Spying on molecules through optoplasmonic

0 downloads 0 Views 5MB Size Report
Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity. • Dynamical operation: optoplasmonic vortex nanogates ...
Hybrid optoplasmonic microresonators & networks Svetlana V. Boriskina Wonmi Ahn Yan Hong & Björn M. Reinhard Boston University

Hybrid optoplasmonic microresonators & networks Svetlana V. Boriskina Wonmi Ahn Yan Hong & Björn M. Reinhard Boston University

Motivation: why optoplasmonics?

Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer

Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer Physical insights into photonic/plasmonic coupling

Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer Physical insights into photonic/plasmonic coupling

Active nanoscale light control/switching

Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer Physical insights into photonic/plasmonic coupling

Active nanoscale light control/switching On-chip fabrication techniques development

Photonic sensors • High spectral resolution • Low sensitivity (poor overlap of evanescent field with analyte) • Low spatial resolution

Plasmonic sensors • High sensitivity (hot spots on particle surfaces) • Low spectral resolution (broad linewidths) • High spatial resolution (nanoscale light localization)

Vollmer, Biophys. J. (2003)

Yalcin et al, JSTQE (2006) McFarland et al, Nano Lett. (2003)

Detection limit = resolution / sensitivity the smallest measurable RI change

Resonant optoplasmonic elements High spectral resolution of whispering gallery (WG) modes + High spatial resolution

+ Cascaded intensity enhancement

Resonant optoplasmonic elements High spectral resolution of whispering gallery (WG) modes + High spatial resolution

+ Cascaded intensity enhancement

Hybrid optoplasmonic structures • Spectral shaping • Multiple-spectralchannel operation

• Resonant intensity enhancement • Spatial hot spot localization

2-micron polystyrene bead + 100-nm Au nanosphere

• Wavelength & polarization sensitivity, dynamic tunability

Nanoparticle-based protein detection by optical shift of a resonant microcavity

Penn State Univ

Boston University

Max Planck Institute

Appl. Phys. Lett., 99, 073701, 2011

Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection

Spectrum shaping via nanoplasmonic element design Hybrid optoplasmonic structure

WG-mode microsphere (5.6 µm diam, polystyrene)

Plasmonic nanodimer (30nm-diam Au NPs)

Opt. Express, 2011

Spectrum shaping via nanoplasmonic element design Both, Lorentzianshape and Fanotype spectral features can be engineered by the nanoplasmonic element design Plasmonic nanodimer (75nm-diam Au NPs)

Opt. Express, 2011

Spectrum shaping via nanoplasmonic element design Both, Lorentzianshape and Fanotype spectral features can be engineered by the nanoplasmonic element design

Opt. Express, 2011

Spectrum shaping via nanoplasmonic element design Both, Lorentzianshape and Fanotype spectral features can be engineered by the nanoplasmonic element design

Opt. Express, 2011

Spectrum shaping via microcavity design 3.42

34.2

342

1.1

11

110

Tailored interactions with quantum emitters

nd

2R z

y x

h1

dipole

5.6-micron PS bead + 130-nm Au nanosphere dimer with 25nm gap

Fluorescence sensing via far-field detection or via out-coupling into a fiber

PNAS, 108(8) 2011

On-chip energy transfer: optoplasmonic superlens detector

w

a

Au

2r

nd 2R z y x

h

dipole

PNAS, 108(8) 2011

On-chip energy transfer: optoplasmonic superlens detector

w

a

Au

2r

nd 2R z y x

h

dipole

PNAS, 108(8) 2011

On-chip energy transfer: optoplasmonic superlens

y-z

y-z PNAS, 108(8) 2011

Efficient on-chip energy transfer • Dark optoplasmonic nanocircuits • Orders-of-magnitude efficiency improvement over darkfield plasmonic circuits based on metal nanowires

Akimov et al, Nature 2007

Spectral & spatial (de)multiplexing

PNAS, 108(8) 2011

Spectral & spatial (de)multiplexing

PNAS, 108(8) 2011

Au d=55nm

How does it work? SiO2 D=5µm

Cascaded light enhancement

E

Appl. Phys. Lett., 99, 073701, 2011

Au d=55nm

SiO2 D=5µm

E

Appl. Phys. Lett., 99, 073701, 2011

Au d=55nm

SiO2 D=5µm

E

Appl. Phys. Lett., 99, 073701, 2011

How does it work? Nanoscale powerflow manipulation through ‘phase landscaping’

Opt. Express, 2011

How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances

Opt. Express, 2011

How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances • Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity

Opt. Express, 2011 Nanoscale, 2011

How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances • Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity • Dynamical operation: optoplasmonic vortex nanogates

Opt. Express, 2011

How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances • Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity • Dynamical operation: optoplasmonic vortex nanogates

Opt. Express, 2011

Adaptive nanoscale light control

Adaptive nanoscale light control

Adaptive nanoscale light control

Adaptive nanoscale light control

Adaptive nanoscale light control

Fabrication

Shopova et al, Appl. Phys. B, 2008

Nanoparticles randomly attached to microcavity surface: low design flexibility, mode quenching possible

Fabrication

Santiago-Cordoba et al, APL 2011

• Controllable interactions of microsphere with nanoparticles • Use of pre-designed EBL-fabricated nanostructures increases design flexibility

On-chip optoplasmonic structures

Wonmi Ahn

Yan Hong

Björn Reinhard

On-chip optoplasmonic structures

Wonmi Ahn

Yan Hong

Björn Reinhard

Conclusions & outlook • Spatial & spectral resolution • Multi-channel operation • Radiative rates manipulation • Efficient on-chip energy transfer • Advanced design based on singular-optics conceptsswitching and hydrodynamics • Dynamical capabilitiesanalogy • Novel flexible fabrication methods suitable for on-chip integration • Experimental demonstration of predicted effects • Development of a unified theory of resonance energy transfer between donors & acceptors: optoplasmonic modification of many-body effects

24 Oct 2011: Focus Issue of Optics Express ‘Collective phenomena in photonic, plasmonic and hybrid structures’

Guest Editors: Svetlana V. Boriskina, Boston Univ Michelle Povinelli, Univ Southern California Vasily N. Astratov, Univ North Carolina Charlotte Anatoly Zayats, King's College London Viktor A. Podolskiy, Univ Massachusetts Lowell