Spectral phase transfer to ultrashort UV pulses ... - OSA Publishing

3 downloads 0 Views 2MB Size Report
OPA output, ultrashort UV pulses at 237 nm were generated with micro-joule pulse ... Linear chirp and third order dispersion (TOD) of NIR OPA output were ...
Spectral phase transfer to ultrashort UV pulses through four-wave mixing P. Zuo1,2 , T. Fuji1,2,3,∗ , and T. Suzuki1,2,4 1 Chemical

Dynamics Laboratory, RIKEN Advanced Science Institute, Hirosawa 2–1, Wako, Saitama, 351–0198, Japan 2 Japan

Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo, 102–0075, Japan 3 Laser

Research Center for Molecular Science, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki 444–8585, Japan

4 Department

of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan [email protected]

Abstract: Transfer of spectral phase from near infrared ultrashort pulses to deep ultraviolet (UV) sub-30-fs pulses through four-wave mixing process is demonstrated. Micro joule UV pulses at 237 nm were generated by nonlinear mixing of second harmonic pulses of Ti:sapphire laser output and near infrared pulses from a noncollinear optical parametric amplifier. Chirp of the near infrared pulse was transfered to the UV pulse with the opposite sign. A positively chirped near infrared pulse was used for generating a negatively chirped UV pulse, which was compressed down to 25 fs by a magnesium fluoride window. © 2010 Optical Society of America OCIS codes: (320.7110) Ultrafast nonlinear optics (190.4380) Nonlinear optics, four-wave mixing (320.5540) Pulse shaping (190.4970) Parametric oscillators and amplifiers.

References and links 1. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Phys. Chem. 9, 2470–2497 (2007). 2. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002). 3. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). 4. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). 5. S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899–1901 (2006). 6. B. J. Pearson and T. C. Weinacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15, 4385– 4388 (2007). 7. S. Weber, M. Barthelemy, and B. Chatel, “Direct shaping of tunable UV ultra-short pulses,” Appl. Phys. B 98, 323–326 (2010). 8. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866–871 (2001). 9. S. Shimizu, Y. Nabekawa, M. Obara, and K. Midorikawa, “Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses,” Opt. Express 13, 6345–6353 (2005).

#129300 - $15.00 USD

(C) 2010 OSA

Received 1 Jun 2010; revised 7 Jul 2010; accepted 8 Jul 2010; published 15 Jul 2010

19 July 2010 / Vol. 18, No. 15 / OPTICS EXPRESS 16183

10. C. Schriever, S. Lochbrunner, M. Optiz, and E. Riedle, “19 fs shaped ultraviolet pulses,” Opt. Lett. 31, 543–545 (2006). 11. Y. Nabekawa and K. Midorikawa, “Group-delay-dispersion-matched sum-frequency mixing for the indirect phase control of deep ultraviolet pulses in the sub-20-fs regime,” Appl. Phys. B 78, 569–581 (2004). 12. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999). 13. A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87, 021107 (2005). 14. T. Fuji, T. Horio, and T. Suzuki, “Generation of 12-fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett. 32, 2481–2483 (2007). 15. T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A 80, 063822 (2009). 16. T. Horio, T. Fuji, Y. Suzuki, and T. Suzuki, “Probing ultrafast internal conversion through conical intersection via time-energy map of photoelectron angular anisotropy.” J. Am. Chem. Soc. 131, 10392–10393 (2009). 17. Y.-I. Suzuki, T. Fuji, T. Horio, and T. Suzuki, “Time-resolved photoelectron imaging of ultrafast S2 → S1 internal conversion through conical intersection in pyrazine,” J. Chem. Phys. 132, 174302 (2010). 18. H.-S. Tan, E. Schreiber, and W. S. Warren, “High-resolution indirect pulse shaping by parametric transfer,” Opt. Lett. 27, 439–441 (2002). 19. T. Witte, K. Kompa, and M. Motzkus, “Femtosecond pulse shaping in the mid infrared by difference-frequency mixing,” Appl. Phys. B 76, 467–471 (2003). 20. A. Baltuˇska, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002). 21. G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses in the near-infrared from a noncollinear optical parametric amplifier,” Opt. Lett. 32, 2396–2398 (2007). 22. D. Brida, S. Bonora, C. Manzoni, M. Marangoni, P. Villoresi, S. De Silvestri, and G. Cerullo, “Generation of 8.5-fs pulses at 1.3 µ m for ultrabroadband pump-probe spectroscopy,” Opt. Express 17, 12510–12515 (2009). 23. A. Varanaviˇcius, A. Dubietis, A. Berˇzanskis, R. Danielius, and A. Piskarskas, “Near-degenerate cascaded fourwave mixing in an optical parametric amplifier,” Opt. Lett. 22, 1603–1605 (1997). 24. O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B 26, 965–972 (2009). 25. P. Tzankov, J. Zheng, M. Mero, D. Polli, C. Manzoni, and G. Cerullo, “300 µ J noncollinear optical parametric amplifier in the visible at 1 kHz repetition rate,” Opt. Lett. 31, 3629–3631 (2006). 26. M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, “Dispersion-free transient-grating frequency-resolved optical gating,” Appl. Opt. 38, 5250–5253 (1999). 27. Y. Kida, J. Liu, T. Teramoto, and T. Kobayashi, “Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing,” Opt. Lett. 35, 1807–1809 (2010). 28. T. Sekikawa, T. Katsura, S. Miura, and S. Watanabe, “Measurement of the intensity-dependent atomic dipole phase of a high harmonic by frequency-resolved optical gating,” Phys. Rev. Lett. 88, 193902 (2002). 29. K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path.” Phys. Chem. Chem. Phys. 11, 172–181 (2009). 30. F. Th´eberge, N. Ak¨ozbek, W. Liu, A. Becker, and S. L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).

1.

Introduction

Ultrashort laser pulses are among the most effective tools for fundamental studies in physics and chemistry. Ultraviolet (UV,