Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity. ⢠Dynamical operation: optoplasmonic vortex nanogates ...
Hybrid optoplasmonic microresonators & networks Svetlana V. Boriskina Wonmi Ahn Yan Hong & Björn M. Reinhard Boston University
Hybrid optoplasmonic microresonators & networks Svetlana V. Boriskina Wonmi Ahn Yan Hong & Björn M. Reinhard Boston University
Motivation: why optoplasmonics?
Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer
Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer Physical insights into photonic/plasmonic coupling
Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer Physical insights into photonic/plasmonic coupling
Active nanoscale light control/switching
Motivation: why optoplasmonics? •Refractometric sensing •Fluorescence/SERS sensing •Optical trapping •Energy transfer Physical insights into photonic/plasmonic coupling
Active nanoscale light control/switching On-chip fabrication techniques development
Photonic sensors • High spectral resolution • Low sensitivity (poor overlap of evanescent field with analyte) • Low spatial resolution
Plasmonic sensors • High sensitivity (hot spots on particle surfaces) • Low spectral resolution (broad linewidths) • High spatial resolution (nanoscale light localization)
Vollmer, Biophys. J. (2003)
Yalcin et al, JSTQE (2006) McFarland et al, Nano Lett. (2003)
Detection limit = resolution / sensitivity the smallest measurable RI change
Resonant optoplasmonic elements High spectral resolution of whispering gallery (WG) modes + High spatial resolution
+ Cascaded intensity enhancement
Resonant optoplasmonic elements High spectral resolution of whispering gallery (WG) modes + High spatial resolution
+ Cascaded intensity enhancement
Hybrid optoplasmonic structures • Spectral shaping • Multiple-spectralchannel operation
• Resonant intensity enhancement • Spatial hot spot localization
2-micron polystyrene bead + 100-nm Au nanosphere
• Wavelength & polarization sensitivity, dynamic tunability
Nanoparticle-based protein detection by optical shift of a resonant microcavity
Penn State Univ
Boston University
Max Planck Institute
Appl. Phys. Lett., 99, 073701, 2011
Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection
Spectrum shaping via nanoplasmonic element design Hybrid optoplasmonic structure
WG-mode microsphere (5.6 µm diam, polystyrene)
Plasmonic nanodimer (30nm-diam Au NPs)
Opt. Express, 2011
Spectrum shaping via nanoplasmonic element design Both, Lorentzianshape and Fanotype spectral features can be engineered by the nanoplasmonic element design Plasmonic nanodimer (75nm-diam Au NPs)
Opt. Express, 2011
Spectrum shaping via nanoplasmonic element design Both, Lorentzianshape and Fanotype spectral features can be engineered by the nanoplasmonic element design
Opt. Express, 2011
Spectrum shaping via nanoplasmonic element design Both, Lorentzianshape and Fanotype spectral features can be engineered by the nanoplasmonic element design
Opt. Express, 2011
Spectrum shaping via microcavity design 3.42
34.2
342
1.1
11
110
Tailored interactions with quantum emitters
nd
2R z
y x
h1
dipole
5.6-micron PS bead + 130-nm Au nanosphere dimer with 25nm gap
Fluorescence sensing via far-field detection or via out-coupling into a fiber
PNAS, 108(8) 2011
On-chip energy transfer: optoplasmonic superlens detector
w
a
Au
2r
nd 2R z y x
h
dipole
PNAS, 108(8) 2011
On-chip energy transfer: optoplasmonic superlens detector
w
a
Au
2r
nd 2R z y x
h
dipole
PNAS, 108(8) 2011
On-chip energy transfer: optoplasmonic superlens
y-z
y-z PNAS, 108(8) 2011
Efficient on-chip energy transfer • Dark optoplasmonic nanocircuits • Orders-of-magnitude efficiency improvement over darkfield plasmonic circuits based on metal nanowires
Akimov et al, Nature 2007
Spectral & spatial (de)multiplexing
PNAS, 108(8) 2011
Spectral & spatial (de)multiplexing
PNAS, 108(8) 2011
Au d=55nm
How does it work? SiO2 D=5µm
Cascaded light enhancement
E
Appl. Phys. Lett., 99, 073701, 2011
Au d=55nm
SiO2 D=5µm
E
Appl. Phys. Lett., 99, 073701, 2011
Au d=55nm
SiO2 D=5µm
E
Appl. Phys. Lett., 99, 073701, 2011
How does it work? Nanoscale powerflow manipulation through ‘phase landscaping’
Opt. Express, 2011
How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances
Opt. Express, 2011
How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances • Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity
Opt. Express, 2011 Nanoscale, 2011
How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances • Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity • Dynamical operation: optoplasmonic vortex nanogates
Opt. Express, 2011
How does it work? • Optical vortices (areas of circulating powerflow) form in & around the microcavity at WG-mode resonances • Enhanced powerflow threaded through plasmonic nanostructures generates high field intensity • Dynamical operation: optoplasmonic vortex nanogates
Opt. Express, 2011
Adaptive nanoscale light control
Adaptive nanoscale light control
Adaptive nanoscale light control
Adaptive nanoscale light control
Adaptive nanoscale light control
Fabrication
Shopova et al, Appl. Phys. B, 2008
Nanoparticles randomly attached to microcavity surface: low design flexibility, mode quenching possible
Fabrication
Santiago-Cordoba et al, APL 2011
• Controllable interactions of microsphere with nanoparticles • Use of pre-designed EBL-fabricated nanostructures increases design flexibility
On-chip optoplasmonic structures
Wonmi Ahn
Yan Hong
Björn Reinhard
On-chip optoplasmonic structures
Wonmi Ahn
Yan Hong
Björn Reinhard
Conclusions & outlook • Spatial & spectral resolution • Multi-channel operation • Radiative rates manipulation • Efficient on-chip energy transfer • Advanced design based on singular-optics conceptsswitching and hydrodynamics • Dynamical capabilitiesanalogy • Novel flexible fabrication methods suitable for on-chip integration • Experimental demonstration of predicted effects • Development of a unified theory of resonance energy transfer between donors & acceptors: optoplasmonic modification of many-body effects
24 Oct 2011: Focus Issue of Optics Express ‘Collective phenomena in photonic, plasmonic and hybrid structures’
Guest Editors: Svetlana V. Boriskina, Boston Univ Michelle Povinelli, Univ Southern California Vasily N. Astratov, Univ North Carolina Charlotte Anatoly Zayats, King's College London Viktor A. Podolskiy, Univ Massachusetts Lowell