SPM Add Math Form 4 Chapter 5 Indices & Logarithms. Copyright www.
epitomeofsuccess.com. Page 1. CHAPTER 5 : INDICES AND LOGARITHMS.
Indices ...
SPM Add Math Form 4 Chapter 5 Indices & Logarithms CHAPTER 5 : INDICES AND LOGARITHMS
Indices and Laws of Indices Integer and fractional indices 1) Find the value of
2 3
3
3 (c) 4
0
(c)
(b) (2) 5
(a) 3²
(d) (0.5) 4
2) Find the value of 0
(b) (7)
(a) 6
0
(d) (2.5) 0
3) Evaluate the following. (a) 2
4
(b) (4)
2
1 (c) 1 4
3
(d) (0.1) 1
4) Evaluate the following.
(a) 9
1 2
(b) (64)
1 3
1
(c)
0.0625
1 4
8 3 (d) 27
5) Evaluate the following.
(a) 32
4 5
(b) (8)
2 3
3
27 (d) 125
16 4 (c) 81
2 3
Law of indices 6) Simplify the following. 2
(a) 2 3 x 2 4
7
(b) (3) 2 x (-3) 6
(c) 9 3 x 9 3
(b) 6 4 6 -3
(c) 4 4 4
(d) 7 3n x 7 n x 7 3
7) Simplify the following. 3
(a) 85 83
9 4
(d)
5 2 n x 5 3n 5 4n
(d)
243 5
8) Simplify the following. 2 3
(a) (2 )
3 4 8
(b) (5 )
Copyright www.epitomeofsuccess.com
(c) a 3
2
4
Page 1
SPM Add Math Form 4 Chapter 5 Indices & Logarithms 9) Simplify and evaluate the following.
(a) 53 x 25 2 125
(b)
4x8 32
1 3
2
(c)
4 5
3 x9 27
1 3
(d)
2 3
8
2 3
x4 23
1 2
Simplifying algebraic expressions 10) Simplify each of the following. (b) 36 n 32n
(a) 2 3n x 2 n
(c) (4 2 n ) 3
a x a3
(d)
11) Simplify each of the following. (b) (32 p 5 q -10 )
(a) (m 3 n 2 ) 4
2 5
(c)
12a 5 b 2 4a 3 b 6
(d)
3
m 3 n 6
12) Simplify each of the following. 1
1
n
1
(a) 4 n x 43-n 43n1
(b) ( p 2 n ) 2 ( p 6 ) 3 x ( p 4 n ) 4
a 3n 2 (c) n 1 a x a 2 n4
(2m 2 ) 3 x 3m 3 (d) 6m 2
13) Simplify each of the following. (a) 2 n 2 x 4 n 83n
(b) 9 2 x x 27 x -3 34-x
(c) 5 x6 x 252x-1 1252-x
(d) 16 2n 23n x 8 2
14) Show that 4 3n
64 2 2n
15) If 2x = y, express the following in terms of y. (a) 2 3 x
(b) 4 x 1
(c) 8(4 x 2 )
(d) 8 x - 4 -x
16) Show that 2n + 2n+1 + 2n+2 is divisible by 7 for all positive integers of n. 17) Given that 2a = 4b = 8c , express c in terms of a and b. 18) Simplify 3n+2 - 3n - 27(3n-1) in the form k(3n ) where k is a constant. Hence, write down the value of k.
Copyright www.epitomeofsuccess.com
Page 2
SPM Add Math Form 4 Chapter 5 Indices & Logarithms Logarithms and Laws of Logarithms Expressing equation in index form to logarithm form and vice versa 19) Convert the following to logarithm form. (a) 2 2 4
(b) 53 125
(c) 3 2
1 9
(d) 3 p q
20) Convert the following to index form. (a) log 2 32 5
(b) log 3 9 2
(c) log 3 3
1 2
1 4
(d) log 2 2
21) Find the value of x in each of the following equations. (a) log 3 x 1
(b) log 2 8 x
(d) log 3 x 2 2
(c) log x 9 1
Finding logarithm of a number 22) Find the value of each of the following. (a) log 2 64
(b) log 1 9
(c) log 8 0.25
(d) log 5 7
(e) log 4 2
(f) log 1 1
3
23) Find the following logarithms using a scientific calculator. (a) log 10 0.4
(b) log 10 5.25
(c) log 10 35
1 2
(d) log 10
Laws of logarithms 24) Given that loga 2 = 0.301 and loga 3 = 0.477, find the value of (a) log a 6
(b) log a 1.5
(c) log a 8
25) Given that log10 x = p and log10 y = q, express the following in terms of p and q. (a) log 10 ( x 2 y)
10 y x
(b) log 10
(c) log 10 10 xy 3
100 x y2
(d) log 10
26) Given that x = 5a and y = 5b , express the following in terms of x and y. (a) log 5 xy 2
x 5y
(b) log 5
Copyright www.epitomeofsuccess.com
1 xy
(c) log 5
(d) log 5
x2 y3
Page 3
SPM Add Math Form 4 Chapter 5 Indices & Logarithms 27) Evaluate the following. (a) log 4 4 4
(b) log 2
1 4
(c) log 2 8
(d) log 27 3
(e)
log a 27 log a 9
(f) log 9 3
28) Evaluate the following logarithms without using a calculator. (a) log 8 4 log 8 2
(b) log 3 36 - log 312
(c) log 7 4 2 log 7 3 2 log 7 6
(d) 2 log 2
2 81 3 log 2 - 2 log 2 3 8 4
p q in terms of m and n. . 30) Given that log 2 5 m and log 2 6 n , express log 2 3.6 in terms of m and n. . 29) Given that log 2 p m and log 2 q n , express log 2 8
Logarithmic expressions in the simplest form 31) Simplify each of the following as a single logarithm. (a) log 10 a 2 log 10 b 3 log10c (c)
(b) 2 log a 6 - 2 log a 3
1 1 log a x 2 log a y log a z 2 3
(d)
1 log 5 ( x 1) - 2 log 5 ( x 1) 2
Change of Base of Logarithms Changing the base of logarithms 32) Find the values of the following. (a) log 3 10
(b) log 3 15
(c) log 0.5 8
33) Find the value of the following without using a calculator.. (a) log 9 27
(b) log 4
(c) log 64 8
2
34) Evaluate the following. (a) 4 log 3 5 x 2 log 5 3
(b) log 7 5 . log 5 9 . log 9 7
(c) log 4 5 . log 5 6 . log 6 7 . log 7 8
35) Given that log4 3 = 0.792 and log4 5 = 1.161, evaluate the following. (a) log 4 0.6
(b) log 3 4
Copyright www.epitomeofsuccess.com
(c) log 5 16
(d) log 5 3
Page 4
SPM Add Math Form 4 Chapter 5 Indices & Logarithms 36) Given that log2 x = m and log2 y = n, find the following in terms of m and / or n. (b) log y
(a) log x 2
2
(d) log 4 xy
(c) log y x
37) Given that log2 5 = 2.322 and log2 7 = 2.807, find the value of the following without using a calculator.
25 7
(b) log 4
(a) log 2 175
38) Evaluate
log 9 36 x log 49 9 log 7 6
Problems involving the change of base and laws of logarithms 39) Given that a b = 81, find log9 a in terms of b. 40) If log4 x = k, express each of the following in terms of k. (b) log 2 8 x 2
(a) log 8 x
41) If log10 5 = p, express each of the following in terms of p. (a) log 5 2
(b) log 10 2
42) Given that log2 x = m and log2 y = n, express each of the following in terms of m and n. (a) log x 2 log y 2
(b) (log x 8)(log 8 y)
(c) log xy 4
(d) log 4
xy 3
43) Evaluate the following expressions. (a) log 4 64 log 9 27 log 5 25
(b) log 3 2 log 9 36 log 1 27 3
44) Simplify each of the following. (a) log 2 8m log 8 m 3
(b) log 9 9 x 4 log
3
x
45) Given that log3 a = p and log5 a = q, express loga 75 in terms of p and q.
Copyright www.epitomeofsuccess.com
Page 5
SPM Add Math Form 4 Chapter 5 Indices & Logarithms Equations involving Indices and Logarithms Solving indicial questions 46) Solve the following equations. (a) 16 x
1 32
(b) 9 2 x 1 27 x
(c) 2 x x 4 x -1 8 2x-1
(d) 53x 25 x 1
1 25
47) Solve the following equations. (a) x 2 64
(b) 3x 3 24
(c) x -5
1 32
(d) ( x 2) 4 81
48) Solve the following equations. (b) 3 x 1 0.45
(a) 3 x 7
(c) 2 x . 3x 5 x 1
(d) 6 x 1 5 2 x 1
49) By using substitution y = 3 x , find the value of x such that 9 x +3 = 4(3 x). 50) Given that y= ax b -4 and that y=12 when x=2 and y=50 when x=3, find the values of a and b. 51) Solve the following simultaneous equations.
3 9 27 x
2y
2x 1 4y 8
52) A liquid cools from its original temperature 80°C to a temperature T°C in x minutes. Given that T= 80(0.98)x , find the value of (a) T when x = 30 (b) x when T =50 53) Solve the equation 32x-1 = 5x . 54) Solve the equation 812x = 93x+1 . 55) Solve the equation 2x+3 - 2x+2 =16. Solving logarithmic equations 56) Solve the following equations. (a) log 3 ( x 2) log 3 (4 x 11)
(b) 3 log 10 ( x 1) log 10 8
(c) log 2 4 x 2 log 2 5 3
(d) 3 log x 2 log x 4 5
Copyright www.epitomeofsuccess.com
Page 6
SPM Add Math Form 4 Chapter 5 Indices & Logarithms 57) Solve the following equations. (a) log 3 2 log 9 ( x 2)
(b) log 5 x 4 log x 5
(c) log 4 x log 2 x 3
(d) log 3 x 4 log x 3 4
58) Given that log4 3y = 2 log4 x + 1, express y in terms of x . 59) Solve the simultaneous equations.
3x 27 3y
log 10 ( x 2 y ) log 10 15
60)
(a) Solve 2 log3 x 32 (b) If 2 3x 9(3 2 x ), prove that x log a
8 log a 9. 9
Given 2 log 5 xy 2 log 5 ( x 1) log 5 y when x and y are both positive, show that 61)
y
25(x 1) x2
62) Solve the simultaneous equations.
4x 2 2y
log 10 (2 x 2 y) 1
63) Given that log3 T – log9 V = 2, express T in terms of V . 64) Solve the equation log4 3x – log4 (2x-1) = 1.
Copyright www.epitomeofsuccess.com
Page 7