.11 0.07 0.19 0.19 0.04 0.07 0.15 0.41 0.04 0.15
0.04
0.15
0.26 0.04
0.04 0 44 0.04
0.11 0.15 0.04 0.07 0.30 0.22
0.30 0.07 0.33 0.59 0.74
0.05 0.05
0.04 0.07 0.04 0.04 0.07 0.04 0.07 0.04 0.07 0.07 0.07 0.22 0.30 0.22 0.11 0.07 0.11 0.04 0.15 0.15 0.26 0.04 0.04 0.11 0.19 0.30 0.56 0.56 0.85
0.04 0.04 0.04 0.04 0.12 0.04 0.04 0.12 0.08 0.04 0.08 0.04
0.04 0.04 0.04 0.04 0.08 0.08 0.08 0.04 0.15 0.19 0.15 0.08
0.12 0.04 0.08
0.12 0.04
0.04 0.08 0.20
0.12 0.08 0.08 0.08 0.19 0.15 0.38 0.27 0.31 0.46 0.81
0.12 0.08 0.20 0.16 0.16 0.16 0.12 0.16 0.04 0.12 0.48
0.05 0.32 0.16 0.42 0.37 0.26 0.42 0.16 0.05 0.21
of fungaltaxa in soil samplesfroma Pinussylvestrisforest.Columnsrepresentdifferentverticalhorizonsranging Fig.1 Verticaldistribution from'litter1', whichis needlesat the surface,down to the 'B horizon'of the mineralsoil.Cellfiguresareobservationfrequenciesandthe cells are coded as follows:lightgrey< 0.1; mid-grey0.1-0.3; darkgrey> 0.3. Open squares,knownsaprotrophic taxa;closedsquares,known taxa. taxa;triangles,knownericoidmycorrhizal ectomycorrhizal
(2006) www.newphytologist.org ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist (2007) 173: 611-620
616
..
New Phytologist
Estimated age
0
20 40
60 80 100% 0
0
Needlesat abscission
aa
I1
Litter1
b
3Litter2 10 16 > 45
C:Nratio
composition Fungalcommunity
(yr)
30 60
o, .a
cda
needles mosses
e
Humus 1 Humus 2
de
E horizon
a a
g
cde
litter Fragmented
abundance 15Nnatural
90 120 150 -5-4-3-2-1 0 1 2 3 4 5 6
bMiib c
c
d
e
e
Mineral soil B horizonf
m
'early'fungi (I knownsaprotrophic fungi) 'late'fungi(gl knownmycorrhizal fungi) (C:N)ratioand 15Nnaturalabundancethroughoutthe uppersoil profilein a Fig.2 Fungalcommunitycomposition,carbon:nitrogen Scandinavian Pinussylvestrisforest.Differentlettersin the diagramsindicatestatistically significantdifferencesbetweenhorizonsin C:Nratios and 15Nabundance,and the standarderrorof the meanwas < 0.3%ofor 15Nnaturalabundanceand < 3 for C:Nratio(n = 19-27, for recently abscisedneedlesn = 3). Theage of the organicmatteris estimatedfromthe averageA14Cof threesamplesfromeach horizon(fivesamplesof the litter2 (needles)fraction)and needleabscissionage (3 yr)is subtracted.Communitycompositiondataareexpressedas the frequencyof totalobservations.'Early'fungiaredefinedas those occurringwitha higherfrequencyin littersamplescomparedwitholderorganicmatterand mineralsoil. 'Late'fungiarethose occurringwith a higherfrequencyin olderorganicmatter.
LO
C:N increase
Cortinariussp
Cortinanrius
HelotialesgroupA Helotiales Basldiomycete Marasmius Sut Helotiales c androsaceus Caproniasp. M Cortinariussp. Phialophorasp. 1 lHelotiales orarus armapronia sp Cortinaomiusarmillatus pro Venturiaceae Rhytismataceae Ascomycete group " A........... .q..... G "................. ......................•.......".Dot..deomyc ...".'..e..o...l......... Dothideomycete Helotiales Ascomycetegroup Ue Lophodermium sp. HelotialesgroupE. groupA groupB Unknown M
Rozitescaperatus Pilodermasp. Cm
A isi Mollisia minutella Mycenasp. Rhizoscyphys enrcae
Lophodermium pinastri
15Nincrease-
Pilodermasp.
00
-1.3
Clavulinaceae
1.2
CCAAxis1
most thoroughly studied ericoid mycorrhizal fungus, was recorded less often than Capronia taxa, which have only recently been confirmed as ericoid mycorrhizal symbionts (Allen etal., 2003). In contrast to the helotialean taxa found in the surface litter, helotialean taxa in the 'late' community generally show a high degree of sequence homology to taxa recorded from coniferous or ericoid roots, suggesting that the
New Phytologist (2007) 173: 611-620
Fig.3 Canonicalcorrespondenceanalysis depictingthe relationbetweenfungal communitycompositionand changesin (C:N)ratioand 15Nnatural carbon:nitrogen abundancein a borealforestsoil.Thearrows representincreasingC:Nratioor 15N abundancewith depthand age of the organicmatter.Open squares,known taxa;closedsquares,known saprotrophic taxa;triangles,known ectomycorrhizal ericoidmycorrhizal taxa;grey squares,taxa with uncertainecology.
'late' helotealean taxa are mycorrhizal or in other ways associated with roots (Fig. 4). The zygomycetous Umbelopsisspecies found in the 'late' community show a high degree of sequence homology to fungi isolated from surface-sterilized, healthy roots of Pinus ponderosa,suggesting that these fungi are root endophytes (Hoff et al., 2004). The unknown ascomycetes (group G) that were detected in the deeper samples belong to
www.newphytologist.org
(2006) ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist
I Rese~~ss
X3.13 2.4 AY805603FungusfromPiceaabieswood AF169308Dothideomycete Alv 2.14 AF486132Phialocephala virens * A2z 3.10 AY465452FungusfromPinusmonticolaneedles te2.lb.11 AY465455Phialophora needles sp. fromPinusmonticola AF083200Phialopnora sp. *Ai
...B2z
U57492 Cistelia acuum
Y394892Ectomycorrhizal fungus fromTsuga A0.05 substitutions/site A2x 2.8 * I
Z81441Piceomphale bulgarioides A2z3.3te2.1b.l A2z3.6 -?-2.2 __ "--A3x Blz F2.1 alnicola II •F31;41169 Scleropezicula
,
S
te8a27 73 Ectomy fus from 102.15.10•2y13.5
AY129288Pseudeuro desert tium rum
--
Iel.8a.1
fungusfrom Piceaabies Ectomycorrhizal fromconifer 50DQ233886 tel AY702739 fungus .8a.27 acuminata( AIl.AY204587 wood fromPiceaabies AY781244 FungusAlatospora Ectomy.orrhizal W fungusfrom AY394920Ectomycorrhizal AY561208FungusfromPiceaglaucaTsuga needles A3x2.12z A2z4.9 AJ319078Hymenoscyphus ericae AF011327Phialophora finlandia AB 5.8 5.6 2 fungusfromPiceaabies Ectomycorrhizal 0Q233880 AY394893 Ectomycorrhizal fungusfromTsuga 81z 3.11 A3y C3z 4.1 AJ430223Mollisiaminutella I AJ430222Mollisia cinerea AY524844Phialocephala sphaeroides * CAJ430228Mollisia cinerella A A3z7.4 * AY394921Phialocephalafortinii AF214579Phialocephala fortinii
4A2z
__
l)
4.8somc.egou2
o
te2.2b.3
50
AJ293880Colpomaquercinuomfs A2z3.1
Ericoidmycorrhizal fungusfromWoollsi
SAY230779 te2.3b.6 C2y 8.3
Capronia
A az 3.1
A2z3.5 S6 AF0S02O'i6a;ronia
viz3losa
....AY843173
AAF050246 Caproau Cladophialoplhora fungicola sp. ,
olZ4.. A
A3
3.1"4unup3.4 ~A3y
Sr-------
nigrellum AF393719CCladosporium proventuria hystricoides AY251083
Venturiaceae
te2.2b.2
te2.2b.15
A2z4.6
A3z
4Clz35.7
group G
6.8Ascomyc AF481369Ectomycorrhizal fromconifer fungus
AY394904 Ectomycorrhizal fungus from Tsuga
S *
.*
fungusfromconifer 1476985 Ectomycorrhizal
te24
Alx o 3.16 Y34-AJ238033Rozites
caperatus
s obtusus AJ438981Cortinarius B3z4.4 ncutusu AAF3C5578 Cortinarius C3z4.2 U56067 Dermocybe semisanguinea IA-U56037 IU560Ti64omDermocyesemisanguinea aurantiobasis Dermocvbe 4kc 0variusg AY174790Cortinarius B1z4.9 " I .-----A3V 3.7 AF430292Cortinarius brunneus I' B1z 4.2 AI-AJ236075 Cortinarius armillatusI n C2v4.9f I73
jI
CI
Cortinarius armeniacus AF325595 B3z 4.13
I* I
atkinsoniana Galerina S4AJ871572 AJ585478 Galerina atkinsoniana
I_
0I1
fulvosquamulosus AY280982Gymnoplus 3B2z2.5 . murina 4AF335444MMycenaafp bpMacenaYaalopusa .
A
* LUAJ438982
Az.U
II
7.2 I A3zI3.11
*
I
enaet.rylgia
Poro
Piloderma fallax Piloderma reticulaturm A1 5?3
... ........ b*eA2x 5.1i
/I*
......_
,
Hvdnellur
AF351866 Hvdnellum aurantiacum rA6022 spongiosipes Thelephor.les .ur.nti.cu.. AY569021Hydnellum
09 5 bs bAY22835^ mU66439
5 Phellodonmelaleucus
I* ?
I I•
A3y2.14 Multiclavula vernalis Sistotrema sernanderi rufescens AJ535303 Hydnum AY880947Ectomycorrnizal fungusfromPinus ?AY0'8879 AY456339brinkmannii Clavulina cinerea
Cantharellales
Sistotrem.
fungusfromPinus AY641466Ectomycorrhizal
te2.lb.
te2.3b.10 I a2 ,
-
tel.8a.5
AJ581036 Cryptococcus podzolicus I
AY354280
AF505780 Micromphale foetidum
sp. Piloderma -E::IdAlUF4meoi986 I AF476978 ,--.
Tricholomataceae
'F-•AF5198"93Marasmius androsaceus 1Mey
I*
tel.5b.
AJ920020 Unknown fungus
iabellina Umbe•ps~~is
tree of internaltranscribed of DNAextractedfromsoil spacer(ITS)sequencesobtainedthroughPCRamplification Fig.4 Neighbour-joining froma PinussylvestrisforesttogetherwithreferencesequencesfromNationalCenterforBiotechnology Information (NCBI).*, bootstrapvalues of 85 or higher.
(2006) www.newphytologist.org ? The Authors(2006). Journalcompilation? New Phytologist
New Phytologist (2007) 173: 611-620
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist
618B~
a recentlydiscoveredlineage(Schadtet al., 2003) thathitherto has been recordedonly as environmentalDNA and seemsto be phylogeneticallyseparatefrom otherknown ascomycetes. DNA from this group has frequentlybeen obtained from ectomycorrhizalconiferousroots (e.g. Rosling et al., 2003), or root suggestingthat these fungi are also ectomycorrhizal 4). endophytes(Fig. Basedon mycelial13Cabundanceand drasticallyreduced mycelialproductionin plots with severedroot connections, Wallanderet al. (2001) claimedthatmost of the myceliumat This claim the humus/mineralsoil interfacewas mycorrhizal. is now supportedby our observationthatthe vastmajorityof DNA belowtheuppermostmossandlitterlayermaybe assigned to knownmycorrhizal fungior otherwiseroot-associated fungi. In particular,the absence of DNA from nonhelotialean such as Trichoderma ascomycetes,including'soilsaprotrophs' or Penicilliumspp., in the moredecomposedsamplesis noteworthy.The scatteredrecordsof 'early'fungi in humus and mineralsoil samples(Fig. 1) maybe an artefactcausedby litter fragmentsbeingpusheddownwardsby the samplingtool. The findingthat dead partsof mosses,in additionto the 'early'fungal community of the surroundingneedles, also containmycorrhizalfungi is in accordancewith earlierobservationsthatmyceliumof Cortinarius spp. often extendsfrom roots in deepersoil horizonsto colonize dead moss tissues (Genney et al, 2006). Mycorrhizalfungi have also been shownto efficientlycolonizedeadmossesin soil microcosms (Carleton& Read, 1991). Samplescolonizedbythe'early'and'late'fungalcommunities differedsignificantlywith respectto theirC andN dynamics, as shown by the canonicalcorrespondenceanalysis(Fig.3). Throughoutthe upperlitterlayers,wherethe 'early'and presumablysaprotrophicfungal communityis active,the C:N ratio decreaseswith time. DecreasingC:N ratioswith progressing decomposition are commonly observed (Berg & McClaugherty,2003) and indicaterespiratoryremovalof C in combinationwith retentionof N within the litterand its microbialcommunity(Lindahlet al, 2002). In contrast,the 'late'fungalcommunityof mycorrhizalandotherpresumably root-dependentfungi, which was found in the fragmented withincreasing litterandhumus,wasassociated C:N ratioswith of N driven removal matter selective indicating organic age, C (Figs2, 3). Thispresumptionis corroborated by root-derived by the simultaneouslargeincreasein the stableisotope 15N, whichmustbe drivenby fractionationagainstthe heavierisotope duringtransferof N from the soil throughmycorrhizal fungi to their host plants (Hbgberget al., 1996; H6gberg et al., 1999; Hobbie & Colpaert,2003). Duringthis transfer, ectomycorrhizalfungi become c. 10%omore enrichedthan theirhostplants,whichis approximately the differencebetween the litterandthe deepersoil layersobservedhere(Fig.3). The significantenrichmentin 15Nnaturalabundancein horizons dominatedby ectomycorrhizal fungithus indicatesthatplant N is mobilizedvia root-associatedmycorrhizalfungi.
New Phytologist (2007) 173: 611-620
In a classicpaper,Gadgil& Gadgil(1971) suggestedthat ectomycorrhizaland saprotrophicfungi competewith each other for N, and such competitiveinteractionscould act to maintainthe partitioningof the fungalcommunityinto two verticallyseparatedand functionallydistinct subcommunities, as observedin the presentstudy.In soil microcosmswe have previouslyobservedantagonisticinteractionsbetween saprotrophicfungi and ectomycorrhizal fungi (Lindahlet al., 1999), in which the outcomewas stronglyinfluencedby the amount of substrateavailableto the saprotrophs(Lindahl et al., 2001). Saprotrophicfungi are more efficient than mycorrhizal fungiin colonizingandutilizingfresh,energy-rich litter (Colpaert& vanTichelen, 1996) and may thus be able to outcompetemycorrhizalfungi from the upperpartof the forest floor. However, as the C:N ratio decreasesand the substratebecomes depleted in availableenergy,the saprotrophsshould become less competitive,which is consistent with the observedreplacementof saprotrophsby mycorrhizal fungi thatdo not dependon litter-derivedenergy. Ligninand humus arebuilt up from polyphenolicstrucand turesthatrequireoxidativeenzymesfortheirdegradation, it hastraditionallybeen assumedthat saprotrophic'whiterot fungi' are the only organismswith the capacityto degrade theserecalcitrantcompoundsfully (Rayner& Boddy,1988). In this study,saprotrophicfungi appearedto be confinedto the surfacelitter,and humusdegradationand nutrientmobilizationfrom deeperorganicmatterwould thereforehave to be ascribedto other functionalgroups of microorganisms suchasbacteriaor mycorrhizal fungi.Somebacteriahavebeen shown to utilize productsof lignin degradation(Merkens et al., 2005) but reportsof lignin and humusdegradationby bacteriaarescarce(Berg& McClaugherty,2003). However, andericoidmycorrhizal the capacityof ectomycorrhizal fungi to produceenzymesinvolvedin degradationof organicmatter and to mobilizeorganicformsof N is well documentedfrom laboratoryexperiments(Abuzinadahet al, 1986; Read & Perez-Moreno,2003; Lindahl etal., 2005). Melillo et al. (1989) emphasizedthe importanceof well-degradedorganic matterand humus in supplyingplant N and suggestedthat labileC enteringthe soil via rootsand associatedmycorrhizal fungi may play an importantrole in drivingmobilizationof thisN. The dominanceof mycorrhizalfungiin well-degraded litterand humus observedin the presentstudysupportsthe hypothesisthat mycorrhizalfungi play a significantrole in mobilizing N from well-decomposed organic matter in borealforestsoils. In less degradedlitterthe lack of mycorrhizal fungi implies that the major part of needle litter decompositionis carriedout by saprotrophson the surface of the forestfloor. Borealforestshavebeenidentifiedas a majorglobalC sink (Myneniet al., 2001), and interactionsbetweenthe cyclesof C andN havebeenof paramountinterestin discussionsabout predictionsof effectsof increasingatmosphericCO2 concentrationandN depositionon borealandtemperateforests(e.g.
www.newphytologist.org
(2006) ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist
I
Rese~~s~I
Townsend et al., 1996; Nadelhoffer et al., 1999). Our observations highlight the need for further studies of C and N cycling in temperate forest ecosystems to acknowledge the spatial separation of major functional components of the microbial community.
Acknowledgements Financial support from the Swedish University of Agricultural
Sciencesis gratefullyacknowledged.Thanksare also due to Andy Taylorand David Read for good advice and critical readingof the manuscript.
References AbuzinadahRA, FinlayRD, ReadDJ. 1986. The roleof proteinsin the plants.II. Utilizationof proteinby nitrogennutritionof ectomycorrhizal 103: 495-506. mycorrhizalplantsof Pinuscontorta.New Phytologist Allen TR, MillarT, BerchSM, BerbeeML. 2003. Culturingand direct DNA extractionfind differentfungi fromthe sameericoidmycorrhizal 160: 255-272. roots.New Phytologist AltschulSF, MaddenTL, SchifferAA, ZhangJ, Zhang Z, MillerW, a new generationof LipmanDJ. 1997. GappedBLASTandPSI-BLAST: 25: 3389-3402. proteindatabasesearchprograms.NucleicAcidsResearch humus Berg B, McClaughertyC. 2003. Plantlitter- decomposition, Berlin,Germany:Springer-Verlag. formation,carbonsequestration. terBraakCJF. 1986. Canonicalcorrespondenceanalysis:a new eigenvector directgradientanalysis.Ecology67: 1167-1179. techniqueformultivariate CarletonTJ, ReadDJ. 1991. Ectomycorrhizas andnutrienttransferin conifer feathermoss ecosystems.CanadianJournalofBotany69: 778-785. ColpaertJV,vanTichelenKK.1996. Decomposition, nitrogenandphosphorus frombeechleaflittercolonizedby ectomycorrhizal mineralization or litter 134: 123-132. decomposingbasidiomycetes.New Phytologist Dickie IA, Xu B, KoideRT. 2002. Verticalniche differentiationof ectomycorrhizal hyphaein soil as shownbyT-RFLPanalysis.New 156: 527-535. Phytologist GadgilRL, GadgilPD. 1971. Mycorrhizaand litterdecomposition. Nature233: 133. GardesM, BrunsTD. 1993. ITS primerswith enhancedspecificityfor - applicationto the identificationof mycorrhizaeand basidiomycetes rusts.MolecularEcology2: 113-118. GaudinskiJB, TrumboreSE, Davidson EA, Cook AC, MarkewitzD, RichterDD. 2001. The age of fine-rootcarbonin threeforestsof the easternUnited Statesmeasuredby radiocarbon.Oecologia129: 420-429. GenneyDR, AndersonIC, AlexanderIJ. 2006. Fine-scaledistributionof and theirextramatrical mycelium.New Phytologist pine ectomycorrhizas 170: 381-390. Hibbett DS, GilbertLB, Donoghue MJ. 2000. Evolutionaryinstabilityof symbiosesin basidiomycetes.Nature407: 506-508. ectomycorrhizal Hobbie EA, ColpaertJV. 2003. Nitrogenavailabilityand colonizationby mycorrhizalfungicorrelatewith nitrogenisotopepatternsin plants.New Phytologist 157: 115-126. HoffA, Klopfenstein NB, McDonald GI, Tonn JR, Kim M-S, Zambino PJ, Hessburg PF, Rogers JD, Peever TL, Carris LM. 2004. Fungal endophytes in woody roots of Douglas-fir (Pseudotsugamenziesit) and ponderosa pine (Pinusponderosa). ForestPathology34: 255-271. Hiigberg P, Hiigberg MN, Quist ME, Ekblad A, Niisholm T. 1999. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris.New Phytologist 142: 569-576. Hagberg P, Hogbom L, Schinkel H, Hiigberg M, Johannisson C, Wallmark H. 1996. N-15 abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108: 207-214.
Higberg P, NordgrenA, BuchmannN, TaylorAFS, EkbladA, HiigbergMN, NybergG, Ottosson-LIifveniusM, ReadDJ. 2001. forestgirdlingshowsthatcurrentphotosynthesisdrivessoil Large-scale respiration.Nature411: 789-792. LandeweertR, LeeflangP, KuyperTW, HofflandE, RoslingA, WernarsK, Smit E. 2003. Molecularidentificationof ectomycorrhizal myceliumin soil horizons.AppliedandEnvironmental 69: 327-333. Microbiology LevinI, KromerB. 2004. The tropospheric14CO2levelin mid-latitudesof 46: 1261-1272. the NorthernHemisphere(1959-2003). Radiocarbon LindahlBD, FinlayRD, CairneyJWG. 2005. Enzymaticactivitiesof myceliain mycorrhizalfungalcommunities.In: DightonJ, White JF, and rolein the OudemansP, eds. Thefungal community: its organization 3rdedn. BocaRaton,FL, USA: CRC Press,331-348. ecosystem, LindahlB, StenlidJ, FinlayR. 2001. Effectsof resourceavailabilityon betweena saprotrophicand an mycelialinteractionsand 32P-transfer ectomycorrhizal fungusin soil microcosms.FEMSMicrobiology Ecology 38: 43-52. of 32Pbetween LindahlB, StenlidJ, OlssonS, FinlayR. 1999. Translocation interactingmyceliaof a wood decomposingfungusand ectomycorrhizal 144: 183-193. fungi in microcosmsystems.New Phytologist LindahlB, TaylorAFS, FinlayRD. 2002. Definingnutritionalconstraints on carboncyclingin borealforests- towardsa less 'phytocentric' perspective.Plantand Soil242: 123-135. Melillo JM, AberJD, LinkinsAE, RiccaA, FryB, NadelhofferKJ. 1989. Carbonand nitrogendynamicsalong the decaycontinuum- plantlitter to soil organic-matter.Plantand Soil 115: 189-198. MerkensH, BeckersG, WirtzA, BurkovskiA. 2005. Vanillatemetabolism in Corynebacterium 51: 59-65. glutamicum.CurrentMicrobiology RK, KauppiPE, LiskiJ, Myneni RB, Dong J, TuckerCJ, Kaufminann Zhou L, AlexeyevV, Hughes MK 2001. A largecarbonsink in the woody biomassof Northernforests.Proceedings of oftheNationalAcademy Sciences,USA98: 14784-14789. NadelhofferKJ,EmmettBA, GundersenP, KjonaasOJ, KoopmansCJ, SchleppiP, TietemaA, WrightRF. 1999. Nitrogendepositionmakesa minorcontributionto carbonsequestrationin temperateforests.Nature 398: 145-148. NadelhofferKJ, FryB. 1988. Controlson naturalN-15 and C-13 abundancesin forestsoil organic-matter.Soil ScienceSocietyofAmerica Journal52: 1633-1640. O'BrienHE, ParrentJL,JacksonJA, MoncalvoJ-M, VilgalysR. 2005. Fungalcommunityanalysisby large-scalesequencingof environmental 71: 5544- 5550. samples.AppliedandEnvironmental Microbiology Ohlsson KEA,WallmarkPH. 1999. Novel calibrationwith correctionfor drift and non-linearresponsefor continuousflow isotoperatiomass spectrometryappliedto the determinationof deltaN-15, total nitrogen, deltaC-13 and total carbonin biologicalmaterial.Analyst124: 571-577. andfunctionof northernconiferous PerssonT, ed. 1980. Structure forests- an ecosystem study.EcologicalBulletins32. Stockholm,Sweden. RaynerADM, BoddyL. 1988. FungalDecomposition of Wood,itsBiologyand Ecology.Chichester,UK: JohnWiley & Sons Ltd. Read DJ, Perez-MorenoJ. 2003. Mycorrhizasand nutrientcyclingin 157: 475-492. ecosystems- a journeytowardsrelevance?New Phytologist Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD. 2003. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytologist 159: 775-783. Schadt CW, Martin AP, Lipson DA, Schmidt SK. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359-1361. Smith SE, Read DJ. 1997. Mycorrhizal symbiosis.San Diego, CA, USA: Academic Press Inc. Siiderstriim BE, B&th E. 1978. Soil microfungi in three Swedish coniferous forests. Holarctic Ecology 1: 62-72. Swofford DL. 2002. PAUP*. phylogenetic analysis usingparsimony (*and other methods), version 4. Sunderland, MA, USA: Sinaur Associates.
(2006) www.newphytologist.org ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions
New Phytologist (2007) 173: 611-620
New Phytologist TedersooL,KoljalgU, Hallenberg N, LarssonK-H.2003. Finescaledistribution of ectomycorrhizal fungiand rootsacrosssubstratelayersincludingcoarse 159: 153-165. woody debrisin a mixedforest.New Phytologist TownsendAR, BraswellBH, Holland EA, PennerJE. 1996. Spatialand carbonstoragedue to depositionof fossil temporalpatternsin terrestrial fuel nitrogen.EcologicalApplications 6: 806-814. TrumboreSE, HardenJW. 1997. Accumulationand turnoverof carbonin organicand mineralsoilsof the BOREASnorthernstudyarea.Journalof Research Geophysical -Atmospheres102: 28817-28830.
Wallander D, Bifth E. 2001.Estimation H, NilssonL-O,Hagerberg of thebiomassandseasonal mycelium growthof external of ectomycorrhizal 151: fungiin thefield.NewPhytologist 753-760. anddirect WhiteTJ,BrunsT, LeeS, TaylorJ. 1990.Amplification of fungalribosomal RNAgenesforphylogenetics. In: sequencing InnisMA,Gelfland DH, Sninsky JJ,WhiteTJ,eds.PCRprotocols: aguidetomethods andapplications. SanDiego,CA,USA:Academic Press, 315-322.
About New Phytologist * New Phytologistis owned by a non-profit-making charitabletrustdedicatedto the promotionof plantscience,facilitatingprojects fromsymposiato open accessfor ourTansleyreviews.Completeinformationis availableat www.newphytologist.org. * Regularpapers, Letters,Researchreviews, Rapidreportsand both Modelling/Theoryand Methods papers are encouraged. We are committedto rapidprocessing,from online submissionthroughto publication'as-ready'via OnlineEarly- our average submissionto decisiontime is just 30 days. Online-onlycolouris free, and essentialprintcolourcosts will be met if necessary.We also provide25 offprintsas well as a PDFfor each article. * Foronlinesummariesand ToCalerts,go to the website and clickon 'Journalonline'.Youcan take out a personalsubscriptionto the journalfor a fractionof the institutionalprice.Ratesstartat ?131 in Europe/$244in the USA& Canadafor the onlineedition (clickon 'Subscribe'at the website). * Ifyou have any questions,do get in touch with CentralOffice (
[email protected]; tel +44 1524 594691) or,for a local contactin NorthAmerica,the USOffice(
[email protected]; tel +1 865 576 5261).
New Phytologist (2007) 173: 611-620
www.newphytologist.org
(2006) ? The Authors(2006). Journalcompilation? New Phytologist
This content downloaded from 185.44.77.82 on Sat, 14 Jun 2014 16:27:11 PM All use subject to JSTOR Terms and Conditions