1 jan 1991 ... Om deze problemen te verhelpen is een stappenmotor-sturing ontwikkeld ... Van
deze nieuwe stappenmotor-sturing wordt in dit rapport een ...
Stappenmotor-sturing voor SLO-SYN stappenmotoren technische beschrijving (WEW 91.009)
R.A.J. Snijders Eindhoven, januari 1991.
1
stappenmotor-sturing
Inhoudsopgave Inleiding
2
1. Overzicht van de totale stappenmotor-sturing
3 4
2.1 De SLO-SYNstuurmodules 2.2 De stuurschakeling 2.3 Verbinding met de PC
7
3. Het motor- en voedingsgedeelte
8
4
6
3.2 De verbinding met de motoren 3.3 Voedingsaspecten
8
9
4. Kastindeling en -bekabeling
11
Bijlagen: A. Beschrijving van de SLO-SYNstuurmodules. B. Produkt specificatie van de SLO-SYNstappenmotor M062.
C. Beschrijving van de DELTA S-series voedingen.
januari 1991
2
stappenmotor-sturing
Inleiding Voor het traverseren van het meetvolume van een LDA-systeem wordt gebruik gemaakt van een traverseerinrichting die aangedreven wordt door stappenmotoren van het type SLO-SYN ( zie bijlage B voor de produkt specificatie). Er zijn drie mogelijkheden om dit meetvolume te verplaatsen:
1.
De laser met optiek en opnemers zijn niet verplaatsbaar, en het model wordt getraverseerd. 2. Het model is niet verplaatsbaar, en de laser plus optiek en opnemers worden getraverseerd. 3. Indien gebruik gemaakt wordt van een glasfiber verbinding tussen laser en optiek hoeven alleen optiek en opnemers getraverseerd te worden, het model is in dit geval ook niet verplaatsbaar. De traverseerinrichting die gebruikt wordt is in principe geschikt voor alle drie genoemde opstellingen. De stappenmotoren worden aangestuurd door de stappenmotor-sturing. Bij de oude uitvoering van deze sturing werd een motor pas bekrachtigd wanneer deze moest gaan bewegen, dus wanneer er van de PC pulsen binnen kwamen. Door de traagheid van de sturings-electronica werden de eerste paar pulsen door de motoren niet ontvangen waardoor de nauwkeurigheid niet optimaal kon zijn. Ook bij het in- en uitschakelen van de bekrachtiging traden fouten op doordat de motor hierbij iets kon verspringen. Om deze problemen te verhelpen is een stappenmotor-sturing ontwikkeld waarbij de motoren continue bekrachtigd zijn. Dit hield in dat er een zwaardere voeding moest worden gebruikt, dat de gebruikte stuurmodules ( SLO-SYN 230-T) nu gekoeld moesten worden vanwege de continuë belasting, en dat de stuurelectronica aangepast moest worden. Van deze nieuwe stappenmotor-sturing wordt in dit rapport een gedetailleerde beschrijving gegeven.
januari 1991
stappenmotor-sturing
1. Overzicht van de totale stappenmotor-sturing In figuur 1 zien we de onderdelen waaruit de stappenmotor-sturing is opgebouwd, en de koppelingen naar buiten. De PC genereert een pulstrein voor een bepaalde stappenmotor, en geeft op een daarvoor bestemde lijn de draairichting van deze motor aan. Deze signalen worden door de stuurschakeling gebufferd, en geschikt gemaakt voor de SLQ-SYN steiurmodules. Verder verzorgt de stuurschakeling de koppeling van de schakelaars, waarmee de bekrachtiging per motor aan- en uitgeschakeld kan worden, met de stuurmodules. De stuurmodules dragen zorg voor de juiste aansturing van de windingen van de stappenmotoren, ze worden daarbij' van vermogen voorzien door een 28V-1OA geschakelde voeding.
i I
aanhit
stappenmotor sturing
I
PC via
pcm2-
kast
stappenmotoren
jig. 1 Overzicht van de stappenmotor-sturing
januari 1991
stappenmotor-sturing
2. Het stuurgedeelte
Een schema van het stuurgedeelte van de stappenmotor-sturing staat afgebeeld in figuur 2. We zien in dit schema dat het stuurgedeelte opgebouwd is uit drie gedeelten, de SLOSYN stuurmodules, de stuurschakeling ( insteekprint) en de verbinding naar de PC via de Amphenol-connector . 2.1 De SLO-SYN stuurmodules Een SLO-SYN 230-T stuurmodule heeft vijf stuuringangen die allen intern optisch geïsoleerd zijn, tevens worden ze door de optische isolator naar hoog getrokken wanneer de ingang open wordt gelaten. De vijf stuuringangen zijn:
1.
PU ( puls ingang) Een opgaande flank op deze ingang zorgt ervoor dat de motor een stap neemt.
2.
CW / CCW ( richtings ingang) Hiermee kan de draairichting van de motor worden ingesteld ( Clockwise of Counter Clockwise).
F
3. H 'I ( halve of volle stap) Wanneer een logische nul op deze ingang staat is één stap gelijk aan de volle hoek volgens de specificaties van de motor, bij een logische één wordt deze hoek gehalveerd. In de halve stap mode loopt de motor geleidelijker en heeft een hogere resolutie, maar het koppel wordt met 30% verminderd.
4. AWO ( bekrachtiging uit) Bij een logische nul wordt de bekrachteging van de motor uitgeschakeld. 5.
( gereduceerde stroom)
Met deze ingang kan men de stroom naar de motor reduceren. Een logische één geeft een stroom van 2 Ampère, een logische nul reduceert de stroom tot 1 Ampère, door een weerstand naar aarde aan te sluiten kan men tussenliggende waarden voor de stroom instellen. Voor optische isolatie van de stuurschakeling dient men zelf een spanning van een externe voeding aan te sluiten op de "OPTO SUPPLY IN" aansluiting. Men kan echter ook gebruik maken van de interne voeding op de "OPTO SUPPLY OUT", en deze doorverbinden met de "OPTO SUPPLY IN". In dit laatste geval wordt echter geen optische isolatie verkregen. Verder is er nog de aansluiting voor aarde ( LOGIC COMMON), deze is doorverbonden met de VOM aansluiting aan de motor-zijde ( zie par.3.2), en met het huis van de stuurmodule.
januari 1993
5
stappenmotor-sturing
230-T R:
I
: I
SLO-SYN 230-T
E I
jig. 2 Het stuurgedeelte van de stappenmotor-sturing januari 1991
I I
6
stappenmotor-sturing
2.2 De stuurschakeling De stuurschakeling maakt de signalen die afkomstig zijn van de PC geschikt voor de aansturing van de SLO-SYN stuurmodules, bovendien verzorgt de stuurschakeling een buffering van deze signden. De in de stuurschakeling gebruikte digitale poorten hebben allen een 'open collector'-uitgang, dit is mogelijk omdat de stuurmodules intern naar hoog getrokken worden bij een open ingang. Verder zien we in het schema drie jumpers ( Jl t/rn 33) waarmee de draairichting van elke motor afzonderlijk kan worden gedef~eerd,in figuur 3 kan men zien waar de jumpers zich bevinden op de stuurprint. De schakelaars op het frontpaneel worden door de stuurschakeling doorverbonden met de ingangen 'All Windings Off van de stuurmodules, met deze schakelaars kan de bekrachtiging van elke motor afzonderlijk worden afgeschakeld.
Jig.3 Componenten-opstelling en jumper-instellìngen van de stuurprint.
januari 1991
stappenmotor-sturing
2.3 Verbinding met de PC De koppeling van de stappenmotorsturing met de PC geschiedt via de AMPHENOL-14p connector. We zien dat 5 pennen hiervan aangesloten zijn, de X Y en Z waarover de pulsen worden gestuurd, de DIR waarmee de draairichting van de motor wordt aangegeven, en de aarde. De AMPHENOL-14p connector dient aangesloten te worden op de SuB-D-9p connector van de PCM2-kast ( digitale uitgang), de kabel die hievoor nodig is staat afgebeeld in figuur 4. AMPHENOL 14 P
SUB D 9 P 5
8
1
9
\
0 O
I
0
O
s
O -
I
07
O
14
Jig. 4 Verbidingskabel naar PCM2-kast.
januari 1991
O O
8
stappenmotor-sturing
3. Het motor- en voedingsgedeelte Een schema van het motor- en voedingsgedeelte van de stappenmotor-sturing staat afgebeeld in figuur 6. In dit schema zien we weer de SLO-SYN stuurmodules, de aansluitingen aan deze zijde splitsen zich op in twee gedeelten, de verbinding naar de motoren via de Toechel-C70 connectors, en de voedingschakeling.
3.1 De verbinding met de motoren De SLO-SYN stuurmodule heeft vier aansluitingen voor een stappenmotor, nl. twee aansluitingen voor OA en twee voor 0B. Een motor met 8 aansluitingen kan op twee manieren aangesloten worden, seriëel of parallel, een motor met 6 aansluitingen kan aileen seriëel aangesloten worden. Een schema van deze verschillenden aansluitingen staat afgebeeld in de handleiding van de stuurmodule, bijlage A10 ( fig.2.3). De koppel/snelheid curve is voor een type motor in de twee gevallen van aansluiten verschillend. Deze curven, voor verschillende typen motoren aangesloten op de stuurmodule SLO-SYN 230-T staan afgebeeld in bijlage A14 t/m A15. We zien dat bij een seriële aansluiting van een motor het maximaal haalbare koppel hoger is dan wanneer deze motor parallel aangesloten zou zijn. Echter bij een parallelle aansluiting neemt het koppel minder snel af wanneer de snelheid van de motor hoger wordt, dan bij een seriële aansluiting. In bijlage A10 staat in tabel 3.1 een lijst van motoren welke bij de SLO-SYN 230-T stuurmodules, en dus bij deze stappenmotor-sturing, gebruikt kunnen worden, deze kunnen zowel seriëel als parallel aangesloten worden. Bij de traverseerinrichting, die door deze stappenmotor-sturing wordt aangestuurd, wordt gebruik gemaakt van de M062-LE09 voor de horizontale bewegingen ( X en Z), en de M091-FD8109 voor de verticale beweging ( Y). De motoren zijn allen seriëel aangesloten. De gebruikte kabel naar de motorconnector, en de aansluitingen hiervan aan de motor staan afgebeeld in figuur 5.
januari 1991
stappenmotor-sturing
AMPHENOL 1
TOECHEL-C70
n
AMPHENOL 1 4 P
14 P 8
O O
0 0
o
b
7
14
SLO-SYN stappenmotor 8 aansluitingen
Jig. 5 Aansluitingen aan de stappenmotoren.
3.2 Voedingsaspecten De SLO-SYN230-T stuurmodules moeten gevoed worden met een 28 VDC spanning, de stroom die per stuurmodule geleverd moet kunnen worden is 2.5 Ampère. De gebruikte voeding, een DELTA S28-10 ( zie bijlage C), is in staat 10 Ampère continue te leveren bij 28 VDC, en is dus ruim geschikt om de drie stuurmodules van vermogen te voorzien. De behuizing van de voeding is geschikt om in een 19"-rack te worden opgenomen. De filtercapaciteit over de voedingsaansluitingen van een stuurmodule ( Vm-Vom) moet minimaal 4700 pF zijn ( C4 t/m C6 in figuur 5), wanneer deze echter meer dan 15 cm van de aansluitingen verwijderd is moet een extra condensator van 250 pF direct over de pennen Vm-Vom aangesloten worden ( C1 t/m C3 in figuur 4). Ter voorkoming van interferentie tussen de stuurmodules via de voedingslijnen is in de plusleiding van elke stuurmodule een diode opgenomen ( D1 t/m D3 in figuur 4), tevens zijn de voedingslijnen van elke stuurmodule apart aangesloten op de voeding.
januari 1991
stappenmotor-sturing
10
X-MOTOR
Y-MOTOR
ref Vp Ip S-
- + s+ - +
- + 195-265 V 50-60 HZ
OUTPUT
* CHASSIS
DELTA S28-10
GND
C 1=C2=C3=22ckF 40V C4=C5=C6=47W 40V D1=D2=D3=BYX98-12OOR
Jig. 6 Het motor- en voedingsgedeelte van de stappenmotor-sturing.
januari i991
11
stappenmotor-sturing
4. Kastindeling en -bekabeling Bij de indeling van de kast is rekening gehouden met het feit dat kabels naar de motoren en voedingskabels niet parallel mogen lopen met digitale stuurlijnen, i.v.m. storingen die hierdoor zouden kunnen optreden. De indeling van de kast staat weergegeven in figuur 7. Hierin is te zien dat de stuurmodules ( 2 t/m 4) zijn gemonteerd op koelvinnen, deze staan vertikad opgesteld zodat de lucht er in verticale richting langs kan stromen. Voor de aan- en afvoer van de luchtstroom is de kast onder en boven met geperforeerde plaat afgesloten.
9
r'
I Ill324 1
1
2
I I
1 = DELTA S28-10 2 = SLO-SYN 230-T 3 = SLO-SYN 230-T 4 = SLO-SYN 230-T 5 = stuurschakeling
X-dir Y-dir Z-dir
6 = bekr. schakelaars en PC-aansluiting 7 = netschakelaar en 22OV-aansluiting 8 = 5 Volt voeding voor stuurschakeling 9 = dioden condensatoren en motor-aansluiting
jig. 7 Indeling van de kast.
In figuur 8 staat de bekabeling van de stuurlijnen aan de printconnector ( 2
van de stuurschakeling weergegeven.
januari 1991
x 32p EURO)
12
stappenmotor-sturing
moedercontact bekrachtigingsschakelaars
C
A
t-
3 X SLO-SYN 230-T 8
bekrachtigingsschakelaar
7
6
t-
X-mCtCX
5 X
4
3
2 I
7 bekrachtigingsschakelaar Y-mtw
6 t-
5 Y
4
3 2 1 bekrachtigingsschakelaar Z-motor
7 14
031 01
O32*+5V printcomector
40
01
1 8 A i N O ì 14p
stuwschakeling
2 x 32p ELRO
Jig.8 Bekabeling van de EURO-connector van de stuurprint.
januari 1991
Bijlage A l
Stappenmotor-sturing
INSTRUCTION MANUAL for
SLO-SYN” MICRO SERIES MOTION CONTROLS TRANSLATOR MODULES TYPES 230-T, 430-T9 230-TH í ~430dTH d
\$
Superior Electric Q
1986. The Superior Electric Company
januari 1991
Bijlage A2
Stappenmotor-sturing
EXPRESS START-UP PROCEDURE for SLO-SYN@MICRO SERIES
IvIuviops ~UNTRULS MODULAR ?WAMSLA?OR DROVES
TYPES 230-T, 230-TH, 430-1,430-TH STEPS NECESSARY TO BECOME OPERATIONAL This Supplementary Instruction outlines the minimum steps necessafy for the Translator Drive to become operational. FAILURE TO PERFORM THESE STEPS MAY RESULT IN DAMAGE TO THE DRIVE. CAUTION: Never connect or disconnect anythlng from the module with power on.
1.
Connectthe plus of a 28 Vdc power supply to Vm and the minus to Vom. The supply must be capable of supplying 2.5amperes for a 230-T or 230-TH and 4.0 amperes for a 430-T or 430-TH. Figure 1 shows a recommendedpower supply for applicationsusing one Translator Drive.Recommendedpower supply configurationsfor applicationswhere multiple drives are to be operatedfrom a single supply are shown in Figure 2.
2.
The power supply output filter capacitor must be 4700 pf minimum. If this capacitor is more than 6 inches (152mm)fromthe drive module,an additional 250 pf, 50 volt capacitor must be installedbetween Vm and Vom at the drive module.
3.
The power supply voltage peak ripple values must not go higher than 32 volts or lower than 26 volts.
4.
Make sure the motor to be used is compatiblewith the drive. Refer to the manual for a list of compatible motors.
5.
Use the motor connection diagramsshown in the manual for 4-, 6- or 8-lead motors.When using a Mead motor,be sure to insulate and isolate the unusedwires. Be sure to insulateall motor leads to prevent inadvertent shortsto ground or to each other.
6.
If it is desired to operate in the reduced-currentmode, install a resistor of the appropriate value between the REDUCE CURRENT pin and the LOGIC COMMON pin. Refer to the speed/torque data and the resistor versus current table lncluded in the drive manual. If you desireto run the REDUCE CURRENT remotely,refer to the circuit example shown in Figure 2.
7.
To connectto the logic controls,refer to Section4 of the manual,FunctionalDescription,for connections.
8.
Caution:the module case is tied to the Vom and LOGIC COMMONpins internally.Do not tie your power supply to ground at another location.
9.
Caution:operation at speeds less than 350 full steps per second may be erratic due to motor resonance.Avoid this speed range if a problemexists.
januari 1991
I
Bijlage A3
Stappenmotor-sturing
I
RECOMMENDED 28Volt dc MOTOR POWER SUPPLY 2 3 0 / 4 3 0 T DRIVES
I
I
RECOMMENDEDPOWER SUPPLY CONFIGURATIONS FOR 2301430T MULTIPLE DRIVES ON ONE SUPPLY
I
VAR0 VU298
I
I
------RECOMMENDED POWER SUPPLY CONFIGURATIONS SINGLE DRIVE APPLICATIONS FIGURE 1
-------* All IilbrcOP~Citsparswe4700pF. 50Vdcimin.l RECOMMENDED POWER SUPPLY CONFIGURATIONS MULTIPLE DRIVES WITH ONE SUPPLY FIGURE 2
LûBIC COM o ,
TTC LûGIC
NOTES:-i A gHIQH*Irvsl TTL 11gnal a, the Inpul acllvatss REDUCE CUWENT.
.-
2.-Ke.p tho FETond currmllrvelrrsislor wllhln four Inches at lhe Modulr. 3.-Rofar lothomnual forcurrrnilevel rsslttorvoluss.
TYPICAL REDUCED CURRENT INTERFACE FIGURE 3
januari 1991
Bijlage A4
Stappenmotor-sturing
SLO-SYN@Micro Series Motion Controls INSTALLATION GUIDELINES FOR REDUCED NOISE DMPEWFEREMCE 1
General Comments
SLO-SYN Micro Series drives use modern solid-state electronics such as microprocessors to provide the features needed for advanced motion control applications. In some cases, these applications produce electromagneticinterference (EMI, or electrical “noise”)that may cause inappropriate operation of the microprocessor logic used in the Micro Series product, or in any other computer-type equipment in the user’s system.
This guide is aimed toward helping users avoid such problems at the start by applying “good engineering practices” when designing their systems. Following these guidelines will usually prevent EM1 noise from interfering with drive operation. II
Noise Sources
What causes electrical noise? In general. any equipment that causes arcs or sparks or that switches voltage or current at high frequencies can cause interference. In addition, ac utility lines are often “polluted with electrical noise from sources outside a user’s control (such as equipment in the factory next door). The following are some of the more common causes of electrical interference: power from the utility ac line
radio controls or transmitters
relays, contactors and solenoids
switch-mode power supplies
light dimmers
computer-based equipment
arc welders
high frequency lighting equipment
motors and motor starters
dc servo and stepper motors and drives
induction heaters
111
Mounting Location
When selecting a mounting location, it is preferable to keep the drive away from obvious noise sources, such as those listed above. If possible, locate the drive in its own metal enclosure to shield it and its wiring from noise sources. If this cannot be done, keep the drive at least three feet from any noise sources.
januari 1991
Bijlage A5
Stappenmotor-sturing
iV
Wiring Practices - “Dos and Don’ts”
Do the following when installing or wiring your drive or indexer: e
Do keep the drive and its wiring as far away from noise sources as possible. Do provide a good, solid ground connection to the ac system earth ground conductor. Bond the drive case to the system enclcsure. Bo use a single-point grounding scheme for ail related components of a system (this looks iike a “Rub and spokes” arrangement).
Do keep the ground connectionshort and direct. Do use a line filter on the ac input (Corcom type 1061, IOSI or I O K I or equivalent) for noisy ac lines. Particuarly bad ac lines may need to be conditionedwith a ferroresonant type isolation transformer to provide “clean” power to the drive or indexer.
Do keep signal and drive wiring well separated. If the wires must cross, they should do so at right angles to minimize coupling. Power wiring includes ac wiring, motor wiring, etc. and signal wiring includes inputs and outputs (i/O), serial communications (6232 lines), etc. Do use separate conduits or ducts for signal and li0 wiring. Keep all power wiring out of these signal line conduits,
Do use shielded, twisted-pair cables for indexer 110 lines Do ground shields only at one end, the indexer/drive end.
Do use twisted-pair, shielded cable for the motor wiring.
* Do use solid-state relays instead of electromechanical contact types wherever possible to minimize noise generation.
Do suppress all relays to prevent noise generation. Typical suppressors are capacitorsor MOVs. See manufaclurers literature for complete inlormation.
Do use shielded, twisted-pair cable for connectionsto RS232 serial port. Do nol do the following when installing your drive or indexer:
Do not install sensitive computer-based equipment (such as an indexer/drive) near a source of electromagnetic noise. Do not bundle power and signal lines together. Do not bundle motor cables and signal lines together.
Do not fail to use shielded, twisted-pair cables for signals. Do not fail to properly connect the system grounds. Do not use “daisy-chained’’ grounds.
Do not fail to ground signal cable shields at only one end.
Do not assume that power from the ac line is adequately “clean”.
januari 1991
,
Bijlage A6
Stappenmotor-sturing
NflNG INDEXER, BE SURE TO OLIO, CLEAN CONNECTION INDEXEf? CASE AND IENCLOSth?E
2- SHIELbE6 CABLE (FOR BEST ROUND SHkLD C M Y BY TWISTED-PAIR
II
RE SURE TO &EP SIGNAL CABLES WELL AWAY FROM MOTOR WIRING AND AC POWER WIRING
u r
#-I-
25-PIN "O" TO TERMINAL STRIP CONVERTER
*
f SUCH AS MAGNUM CONNECTOR Xt15125-NL TYPE 15(FEMALk) COOPER INDUSTRIES, BUSSMAN CORP.
SHIELD GROUND
r
LIMIT . SWITCH
DO NOT GROUND SHIELD AT SWITCH END.
RECOMMENDED WIRING PRACTICE
januari 1991
Bijlage A7
Stappenmotor-sturing
V
Troubleshooting Guide
Electricalinterferenceproblems are common with today’s computer - based controls, and such problems are often difficult to diagnose and cure. If such a problem occurs with your system, it is recommended that the following checks be made to locate the cause of the problem. i.Check the quality of the ac line voltage using an oscilloscopeand a line monitor, such as Superior Electric’s VMS series. If line voltage problems exist, use appropriate line conditioning, such as line !ilters o? iso!zt!on !ramformeis
2. Be certain all of the previous Dos and Don’ts are foiiowed for location, grounding, wiring and relay suppression 3. Double check the grounding connections to be sure they are good electricalconnections and are as short and direct as possible. 4. Try operatingthe drive with all suspected noise sources switched off. If the drive functions properly, switch the noise sources on again, one at a time, and try to isolate which ones are causing the interferenceproblems. When a noise source is located, try rerouting wiring, suppressing relays or other measures to eliminate the problem.
januari 1991
Bijlage A8
._
WARNINGS:
Voltage is present on unprotected plns when unlt is operatlonai. 0 No short circult protection for motor outputs is provided In îhls unil. 0 Belme making changes to the motor or control wirlng, turn off ail power to the unit.
0
6 Do not apply power until all connections have been made correctly. 6 Do not exceed specified input voltages.
LIMITS OF USE: 6 Reconfiguration of the circuit in any fashion not shown in
this manual will void the warranty.
NOTE
CAUTIONS: e Assure motor compatibility before using the unit. Observe all cooling and temperature limitations. Module case temperature must be maintained between O and 75 degrees C. (32 and 167 degrees F). 0 Do not operate the unit without the proper filter capacilator as specified in section 3.5.1.3. 0 All Windings Off should be used with caution, as all holding torque is lost. 0 00 not connect or disconnect motor or signal cables while Dower is amlied.
1:
O. c t ~ ~ k wamd i ~ eeeunierciockwise direcîions are properly oriented when viewing the motor trom the label end. 2. The motor connector consists of 7 pins, and is Symmetrlcal around the center pin. It connections are Inadver-
tently rotated 180 degrees, motor direction (CW, CCW) wlii be reversed. Motor direction can also be reversed by swapping the two motor connections of the same phase (for example, by swapping Ml and M3).
SECTION INTRODUCTION 1.1 FEATURES OVERVIEW
We strongly recommend thaf this manual be read thoroughly and completely before attempting to install and operate the equipment.
The 230 and 430 drive modules are differentiated as follows:
1.3.1 Organization
CURRENT PERPHASE
230-T or TH . . . . . . . . . . . . 2 Amps peak 430-T or TH . . . . . .. . . . , .3.5 Amps peak
VA PERPHASE 56 VA nominal 96 VA nominal
“T” designates the translator module. “TH” designates the translator module equipped with the heat sink. The 230-T(H) and 430-T(H) are high efficiency bipolar chopper translator modules, designed in small, easily mounted packages. They can be used with a wide range of Superior Electric SLO-SYN 2-phase stepping motors, 4 , 6 or 8 lead types. The 230-T(H) and 430-T(H) use resistive current sensing and provide for full and half-step operation. Inputs are optically isolated. with choice of using internal ot external opt0 power supplies. All units feature reduced current and all windings off capabilities. 1.2 INSPECTION PARTS LIST Translalor Module 7-Pin Connector 8-Pin Terminal Strip
230-T(H)or 430-T(H) 8215744-007 B215744-008
1.3 USING THIS MANUAL This manual is an installation and operating guide to the 230-T(H) and 430-T(H) motor drive modules. All the information provided is necessary for using these modules successfully.
januari
1991
This manual is organized for the convenience of the operator. Section 2, “Mounting and Pin Assignments,” provides the diagrams and reminders most necessary for the experienced user and installer. Complete specifications (Section 3) will provide easily referenced information concerning all aspects of installation, power and interface requirements, as well as periormance specifications. The “Functional Description” (Section 4) provides operational information useful in design, diagnostic, and troubleshooting situations. Section 5, “Pin Configuration and Operations” provides detailed information for use of the equipment. 1.3.2 Logic and Voltage Conventions Throughout this manual, the following conventions are foilowed: The designation “Vo“ signifies the logic signal common terminal. “Vom” signifies the motor supply voltage common terminal. BothVo and Vom are internally connected to the module’s aluminum case. All logic functions are low Irueiogic. A logic low or logic O will activate a function and a logic high, or a logic i will deactivate a function. Thus,
iN THIS MANUALTHE TERMS ACTIVE OR ACTIVÀTE WILL IhlPLYA LOGICLOW CONDiTiON&NDTHE TERhS IkACTiVE OR DEACTIVATEWILL IMPLY A LOOIC hIGH CONOMON. In cases where the function changes with a change in logic state, the low trtie (active) will be indicated with a bar. Foor
,
Bijlage A9
Stappenmotor-sturing
example, in the case of CW/*, connection.
CW is active with no
All logic control pins are optically isolated internally. When a pin is left open, it is clampedin a logichigh(inactivated) state by the optical isolator. The motor drive changes state and advances the motor one step (or one-half step in the half-stepmode) on a positive going (low to high) pulse edge. Clockwise (CW) and counterclockwise (GCW) are oriented correctly when viewing the motor from the nameplate (Label) end.
SECTION 2: MOUNTING AND PIN ASSIGNMENTS The figures included here will be referenced in later sections.
2.1 MOUNTING
Also, the motor drive module can be ordered with the heat sink attached by specifying model #230-TH or 430-TH. If no heat sinkor an alternate heat sink is used, silicone heat sink compound (such as Dow-Corning number 340) must be used on the mounting surface. NOTE A very lhln coaling Is sulclen!; too much is worse than none at all. When a heat sink is used, the heat sink fins should be mounted in a veriicai position, unless forced-air cooling is used. Figure 2.1 shows the mounting hole locations and diameters for the Superior Electricsupplied heat sink.
2.2 MOTOR CONNECTIONS All motor connections are made via the 7 pins or a 7 pin connector (Superior Electric part number 6215744-007) on the motor drives. Figure 2.2 shows the location and function of the motor drive pins. Sections 3 (3.5.2.2) and 5 (5.9-5.12) give details of how to make the motor connections.
The 230T and 430-T modules are epoxy encapsulated within an aluminum frame. The back surface of this frame has flanges and mounting holes. See Figure 2.1 below for the mounting hole diameters and locations. It is recommended that 6-32 or 8-32 screws be used for mounting. The major mounting consideration is that the case temperature be maintained below 167degreesF (75 degrees C). For operation a l or near full load, or at a higher temperature than 75 degrees F (25 degrees C) mounting io a heat sink is required. A correctly configured heat sink is supplied by Superior Electric: Part #C215737-001-DB.
,
ELECTRICALCONNECTIONS Figure 2 . 2 Oulpul Pin Asslgnmenls
HEAT SINK
MOOULE
Flgure 2.1: MounlingDiagram
januari 1991
Bijlage A10
Stappenmotor-sturing
DRIVE MOTOR END END UNTERMINATED PLUG' LEADS CABLE ONLY 'VVITHOUTCûNNECTûRS
10 FEET LONG
25 FEET LONG
50 FEET LONG
8216067-001
8216067-002
8216067-003
8216022-001
8216022-002
RZl6022-aO3
PLEASE NOTE The motor drive plns are arranged symetrically about the center Vm pin. If the motor connector is inadvertently rotated 180 degrees when connecting the motor, then the CW and CCW directions will be reversed. The 230 and 430 Series Translator Modules can be used with 6-lead and 8-lead SLO-SYN" motors. Figure 2.3 shows the correct connections for each possible motor confiouration.
I
Power semiconductor type: H-bridge power IC Translator: internal IC Controlsignals optically isolated from the motor drive module (except for Reduce Current) 3.2 PERFORMANCE
Half-step or full-step O to 10.000 full-stepskec. O to 10,000 half-stepskec. 20 kHz nominal All speciiicatlons use typical data.
Resolution Step Rale Chopping Freq. Speedltorque:
MQTOfl FAMILIES
MOTORS FOR USE WITH 23Q-?(M) WITH CONI(ECT0RS
M061-CS08 M061-CE08 M062-CS09 M062-CE09
M063-CS06 M063-CSO9 M063-CE09
,
WITH LEADS
6-LEAO MOTORS. SERIES CONNECTION NûlE: N.C. = No Connecllon
hn061-LSOS M061-LE08 M062-LSO9 MOW-LE09 M063-LSO6 M063-LSO9
b063-LE09 MO91-FCO9 M091-FD09 M091-FD8009 M091-FD8109 M092-FC09
h.nO92-FDO9 MO92-FD3iO M092-FD8009 MO92-FOE109 M092-FD8814
i{=;;;c?g&i; 8-LEAO MOTORS, SERIES CONNECTION
MOTORS FOR USE WIT)) 430-T(H) WITH CûNNEC?ORS
OREEN
M06i-CSOB MO61-CE08 M062-CS09 M062-CE09
WITEIRED
)-LEAD MOTORS. PARALLEL CONNECTION MOTOR CONNECTIONS FIGURE 2.3
WITH LEADS
2.3 CONTROL INTERFACE
All connections are made via 8 pins or lerminalstrip, Superior Electric part number 8215744-008.
SECTION 3: SPECIFICATIONS 3.1 PRODUCT DESCRIPTION
Bipolar, 2-phase stepping motor drive with translator.
januari
M063-CS06 M063-CE06 Mfl63-CS09 M063-CE09
1991
M061-LSO8 M061-LE08 M062-LSO9 M062-LE09 M063-LSO6 M063-LE06 M063-LSO9 M063-LE09 M091-FC06
MO91$DO6 MO91-FORI 06 MO92-FCO9 M092-FD09 M092-FD310 M092-FD8009 M092-FD8109 MO93-FCl4 M093-FDi 4 Table 3.1: Motor Families
MO93-FD801I M093-FD8014 Mi 1 -FDi 2 M i 1I-FD16 M I I-FD8012 Mi 12-FD327 M I 12-FD8012 M112-FJ8012 M112-FJ8030
1
1
Bijlage A l 1
Stappenmotor-sturing
Power Supply Necessary (See Section 3.5.1.1)
Cable Size: 14 gauge max., when using terminal block.
Drive power dissipation (worst case)
SuperiorElectric cables are recommended;see Section2.2 for part numbers.
230-T(H): 430-T(H):
25 watts 40 watts
WARNING: DO NOT OPERATE THIS UNIT WITHOUT EXTERNAL FILTER CAPACITORIIIII
5.3 MOTOR COl!’AT!R!L!TY Frame Sizes No. of Leads Min. inductance: Max. resistance:
23Q-T:W) MO61 to MO92
430-T(W)
MO61 to M112 4,6,8 0.55mH 3.5 ohms including drive-to-motor cable
Caution: DO NOT USE LARGER FRAME SIZE MOTOR THAN THOSE LISTED, OR THE DRIVE MAY BE DAMAGED. 3.4 MECHANICAL SPECIFICATIONS 230-T
Type:
Potted module; Aluminum case
Minimum of 250 mld. 50 VOC needed across Vm -Vom at drive terminals, or within 6 inches (150mm) of them. Total filter capacitance on the motor power supply must be greater than or equal to 4700 microfarads; a 5O-volt (or higher) working voltage. and 3.3 amps ripple current rating are required. If the power supply does not contain sufficient filtering, then additional filtering must be added between the Vm and Vom terminals. For example, Sprague 53D4726063JP6capacitor is a suitable 4700 microfarad, 63 volt capacitor.
430-T
Potted module; Aluminum case
“H” Unit supplied with AI. heat sink (see Figure 2.1) Size (inches): 3.15(80mm)L 2.70(68.6mm)W 1.31”(33.3mm)H
3.5.1.3 Filter Capacitor Requirement:
4.05(103mm)L 2.70(68.6mm)W 1.31”(33.3mm)H
3.5.2 OUTPUT TO MOTOR 3.5.2.1 Voltages and Current
Output Voltage: to motor
(add approx. 0.500” (12.7mm) to height for pins)
2 3 0 4 H) 430-T(H) 24-36 Volts nominal, depending on power supply voltage. 36 Volts max. 36 Volts max.
Motor Current per phase:
2 Amperes peak Ampere peak in reduced current mode
3.5 Amperes peak 1.5 Amperes peak in reduced current mode
3.5.1 Input Power Supply
Motor VA per phase:
56 VA nominal (at 28 VDC, ZA)
98 VA nominal (at 28 VDC, 3.5A)
3.5.1.1
3.5.2.2 Connections
Weight (Ibs.) l(0.45 kg) 1.5 (0.7 kg) add 0.5 Ib (0.23kg) for “H” unit 3.5 ELECTRICAL SPECIFICATIONS
Power and Voltages 230-T(H)
430-T(H)
Supply Voltage: 28 VDC, nominal; 24 min to 36 max including ripple
28 VDC, nominal; 24 min to 36 max including ripple
2.5 Amperes
4.0 Amperes
Supply Current:
NOTE: Operation from a 28-30 VDC supply gives the best
overall performance, considering tradeoffs of motor and drive heating, power supply current and torque vs. speed.
Terminals:
1
At drive: Phase A and Phase 6 pairs
MaxlMin cable length: Total maximum resistance of motor and cable: 3.5 ohms Cable size, type:
14 gauge maximum when using terminal block pari #B215744-007.
Special Requirements: Twist motor phase pairs: 6 twists/ft. to minimize radiated EMI/RFIand help provide maximum motor performance. 3.6 CONTROL INTERFACE REQUIREMENTS
3.5.1.2 Connections
Method: Pins or terminal block (Part #6215744-007). Assignment: Vm = + Vom = Common Vom and Vo are internally connected to the module’s aluminum case.
januari 1991
All connectionsvia8 pins or terminalblock part #B215744008. 15 microseconds Min pulse width low: 50 microseconds Min pulse width high: less than 2 microseconds Rise and fall time:
,
Bijlage A12
Stappenmotor-sturing
Logic “sinking” i5 required to actbate ~pii~aliy-i~~iaied signals (see sections 5.7 and 5.8)
which direction the motor will move and the HALFIWL (H/F) pin determines whether a hall or full step is taken. Even when the motor is stationary. current is flowing through one or two of the windings. The magnetic field produced by this current holds the shalt firmly with a force s p 3 lied as the “hold&torque.” The input control signal, ALL WINDINGS OFF (AWO!. turns off all current to?he motor, !bus allowing the shaft to be turned manually.
3.8 ENVIRONMENTAL REQUIREMENTS
SECTION 5: PIN COkFIGURhTTION AkD DPERA-
3.7 Opto-Isolation Power required for opto-isolators:4.5-7 VOC. 14 mA minimum. 20 mA maximum per input. To use internal opto-isolator power supply: connect OPTO OUT and OPTO IN pins together,
Operating Temp:
+ 185°F ( - 40°C to + 85°C) + 32°F to + 167°F (0°C to + 75°C) case
Humidity:
95% max., noncondensing
Altitude:
10,000feet (3048 meters) max.
Storage Temp:
- 40°F to
5.1
Heat sinking:
Maintain case temperature below 167 degrees F (75 degrees C) No heat sink needed for Reduced Current operation ai 77 degrees F (25 degrees C) ambient temperatures (1 A for 230-T; 1.5 A for 430-T).
Use heat sink part #C21573?-001-08for operation at higher currents or higher ambient temperatures
SECTION 4: FUNCTIONAL DESCRIPTION
(Ret. Figure 2.2, Seclion 2.2)
(m)
A low to high (positive going edge) transition on this pin causes the motor to take one step. Maximum frequency is 15kHZ.
5.2 C W I r W (DIRECTION) A logical high or an open connection causes the motor shaft to step in the clockwise direction as viewed from the label end of the motor. A logical low, or connection to LOGIC COMMON results in counterclockwise rotation.
5.3 HIP (HALF/FUn)
4.1 OVERVIEW In general, the 230-T(H) and 430-T(H) electronically converi input pulses into drive signals of the proper sequence and power required to operate a stepping motor: one input pulse being “translated” into one motor step. To drive the motor, d technique called “chopping” is used. Compared to older drive techniques, chopping gives Improved motor periormance while allowing the drive circuitry to dissipate less power. The voltage applied to the motor windings is turned on and off very rapidly. or chopped. The voltage level and chopping frequency are precisely controlled so that the desired current is produced. The instantaneous current in the drive circuit is sensed and is used to control the current to the motor. The translator circuitry accepts a single pulse at a time as an input and determines which windings (phases) of the motor must be turned on and off in order to advance the motor shaft one step. The translator circuit is fully self-contained and is not accessible through any of the function pins.
4.2. SIGNAL DESCRIPTION The 230-T(H)and 430-T(H) are configured for operation by the means of the pin assignments. How these tunctions are treated by the motor drive module is explained in Section 6. Input pulses, one for each desired motoriep. are received by the translator circuit on the PULSE lh (PU) pin. Two input control signals alter the sequenceof motor windings which will be energized. The CW/CCW pin controls
januari
TIOkS
NOTE The lollowing discussion assumes the Internal opto power supply is being used when describing signal tunctlons.
1991
A logical low or connection to LOGIC COMMON. causes the motor to step the full step angle indicated in its specifications. A logical high (open) causes the motor to take a “hall step” equal to half of its specified step angle. When operated in halfstep mode the motor provides smoother motion with finer resolutlon but a approximately 30%less torque. NOTE II the H# input is switched low wlth the Vm po#er on, It Is posslble to get a lull step, one wfndlng on (“wave mode”) candltion that results In reduced motor torque. To avold this, power lo the unll must be turned ofl (remove Vm) urhenever lhis Input Is switched low.
5.4 m )-( A logical low or connection to LOGIC COMMON turns off all power to the motor windings. WARNING Holding torque Is eliminated when this signal is active. Insure that the motor load, *hen released by this command, wilt not Injure property or personnel.
5.5 REDUCED CURRENT There are two ways to use this pin: Connect i! directly to LOGIC COMMON (Pin#3). This reduces motor current to 1.OA for the 230 T(H) and to 1.5A for the 430 T(H). 2. Connect if through a resistor (see Table below) to LOGIC COLtdON (Pin #3) for other values of reduced current.
1.
Bijlage A13
Sîappenmotor-sturing
NOTE:Connectionsto this pin must be kept short (2 inches or less) to avoid malfunction. Also, this signal is not optically isolated.
5.6 LOGIC COMMON
For the 230-T(H), typical values for resistorsand the associated current are: CURRENT (Amps) RESISTOR (ohms) 1 .o0 O (jumper) 1.25 2.49 k ohm, li4 watt, 1% 1.50 7.50 k ohm, li4 watt, 1 % 1.75 23.7 kohm, $14 watt, 1 % 2.00 open
5.7 OPTO SUPPLY OUT
For the 430-T(H). typical resistor values and the associated currents are: CURRENT (Amps) RESISTORS (ohms) 15 O (jumper) 20 1.78 k ohm, 1/4 watt, 1% 2.5 5.62 k ohm, li4 watt, 1% 3.0 16.2 kohm, li4 watt, 1% 35 open
3"""
vou
Supplies proper voltage for opt0 inpuls from an internal source. By connecting OPTO SUPPLY OUT to OPTO SUPPLY IN, the user can use 230-T(H), 430-T(H) internal power supply. This aiiows logic functions to be activated by "sinking" (pulling them low; i.e.. connectingIhem to LOGIC COMMON via an external switch or logic gate.) In this case, the user's circuilry is not isolated from the translator.
5.8 OPTO SUPPLY IN Connectionfor opto-isolatorpower supply. May be connectedas described in 5.7, or user may provide a separate source for opto-isolatorsand "sink" to activate, as shown in Figure 5.1. This method may prowide the best noise immunity since the user's circuitry is optically isolated from the translator.
rn
CONTROL SIGNAL
.OU1
rn
\IN
O
CO(JTR0L LOGIC COMMON l L V D C , 80mA
MWO VU
Reference point for inputs and outputs; connected internally to Vom and to the module's aluminum case.
I)EOUOI
CUñRENl LOCICCOt1 o~ioaupp~v
VOH
3"""
VU
3"ZR YOU
CONTROL SIGNAL
HI?
Ern cWm
LOCICCOM
/out
oP1o~uPPLv \IN
CONTROL LOGIC COMMON 4.0 TO TVDC, BOmA
b
e
TWO SUGGESTED METHODS USING EXTERNAL POWER SUPPLY
3""" VU
3""" UOY
rmmi cunmm
LOOICCO94 OPlOx&%V tN
3JUMPER
CONTROL SIGNAL CONTROL LûGIC COMMON
C - S V 20mA SINK% rn
3"ZOR VU
3""" YO"
HI? A i l I)EOUOI
CONTROL SIGNAL
b
CURRUn LOGIC COtl.
CONTROL LOGIC COMMON
/OU1
OP10 SUPPLY
NI'
TWO SUGGESTED METHODS USING INTERNAL POWER SUPPLY FIGURE 5.1 OPTO CONNECTIONS
januari 1991
,
Bijlage A14
Sîappenmotor-sturing
5.11 MOTOR Phase A (OA)
5.9 Vm Motor power supply input.
Connect the pair of wires for one motor phase here. For example, M I , M3 on Superior Electric Motors.
5.10 Vom Common for motor supply: connectedinternally to Vo and to the module's aluminum case.
5.12 MOTOR Phase B ($6)
Connect the pair of wires for the other motor phase here. For example, M4, M5 on Superior Electric Motors.
TYPICAL SPEED VS. TO1 !UECHARACTERISTICS 230 SERIES MO 3N CONTROLS
CPEED (1.8. STEPS PER S E W 1
=Ern (I.E. STEPS PER SECONDI
SERIES CONNECTION M061-CS08 AN0 M061-LSO8MOTORS m
PARALLEL CONkECTlON M061-CE08 ANû YOGI-LEOS )iiOTORS
TYPICAL PERFORMANCE CHARACTERISTICS
SPEED (1.8'STEPS
*
PER SECONDI
TYPICAL PERFORMA)JCE CHARACTERISTICS
SPEED (1.8. J T m Pm SECOWDI
PARALLEL CONE~ECTION
SERIES CONNECTION M062-CS09 AND MO62-LSO9 MOTORS
hlO62-CE09 AkO M062-LE09 hnOTORS
TYPICAL PERFORMANCE CHARACTERISTICS
TYPICAL PERFORMANCE CMARACTERIST~S 30 2.
m
n d
spEm (i.e. STEPSPER SECONDI
SPEED (1.8. SI33 Pm SEmDI
SERIES CONNECTION M063-CS09 AND M063-LSO9 MOTORS
januari
PhRALLEL CONNECTION M063-CE09 AND MO63-LE09 MOTORS
1991
Bijlage A15
Stappenmotor-sturing
3-
6-01
Fl
f u o
1 [
1
tm11
N 0 8 3
w6 51 1221
-
1
-
I251
f
14%
N
o 4 0
:
I ;
(
SPEED (ie- STEPS PER SECOSDI
SERIES CONNECTION M091-FC09AN0 M091-FO09 MOTORS
-
I%
f s o 8.
1633)
j
g 6 0
SPEED (1.8. STEPS PER S E W )
PARALLEL CONNECTION M092-FD8109AN0 M092-FO8009 MOTORS
SERIES CONNECTION M092-FC09AN0 M092-FD09MOTORS
$-
''
j
SPEED I I W STEPS PER SECOW)
SERIES CONNECTION M092-FD310 MOTOR
januari 1991
i& 14%
Bijlage A16
Stappenmotor-sturing
TYPICAL SPEED VS TORQUE CHARACTERISTICS 430 SERIES MOTION CONTROLS -
E-I
1 4 7 4
+
13458,
i g
m 121 21
1P61
g
^m- tsS,r
tF71
I
fN
16751
O
M
4
142 41
g
f
i1; ' d
12%
,&I
m
SPEED (1.8. STEPS PER SECONO)
SERIES CONNECTION M062-CS09 AND M062-LSO9 MOTORS TYPICAL PERFORMANCE CHARACTERISTICS
SPEED 0.8' STEPS PER
trcocO8
PARALLELCONNECTION MO63-CEO6 AN0 M063-LE06 MOTORS
SERIES CONNECTION M063-CS06 AND M063-LSO6 MOTORS
-p f
IE01
1%
d 1%mI 1
i
122,
E-d
8 spEEI>
(1.0. srrp9 PER trWN0)
PARALLEL CONNECTION h063-CE09 Ako hl063-LE09hlOTORS
januari 1991
Bijlage A17
Stappenmotor-sturing
TYPICAL PERFORMANCE CHARACTERISTICS
TYPICAL PERFORMANCE CHARACTERISTICS
l v250 6 51 041 20021
I K150 n 81
m
imsi 1%M3) O
SPEED (1.8- STEPS PER SECOND)
SPEED (1.8- STEPS PER SECOND)
PARALLEL CONNECTION M091-FO8106 MOTOR
SERIES CONNECTION M091-FC06AND M091-FD06 MOTORS
___
TYPICAL P E R F O R M N C E CHARACTERISTICS
SPEED (l.ûs STEPS PER SECOND)
WEED (1.8- STEPS PER SECOND)
PARALLEL CONNECTION M092-FOE109 AND M092-FOE009 MOTORS
SERIES CONNECTION M092-FC09 AND MO92-FD09MOTORS
TYPICAL PERFORMANCE CHARACTERISTICS
TYPICAL PERFORMANCE CHARACTERISTICS I282 au4)
50
320
40
Mo
30
160 I113 O1
m
12288t I16941
M
I 580 6 SI
I
l
l
f SPEED (1.8. STEPS PER SECOND)
SPEED (1.8. STEPS PER SECOND)
SERIES CONNECTION M093-FOE011 MOTOR
SERIES CONNECTIOM M092-FO310 MOTOR
---
TYPICAL P E R F O R W E CHARACTERISTICS
SPEED (1.8' STEPS PER SECOND)
SPEED (1.8. srrp9 PER S E m 1
PARALLEL CONNECTION M093-FD8014 MOTOR
SERIES CONNECTION M093-FC14 AND M093-FD14 MOTORS
januari 1991
Bijlage A18
stappenmotor-sturing
SPEED 11.8' STEPS PER sECo(0)
SIZO I1.W STEPS PER SWND)
SERIES CONNECTION Ml11-F012 MOTOR
PARALLEL CONNECTION Mlll-FD8012 MOTOR
SPEED 11.8- STEPS PER SECWO)
SPEED 11.8. STEPS PER SEWN01
SERIES CONNECTION M111-FD16 MOTOR
PARALLEL CONhECTiON M0112-FD8012AND M112-FJ8012 MOTORS
SERIES CONNECTION Mll2-FJ327 MOTOR
(4% I
i
i31781 450
+i o
6 a
e
0
w
fL
-
f2ll8) fW59) ISD
-
. . .
SPEED 11.8. STEPS PER S E W )
PARALLEL CONNECTION M112-FJ8030 kOTOR
januari 1991
Bijlage A19
Stappenmotor-sturing
6.1 MOTOR PERFORMANCE All stepping motors exhibit instability at their natural frequency and harmonics of that frequency. Typically, this instability will occur at speeds between 50 and 500 full steps per second and, depending on the dynamic motor load parameters, can cause excessive velocity modulation or improper positioning. There are also other instabilitieswhich may cause a loss of torque at stepping rates outside the range of natural resonance frequencies. One such instability is broadly identified as mid-range instability. This is identified by the dotted area (...) on the speed torque curves. Usually, the dampening of the system and acceleration/ deceleration through the resonance areas aids in reducing
instability to a level that provides smooth shaft velocity and accurate positioning. If instability does cause unacceptable performance under actual operating conditions, the following techniques can be used to reduce velocity modulation. 1. Avoid constant speed operation at the motor’s unstable frequencies. Select a base speed that is above the motor’s resonani irequencies and adjust acceleration and deceleration !o move the motor through unstable regions quickly. 2. The motor winding current can be reduced as discussed in section 5.5. Lowering the current will reduce torque proportionally. The reduced energy delivered to the motor can decrease velocity modulation. ~~
SECTION 7: TROUBLESHOOTING
7.1 IF MOTOR DIRECTION (CW, CCW) IS REVERSED,
WAWWiW8: Motors connected lo this drive can develop high lorque and large amounts of mechanical energy. Keep clear of the motor shaft, and all parts mechanically linked to the motor shalt. Turn OHthe power to the drive before performingwork on parts mechanically coupled to the motor.
Ifinstallationand operation instructionshave been followed carefully, this unit should perform correctly. If the motor fails to step properly, the following checklist will be helpful.
In General: Check all installationwiring carefully for wiring errors or poor connections. Check to see that the proper dc voltage level is being supplied to the unit. Be sure the motor is compatible for use with this unit.
-
~
Check:
Connection to the 52, Motor Connector may be rotated 180 degrees.
7.2 IF THE MOTOR MOTiON IS ERRATIC, Check: Low filter capacitor. Input pulses not of proper level or width. Supply voltage out of tolerance.
7.3 IF TORQUEIS LOW, Check:
AT0 (All Windings Off) active or REDUCED CURRENT active. Improper supply voltage.
If a malfunctionoccurs that cannot be corrected by making these corrections, contact Superior Electric Company.
januari 1991
Bijlage A20
Stappenmotor-sturing
DISTRIBUTION COAST-TO-COAST AND INTERNATIONAL Superior Electric products are available nationwide through an extensive authorized distributor network. These distributors offer literature, technical assistance and a wide range of models off the shelf for fastest possible delivery.
In addition, Superior Electric sales engineers and rnanufacturers' representatives are conveniently located to provide prompt attention to customers' needs. Call the nearest office listed lor ordering and application information or for the address of the closest authorizeddistributor.
BRISTOL
IN EUROPE
iN CAiu&D&
383 Middle Street Bristol, CT 06010 Tel: (203) 582-9561 TWX: 710-454-0682 FAX: 203-589-2136
Superior Electric Nederland B.V. Koperwerf 33 2544 EM The Hague, Netherlands Tel: 31 70 3679590 TELEX: 31436 Supe nl FAX: O11 31 70 296274
The American Superior Electric Company, Ltd. 38 Torlake Crescent Toronto, Ontario M8Z 183 Tel: (416) 255-2318 TELEX: 06-967806 FAX: 416-231-6022
WARRANTY AND LIMITATIONOF LIABILITY The Superior Electric Company (the "Company"),Bristol,Connecticut.warrants lo Ihe tirst end user purchaser (the "purchaser")or equipment manutacturedby the Company that such equipment. it new, unusedand in original unopened cartons at the time of purchase,wilt be tree hom detects in material and workmanship under normal use and service for a period 01 one year trom date 01 shipment from the Company's factory or a warehouseofthe Companyin the event that the equipmentispurchasedfromthe Companyor for a periodot oneyear fromthe date 01 shipment from the business establishmentof an authorized distributor ot the Company in the event that the equipment is purchasedfrom an authorized distributor
THE COMPANY'S OBLIGATION UNDER THIS WARRANTY SHALL BE STRICTLY AND EXCLUSIVELY LIMITED TO REPAIRING OR REPLACING, AT THE FACTORYOF A SERVICECENTER OF THE COMPANY, ANY SUCH EQUIPMENTOF PARTS THEREOFWHICH AN AUTHORIZED REPRESENTATIVEOF THE COMPANY FINDS TO BE DEFECTIVEIN MATERIAL OR WORKMANSHIP UNDER NORMAL USE AND SERVICE WITHIN SUCH PERIOD OF ONE YEAR. THE COMPANY RESERVESTHE RIGHT TO SATISFY SUCH OBLIGATION IN FULL BY REFUNDINGTHE FULL PURCHASE PRICE OF ANY SUCH DEFECTIVE EQUIPiWENT. This warranty does nol apply to any equipment which hasbeentampered with or alteredin any way,which has beenimproperly installedor which hasbeen subject to misuse,neglect or accident
THE FOREGOING WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESSOR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIEDWARRANTY OF MERCHANTABILITYOR FITNESSFOR A PARTICULARPURPOSE, and of any other obligationsor liabilities on the part ot the Company: and no person is authorized to assume lor the Company any other liability with respect lo equipment rnanutactured by the Company The Company shall have no liability with respect to equipment nol 01 its manufacture. THE COMPANY SHALL HAVE NO
LIABILITY WHATSOEVER IN ANY EVENT FOR PAYMENT OF ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR INJURY TO ANY PERSON OR PROPERTY. Writtenauthorizationlo return any equipment of parts thereot must be obtained trom the Company. The Company shall not be responsible lor any transportation charges
IF FOR ANY REASONANY OF THE FOREGOINGPROVISIONS SHALL BE INEFFECTIVE, THE COMPANY'S LIABILITY FOR DAMAGES ARISING OUT OF ITS MANUFACTURE OR SALE OF EQUIPMENT, OR USE THEREOF, WHETHER SUCH LIABILITY IS BASED ON WARRANTY, CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR OTHERWISE, SHALL NOT IN ANY EVENTEXCEEDTHE FULL PURCHASE PRICE OF SUCH EQUIPMENT. Any action against the Company based upon any liability or obligationarising hereunder or under any law applicable io the sale of equipment. or the use thereof. must be commenced within on war after the cause 01 such action arises These products are sold subject to the standard Limitation 01 Liability and/or Warranty of The Superior Electric Company,The American Superior ElectricCompany,Ltd , or Superior Electric Nederalnd 8 V. The right to make engineering relinements on all prodiJcis is reserved Dimensions and other details are subject to change
Superior Electric
Bristol, Connecticut 06010-7488A -"", TEL: (203) 582-9561 TELEX: 96-2446 WX: 710-654-0682 Cable Address: SUPELEC FAX: (203) 589-2136
Printed
SE-I2902
januari 1991
In V.S.A.
,
Bijlage B 1
Stappenmotor-sturing
STANDARD RATINGS all values given are for referencepurposes, consult factory if Bey are to be made part of an engineering specification FC models i /-3% step angle tolerance FD models i /-5% temperature rise wax 65°C shell temperature max 95°C insulation class B dielectric breakover strength 500Vrms temperature operating - 20”C/ i 40°C storage - 6 5 T / i 125°C humidity operating rnax 90% (non condensing) storage rnax 95% altitude operating max 3000m storage rnax. 4500m holding torque min 70.6Ncm residual torque min. 1 41 Ncrn rotor inertia max O 23 kgcm2 0 radial load max. 6 8 kg axial load max 11.3 kg approvals -(for types with suffix U)
A SLO SYN Stepping Motor is a permanent magnet motor that converts electronic signals into mechanical motion Each time the direction of the current in the motor windings is changed, the motor output shaft rotates a cpecific angular distance. The motor shaft can be driven in either direction and can be operated at very high stepping rates
~
A SLO SYN motor offers many advantages as an actuator in a digitally rontrolled positioning system It is easily interfaced with a microcomputer or micro procescor to provide opening, closirig, rotating. revwsirig, cycling and highly accurate positioriing in a wide variety of applications Mechanical components such as gears. clutches. brakes and belts are riot needed, since stepping is accomplished electronically A SLO SYN motor applies holding, or detent torque at staridstill to help prevent unwanted motion The motors rugged construction results in long life and eliminates the need for any maintenance
OPTIONAL VERSIONS suffix C = integrally mounted encoder C2=2 channels, 200 pulses per rev 90” shifted
E =double ended shaft H =high temperature ambient temperature max
SLO SYN Stepping Motors are available in a range of frame sizes and with standard step angles of O 72”, I 8“ and 5” with step accuracies o f t 3%or 5% noncumulative They can be driven at rates to 20,000 steps per second with a minimum of power input Standard drives are available for rates to 20,000 half steps or 10.000 full steps per second PARAMCI ER current
inductance coiiriections
- --
TC
1__ rD
OEM models
number of leads/terrninals mounted connectors mounting requirements winding charactei istics shaft requiremenis
.
__
FOEI03 ID8104
rated
A
16
+IO%
Vdc fl
53 33
+20%
mH
90
n
_
iypical
130°C
M =militarized R = radiation resistant consult factory U = U/L recognized version V = vacuum
_
FD81û9
--194 _2
165
22
035
64 8~
0.87
_
47
FC/FD03 FC/FD04’FC/FD09 16 19 4 7 ___ 42 I 65 3.3 22 035
2 9.0
64 6
.
__
_____ -~
087
~
_
_
- ____ _ _ _ . _
o91
SLO-SYN9STEPPING MOTORS CAN BE DRIVEN BY MODCILYNXrMMOTION CONTROLS 830 I 0402
januari
1991
Bijlage B2
Stappenmotor-sturing
DIMENSIONS
CONNECTIONS
8leads
O.
-
IRDERING INFORMATION
~
IO62 . F x xxxx x
!I I '1
suffix optional version
2 digit numbers indicate approx total winding current
3 digit numbers indicate special versions 4 digit numbers used to identify 8000 series C t/-3W step
accuracy, post machining
D t/-5%step
accuracy, stan dard machining
I 8 degree step
DEFINITIONS
STEP SEQUENCE
D
current
= rated D C current at zero stepsfsec
voltage
= measured at 25°C across winding through which rated D C current is passinq
resistance
and is basic parameter
= measured across winding at 25°C coil temperature with no D C source and
no rotor motion measured across winding at O Vrrris (open circuit value).at I klfz. using a GRI 6058 impedance bridge Rotor position preconditionedby eriergizirig opposite phase,then de energizing during measurementwithout changing rotor position holding torque = measured with 2 windings energized at rated current step accuracy = this is the maxiniurn positive or negative deviation Irorn Ihe rated incremental anqular motion per step Measured at no load with rated current balanced app1ic.d to both phases and within motor operated in two windings on mode measured in one direction oí rotation only
unipolar
1
inductance
Four SIep InwI Sequanca (Full-sicp mods1
bipolar
1%.
Because continuous efforts are made to improve our products, actual products supplied may differ from this description.
e
Superior Electric Nederland BV Koperwerf 33,2544 uil The Hague. T h e Netherlands S.E. Sàrl Rungic S.E.E.S. BV Harlow S.E.GmbH Frankíurt
januari 1991
Tel. (070)679590 Tel. (O1 ) 6868000 Tel. (0279) 20971/2 Tel. (069)5072067/8
Tlx. 3 1436 Tlx. 204058 Tlx. 81 581 Tlx. 4 13423
Bijlage C1
Stappenmotor-sturing
P O. B O X 2 7
DELTA ELEKTRONIKA BV
4 3 0 0 A A ZIERIKZEE
NETHERLANDS T E L (01110) 13656 T L X 55349 F A X 31 1110 16919
s - SERIES S6-40 S15-18 S28-10
EURO -CASSETTE SWITCHED MODE POWER SUPPLIES
O-6V O-15V O-28V
O-40A 0-18A 0-10A
IEEE 488 programming with external interface PSC 44 M
*
Voltage and current adjustable by screwdriver at the front panel.
O
Analog programmable.
e
Both CV and CC programmable with O- 5 V.
e
Current monitoring output O - 5 V (for external current meter and to drive slave power supplies).
e
1 O0 kHz power conversiontechnique.
O
Low inrush current (soft start).
O
Designed for long life at full power. Fully burned in during 48 hours at 50 "C ambient.
e
Protected against all overload and short circuit conditions.
Master / Slave paralleloperationwith equal current sharing.
e
Thermal protection: Output shuts down in case of insufficient cooling.
Can be used as a building block to form a high power unit (master / slave).
e
Efficiency up to 90%
O
Naturalconvection cooling, no blower, no noise.
O
Remote sensing max. 2V / lead.
e
e
*
e
e
Parallel and series operation up to 500 V.
O
Built-inOver Voltage Protection.
O
O
januari 1991
Can also be used as a DC - DC converter. Fault-Tolerant Operation with redundant units is possible with the special adapter (RAIO). Connectors Hi5 DIN 41612, case DIN 41494
Bijlage C2
Stappenmotor-sturing
-
U A )
jig.1-I eficiency S 28-1O vs output current
o-oa*at
sv
error
jig.-2 linearity error of prograniniing
28
32
fig. 1 - 3
inremal circuit of prograniniing inputs
50
S 2 8 - 1O Vm(V)
T
30.
e,4a ~n vo-iw b-)
/
fig. 1 - 5 operating reniperature range
januari
1991
Bijlage C3
Stappenmotor-sturing
\ Vin=240VAC
56- 40 %O
Vini220VAC loul=40A
4'5 5'0 5'5 6'0 VOUI (V)
---+
loot I hold
f
(4 Vin=220VAC 40
Vin=24flVAC loul=löA
4
4 5
.i
5.5 vo
11?
8
fig. I - 7 m m output power at reduced input voltage ( m m output current vs output voltage with AC or Dc line input voltage as a parameter}
januari
1991
Bijlage C4
Stappenmotor-sturing
4
6
8
6
6
6
10
10
IO
14
14
14
18
18
18
22
22
22
22
26
26
26
26
30
30
30
Exfernal voltage and current ad/.
Voltage and current programming by O - 5V
IO
12
+
14
16 18
20 24 28
-
D
32
Connectons at H15 connector
+
Internal voltage and current adj.
Remote sensing
fig.1-8 connectionsfor various modes
li
MASTER +
1
1
LO
c
202.9mm ( I O T E )
&.I-10
FP40fiontpanelfor Eurocard rack nrounring
I
jig. 1 - 9
166
106
.
jïg.I-PI
Master - Slave parallel operation
diniensions
I5 with screw terminals clamp
jig. I - 12 Eurorock ntounring with front panel: FP40
&. I - 13 Wall ntounting with froni panel FPW
januari 1991
fig. I - 1 4 Fdr-tolcrflnr adopter RA lofor 528 - 10
Bijlage C5
Stappenmotor-sturing
CIR CU I T
O E S C R I f’T I O N
S i m p l i f i e d f u n c t i o n a l d i a g r a m of t h e S-series The 2 2 0 V A C l i n e v o l t a g e is r e c t i f i e d b y a b r i d g e r e c t i f i e r a n d s m o o t h e d by a n e l e c t r o l y t i c c a p a c i t o r . T h e 50 Hz c h o k e in t h e input c i r c u i t i m p r o v e s t h e w a v e s h a p e of t h e i n p u t c u r r e n t so t h a t t h e l o w f r e q u e n c y d i s t o r t i o n o n t h e line v o l t a g e , produced by t h e r e c t i f y i n g i n t o a l a r g e c a p a c i t o r , is k e p t t o a minimum. The h i g h f r e q u e n c y i n t e r f e r e n c e p r o d u c e d b y t h e s w i t c h i n g t r a n s i s t o r s is p r e v e n t e d from b e i n g f e d b a c k to t h e line a n d t h e l o a d b y c a r e f u l l y d e s i g n e d R F I filters. When t h e unit is s w i t c h e d on t h e e l e c t r o l y t i c c a p a c i t o r is c h a r g e d v i a t h e resistor of t h e S O F T S T A R T c i r c u i t , so t h a t no high inrush c u r r e n t w i l l flow. As soon as t h e v o l t a g e is s u f f i c i e n t l y high t h e power s u p p l y s t a r t s w o r k i n g a n d t h e s e r i e s r e s i s t o r is bypassed by a t r i a c . A d v a n t a g e s of t h e 100kHz s w i t c h i n g f r e q u e n c y a r e : s m a l l size, l i g h t w e i g h t , low r i p p l e and f a s t regulation. The r e c t i f i e d 2 2 0 V ( 3 0 0 V D C ) i s c h o p p e d a n d t r a n s f o r m e d to a l o w e r voltage. The power c o n v e r t e r is of t h e f e e d f o r w a r d t y p e which o f f e r s t h e best e f f i c i e n c y . T h e r e g u l a t i o n is a c h i e v e d by pulse w i d t h m o d u l a t i o n . C a r e f u l design, o v e r d i m e n s i o n i n g of v i t a l c o m p o n e n t s , s e v e r a l built-in p r o t e c t i o n s a n d cool o p e r a t i o n (possible b e c a u s e of t h e high e f f i c i e n c y ) m a k e t h e S-series v e r y r e l i a b l e . T h e y c a n c o n t i n u o u s l y b e used at m a x i m u m r a t i n g , o v e r l o a d e d a n d s h o r t c i r c u i t e d .
LOAD
RIPPLE AND
PEAK
CURRENTS
R i p p l e c u r r e n t s c a u s e d b y t h e l o a d at f r e q u e n c i e s b e l o w 1 kHz a r e c o m p e n s a t e d b y t h e v o l t a g e r e g u l a t i o n . However high l o a d r i p p l e c u r r e n t s which e x c e e d t h e c u r r e n t limit o r which h a v e s t r o n g c o m p o n e n t s a b o v e I kHz c a n o v e r h e a t t h e o u t p u t e l e c t r o l y t i c c a p a c i t o r s . Also r e p e t i t i v e high p e a k currents, as g e n e r a t e d b y t h e input current of some 50 Hz D C - A C inverters, c a n h a v e t h i s effect. In s u c h cases a n e x t e r n a l e l e c t r o l y t i c c a p a c i t o r as b u f f e r p a r a l l e l to t h e l o a d will s o l v e t h e problem. S u g g e s t e d values: 20.000 u F S 6-40, 10.000 u F S 15-1 8, 4.700 uF S 28-10. INSTALLATION POWER REQUIREMENT AC-input T h e S-series o p e r a t e s o n a n y input v o l t a g e b e t w e e n 1 9 5 a n d 2 6 5 V A C 50 and 60Hz so it c a n b e used a t 2 2 0 V as w e l l as on 2 4 0 V A C line v o l t a g e w i t h o u t a n y c h a n g e . B e l o w maxirnum o u t p u t v o l t a g e t h e minimum input v o l t a g e c a n e v e n b e l o w e r than 1 9 5 V . F o r e x a m p l e a t 2 4 V I O A t h e input of t h e 5 2 8 - 1 0 m a y go as l o w as 1 7 5 V A C . T h e input fuse is 4 A s l o w blow. F o r o p e r a t i o n on l i n e v o l t a g e s b e t w e e n 100 a n d 1 3 2 V A C 50 a n d 60Hz a n e x t e r n a l link h a s to b e m a d e a t t h e input c o n n e c t o r a n d t h e input f u s e h a s t o b e c h a n g e d to 6.3A s l o w blow.
januari
1991
Bijlage C6
Stappenmotor-sturing
i? C- inpu t Thc S-series can also be used a % a DC-DC convcrtcr witli an input voltage between 2 4 5 and 36flV. llowcvcr at iowcr outpiit vottagc thc mi!iimum D C input can be lower. Tor exarnplc Z 1 5 V l X for 528-10 at 2 4 V IOA.
MECHANICAL Rack mounting The unit i s designed as a Eurocassette according to DIN41494 to f i t into a 19" Eurocard rack. The width of the unit is 38 TE. A 40TE front panel can be ordered separately. Wall mounting Although the unit i s designed as a plug-in Eurocassette i t can also be used for wall mounting. A special front panel for wall mounting FPW is available. The connectors can be fixed with a plate type DWG 888
CONNECTORS With each unit two H 15 female connectors with faston tabs 6.3 x 0.8 mm are supplied.
H 15 with faston tabs 6 . 3 x 0.8mm
with cage clamps
w i t h screw terminals
with solder pins
Also available are H I5 female connectors w i t h screw connections, with cage clamps and with solder pins. These can be ordered separately. At the output connector 4 pins are available for + output and 4 for - output. I t is important to use all 4 pins and put them in parallel to keep the voltage loss in the connector to a minimum, espccially in the S6-40.
COOLING The unit has natural convection cooling (no blowcr). This rnearis that above and below enough space must be available to perrni t a vertical airflow through the unit. Although the efficiency i s high the dissipated heat at full load is still 38W for S28-IO to 60W for S6-40 and this has to flow away.
januari 1991
Bijlage C7
Stappenmotor-sturing
O PER A T 1 ON 13efore operation the following connections have to be made: The four t connections (pins 4, 6, 8, I O ) and the S + (pin 12) have to be connected together. The same w i t h the four - connections (pins 16, i 8 , 20, 22; and S- (pin 14). Ï i i e 5 V reference voltage (piii 24) has to be Connected w i t h the voltage regulation (piii 26) and with the current regulation (pin 28). Internal voltage and current adjustment l h e voltage and current can be adjusted w i t h the internal potentiometers which are accessible through the front panel. External voltage and current adjustment Connect 2.5 kOhm potentiometers as drawn. Turn internal potmeters to maximum. Because the 5kOhm o f the internal potmeters remains parallel to the external ones the adjustment i s not linear.
Connections at H i 5 connectoi
internal voltage and current adj.
External voltage and current programming Turn internal potmeters t o maximum. A programming voltage of O - 5 V gives the full range of output voltage or current. The input impedance of the programming inputs i s 5 kOhm (the resistance of the internal potentiometers). The nonlinearity of the programming i s max. 0.15% of f u l l range. The offset error i s max. t15mV (0.3%) for voltage and i 25mV (0.5%) for current programmirig. The maximum programming speed i s 600V per sec., however the product of dv/dt ( i n V/s) x amplitude ( i n V) x r e e t i t i o n frequency ( i n t1.z) may not exceed 2.10
B.
Remote sensing
External voltage and current adj.
Voltage and current programming by O-5V
Normally the sense terminals S + and S- w i l l be connected directly t o the t and - a t the power supply output. This means that the output voltage is k e p t constant at the output terminals. However, i f the voltage drop across the leads to the load i s too high, i t i s possible t o keep the voltage across the load constant by means of remote sensing. Max. 2 V per lead ( t o t a l 4 V ) compensation i s possible. The t o t a l voltage drop across the load leads has to be subtracted from the maximum voltage range. The OVP setting has t o be increased accordingly. In order to prevent undesired oscillations when using external sensing an extra electrolytic capacitor at the load I S recommended. 20.000 iiF for 56-40, l O . O O O u F for S 1 5 - 1 8 , 4.7OOuF for S28-IO. Remote sensing
januari 1991
. Remote ON/OFF
Bijlage C8
Stappenmotor-sturing
O V I’ ad ju F t m e n t
I t I F rccornnicndcd to p u t tlic ovcrvoltage protcction ahoiit 2 V above the working voltagc. 11ie OVP can be adjtisted w i t h a scrcw driver ttiroiigli a hole i n the frontparicl. To adjust tlie
I L-
OVP: a. 1 iirn tlie OVP adjustment to rnaxiriiurn. h. T i i i n the oiitpiit voltage to tlic desired trip level (unloaded of course). c. 5lowly t u r n the OVP potirieter counterclockwise u n t i l the OVP trips. d. 13isconnect the input and before putting it on agaiii turn the voltage adjustment lower.
__
__ 0
Parallel operation
Parallel operation When using two or more power supplies in parallel i t is recornmended to keep tlie leads to tlic srirrirnirig point of equal length and not to tise retriote sensing. A n extra electrolytic capacitor at the suniming point is recommended. Value 20.000 uF S 6-40, 1 0 . 0 0 0 ~ FS 15-18, 4.700riF S28-IO. The current w i l l riot be shared equally. However the ciirrerit l i m i t will avoid overloading. Eventually the current limits of all units can be decreased to enable operation at higher ambient temperature. Master-slave parallel operation tri master-slave parallel connection all units w i l l share the current equally. Tor master-slave operation connect pin 30 of tiie output connector of the master to pin 28 of earti slave and turn ttie internal voltage and current potmeters of the slaves to maximum. The slaves will now follow ttie master when it is adjusted or programmed. Tlie combination will operate like one big power supply. The master can drive a maximum of 4 slaves. However pin 30 of a slave can again drive 4 other slaves.
Undacvolinge detection
Parallel connection for redundancy I f units are connected in parallel for redundaiicy master-slave operation canriot be used because i r i that case each u n i t has to operate iridepecidcrit I y. t r i otdcr to dctect whether onp of the outputs fails i t i s necessary to separate tlie u n i t s w i t h diodes. For 528-10 a complete redundant adapter R A I O is available. I t has a series diode and an uridcrvol tage detection built-in. A t iiridervoltage (level adjustable 10-28 VI a rcrd rclay contact changes over and can b e used for alarm.
januari
1991
c
-
_.I
Parallel for redundancy
Bijlage C9
Stappenmotor-sturing
MAIN SECTION c100 c101 c102 C103 C104 C105 C106 C107 C108 c109
c110 c200 c201 c202 C203 C204 C205 C206 c207 C208 C311 C312 C313 C314 C315 C400 C401 C402 C403 C404 C405 C406 C407 C408 C409 C500 C50 1 C50 2 C504 C50 5 C506 C507 C508 C509 C510 C511 C600 C700 C70 1 C702 C703 C70 4 C705 C706
S
1UF 250V RMS X2 0.22UF 250V RMS X 2 4700PF 400V RMS SAFETY 4700PF 400V RMS SAFETY O.1UF 250V RMS X2 680UF 200V S PRAGUE 680UF 200V SPRAGUE 22UF 200V 22UF 2OOV 5000PF 250V CERAMIC O.1UF 250V RMS X2 1000PF 1OOOV POLYPROP 4700PF 630V POLYPROP 47PF 500V CERAMIC 1UF 400V 1UF 400V 47PF 500V CERAMIC 4700PF 630V POLYPROP 1000PF 1OOOV POLYPROP IOPF 400V RMS SAFETY 0.22UF 63V 0.22UF 63V 0.22UF 63V 0.22UF 63V O.1UF 250V RMS X2 2200PF 100V POLYPROP IONF 500V CERAMIC 100PF 500V CERAMIC 2200PF 1OOV POLYPROP 22UF 40V 2200PF 1OOV POLYPROP 100PF 1OOOV CERAMIC 1000PF 1OOV POLYPROP 220UF 25V 220UF 25V 15UF 16V SOLID ALU 1000PF 1OOV POLYPROP 2200PF 1OOV POLYPROP 0.22UF 63V 1000PF 1OOV POLYPROP 15UF 16V SOLID ALO 22NF 250V 2200PF 1OOV POLYPROP 15UF 16V SOLID ALU 15UF 16V SOLID ALU 0.22UF 63V 15UF 16V SOLID ALU 0.22UF 63V 47NF 250 V 15UF 16V SOLID ALU 15UF 16V SOLID ALU 10NF 250V IOOPF 500V CERAMIC 0.22UF 63V
I
SERIES
C707 C708 C709 C710 C711 C713 C714 C715 C716 C717 C718 C719 C720 C721 C722 C723 C724 C725 C726 C727 C728 C729 C731
Dl O 0 DI01 D200 D20 1 D202 D203 D204 D205 D206 D207 D208 D209 D400 D40 1 D402 D403 D404 D405 D500 D50 1 D502 D503 D504 D505 D506 D507 0508 D509 D510 D511 D512 D600
=
100PF 500V
= 2200PF 1OOV = 1000PF 1OOV = 100PF 500V =
= = = =
= = = = = = = = =
= = =
=
=
2.2UF 25V 470PF 1OOV 1000PF 1OOV 15PF 500V 100PF 500V 22NF 250V 47PF 500V 15UF 16V 15UF 16V 470PF 1OOV 2.2UF 25V 100PF 500V 47PF 500V 2200PF 1OOV 2200PF 1OOV IONF 250V IONF 250V 15PF 500V 15UF 16V
= BTA08 = SKB25-06 = TZB15CB = BYT08PI400 = BYT08PI400 = BYV26B = BYV26B = BYV26B = BYV26B = BYT08PI400 = BYTOEPI400 = TZB15CB = SKB2-08L5A = 1N4148 = BYV26B = BYV28-200 = BYV26B = BYV26B = 1N4148 = ZPD12 = ZPDlO = ZPD8.2 = 1N4148 = 1N4148 = 1N4148 = lN4148 = 1N4148 = lN4148 = lN4148 = 1N4148 = BYV26B = ZPD15
CERAMIC POLYPROP POLYPROP CERAM IC SOLID ALO POLYPROP POLYPROP CERANIC CERAMIC CERAMIC SOLID ALU SOLID ALU POLYPROP SOLID ALU CERAMIC CERAMIC POLYPROP POLYPROP CERAMIC SOLID ALU THOMSON SEMICRON S EM ICON THOMSON THOMSON PHILIPS PHILIPS PHILIPS PH I LI PS THOMSON THOMSON SEMICON SEMIKRON THOMSON PHILIPS PHILIPS PBI LIPS PHILIPS THOMSON II r T
ITT IIr er
THOMSON THOMSON THOMSON THOMSON TB OM SON THOMSON THOMSON THOMSON PHILIPS ITT
19/08/1987
januari 1991
Bijlage C10
Stappenmotor-sturing
D60 i D602 D603 D604 D700 D70 1 D702 Di03
D704 D705 ü706 D707 D708 D709 D710 D711 D712 D713 D714 D715 D716 D717
= 1N5818 = ZPY~O = lN4148 = 1N4148 = 1N4148 = Z0104BA = 1N4148 = iN4148 = 1N4148 = ZPD8.2 = 1N4148 = ZPD8.2 = ZPD12 = ZPD12 = ZPD8.2 = 1N4148 = 1N4148 = 1N4148 = 1N4148 = ZPY12 = ZPY12 = CQY54 LED
MOTOROLA ITT
THOMSON THOMSON THOMSON TAG
THOMSON THOMCON
RED
F100A F1 OOB F200 F300 F400 F40 1
= FUSE 5x20 4T
IC400 IC500 IC50 1 IC502 IC700 IC701 IC702 IC7O 3
= = =
L100 LlOl L102 L103 ~200 L20 1 L20 3 L600 L700 L70 1
=
Q200 Q2O 1 Q400 Q500 Q50 1 Q502
= = = = = =
= = = = =
FUSE FUSE FUSE FUSE FUSE
5x20 5x20 PIC0 PIC0 5x20
THOMSON ITT TiiOMSON ITT ITT ITT ITT THOMSON THOMSON THOMSON THOMSON ITT ITT PHILIPS
6.3T 2.5FF .25F .25F
220v 110v
i'r
UC3842 HEF4069UBD HEF4069UBD = TL431ILP = TL084IN = TL431ILP = OPO5CP = REFO2HP
UN ITRODE PtfILIPS PHILIPS TEXAS ïEXAS TEXAS BOURNS BOURNS
2X3.9MH 6A
RFI FILTER DELTA DELTA DELTA DELTA DELTA DELTA DELTA SIEMENS DELTA
= L241 = L240 = L247 = L236 = L232 = L232 = L237 = 15013
= L245
IRF740 IRF740 MrP2N85 2N2222A BS170 2N2907A
IR IR MOTOROLA THOMSON ITT THOMSON
S SERIES
2N2222A 2N2222A 2N2907A BS250 2N2907A = 2N2222A = BS250 = BSi7û = BST100 = IRF513
Q50 3 Q504 Q505 Q506 4507 Q508 Q600 Q60 1 Q602 a603
= = = = =
RI O 0 RI01 RI02 R105 R106 R200 R20 1 R202 R203 R40 1 R402 R403 R404 R405 R406 R407 R408 R409 R410 17411 R412 R413 R414 R415 R416 R417 R500 R50 1 R502 R503 R504 R505 R506 R507 R509 R510 R511 R513 R514 R515 R516 R517 R518 R519 R521
= 47 = 392 = 10 = 150K
TIIOMSON TtfOMSON THOMSON ITT THOMSON THOMSON ITT ITT PHILIPS IR
= 150K = 10 = 332 = 332 = 10 = 68.1K
= 15K = 392K =
681K
= CR = = = =
= = =
= =
= = = = = = =
= = = = = = = = = = = =
= = =
8.25K 39.2K 39.2K 39.2K 39.2K 6.81 475 221 10K 5.62 2.2K 2.2K 332 332 10K 10K 10K 1OK 10K 475 4.75K 4.75K CR CR CR 6.81K 1K IK 3.32K 3.32K 4.75K
19/08/1987
januari 1991
Bijlage C11
Stappenmotor-sturing
R522 R523 R524 R525 R526 R527 R528 R529 R530 R600 R60 1 R700 R70 i R702 R70 3 R704 R705 R706 R707 R708 R709 R710 R711 R712 R713 R714 R715 R716 R717 R718 R723 R725 R726 R727 R728 R731 R732 R733 R734 R735 R736 R7 37 R738 R739 R740 R74 1 R742 R74 3 R744 R745 R746
10 MF/0.6W/250V 26.7 MF/0.6W/250V 26.7 MF/0.6W/250V = IK MF/0.6W/250V = 22.1 MF/0.6W/250V = CR MF/0.6W/250V = IK MF/0.6W/25OV = 1OK WF/Q áW/2 50V = 18.2 MF/0.6W/250V = SOK MF/0.6W/250V = 4.75K MF/0.6W/250V = 47.5 MF/0.6W/250V = 22.1 MF/0.6W/250V = 681 MF/0.6W/250V = 150 MF/0.6W/250V = 681 MF/0.6W/250V = 6.81K MF/0.6W/250V = 475 MF/0.6W/250V = 5K TRIMPOTM 20 TURNS = 150 MF/0.6W/250V = 332 MF/0.6W/250V = 2.21M MF/0.25W/1600V = 4.75K MF/O. 6W/250V = 4.75K MF/0.6W/250V = 2.21K MF/0.6W/250V = 1OK TRIMPOTM 20 TURNS = 82.5K MF/0.6W/250V = 4.75K MF/O .6W/2 50V = 4.75K MF/0.6W/250V = IK MF/0.6W/250V = 5K TRIMPOTM 20 TURNS = 100K MF/0.6W/250V = 825 MF/0.6W/250V = 4.75K MF/0.6W/250V = 4.75K MF/0.6W/250V = 2.21M MF/û.25W/1600V = 10K TRIMPOTM 20 TURNS = 100K MF/0,6W/250V = 100K MF/0.6W/250V = IK MF/0.6W/250V = 825 MF/0.6W/250V = 825 MF/0.6W/250V = 10 MF/0.6W/250V = 10 MF/0.6W/250V = 5K TRIMPOTM 20 TURNS = 26.7K MF/0.6W/250V = 22.1 MF/0.6W/250V = 10 MF/0.6W/250V = 332 MF/0.6W/250V = 1K MF/0.6W/250V = 332 MF/0.6W/250V
= = =
.
SW700
= THERM SWITCH 90 DEGR
T200 T400
= T242
S
=
T239
DELTA DELTA
SERIES
T600
=
T235
DELTA
OUTPUT SECTION S6-40 C300 C302 C303 C304 C306 C307 C308 C309 C310 C316 C317 C318 C319
= = = = = = = = = = = = =
D300 D301
= BYV23-45
L301 L302
= L250 = L244
R300 R30 1 R302 i7303 R304 R305 R306 R307 R308 R309 R310 R311 R312 R313 R314
= = = = =
T201
= T249
IONF 500V CERAMIC 3300UF 12V SPRAGUE 33C00F i2v SFRAGU E O.1UF 250V RMS X2 15UF 16V COLI13 ALü 15UF 16V SOLID ALU 0.22UF 250V RNS X2 3300UF 12V SPRAGUE 0.22UF 250V RMS X2 1UF 63V 0.33UF 50V MULT LAYR 10NF 500V CERAMIC IONF 630V BYV23-45
= = = =
= = = = = =
PHILIPS PHILIPS DELTA DELTA
3.3 MF/2.5W/500V 180 MF/l .6W/500V 180 MF/1.6W/500V 475 MF/0.6W/250V 68.1 MF/0.6W/250V 1.0 MF/0.6W/250V 2.74K MF/0.6W/250V SHUNT 50MV DELTA 475 MF/0.6W/250V 68.1 MF/0.6W/250V 1.0 MF/0.6W/250V 2.74K MF/0.6W/250V 1.0 MF/0.6W/250V 100 MF/0.6W/250V 100 MF/0.6W/250V DELTA
OUTPUT SECTION S15-18 C300 C30 1 C302 C303 C304 C305 C306 C307 C308 C309
= 1500PF 3000V = 47NF 250 V = 1800UF 25V
= 1800UF 25V
CERAMIC SPRAGUE SPRAGUE X2
O.1UF 250V RMS 47NF 250 V = 15UF 16V SOLID ALU = 15UF 16V SOLID ALU = 0.22UF 250V RMS X2 = 1800UF 25V SPRAGUE = =
19/08/1987
januari 1991
,
Bijlage C12
Stappenmotor-sturing
C310 C317 C319
= 0.22UF 250V RMS X2 = 0.33UF 5QV MUL'F LAYR = IONF 630V
D300 D30 1
= BYW93-200U
Y
= L246 = L251
-
LJ300
L301 L302
PHILIPS PHILIPS
= BYW93-2OOU
DELTA DELTA DELTA
= E252
R300 R30 1 R302 R303 R304 R305 R306 R307 R308 R309 R310 R311 R312 R313 R314
= 18 = 1.2K
T20 1
= T248
MF/2.5W/500V MF/1.6W/500V = 1.2K MF/1.6W/5OOV = 2.74K MF/0.6W/250V = 2.74K MF/0.6W/250V = 1.0 MF/0.6W/250V = 2.74K MF/0.6W/250V = SHUNT 50MV DELTA = 2.74K MF/0.6W/25OV = 2.74K MF/0.6W/250V = 1.0 MF/0.6W/250V = 2.74K MF/0.6W/250V = 1.0 MF/0.6W/250V = 562 MF/0.6W/250V = 100 MF/0.6W/250V
R304 R305 R306 R307 R308 R309 R310 R311 R312 R313 R314
= 6.81K = 182
T201
= T234
MF/0.6W/250V MF/0.6W/250V = 2.74K MF/0.6W/250V = SHUNT 50MV . DELTA = 5.62K MF/0.6W/250V = 6.81K MF/0:6W/250V = 182 MF/0.6W/250V = 2.74K MF/0.6W/250V = 1.0 MF/Q. 6W/25ûV = 1.82K MF/0.6W/250V = 100 MF/0.6W/250V DELTA
DELTA
OUTPUT SECTION S28-10 C300 C30 1 C302 C30 3 C304 C305 C306 C307 C308 C310 c317 C319
1000PF 1OOOV CERAMIC 1ONF 250V 820UF 50V SPRAGUE 820UF 50V SPRAGUE O.1UF 250V RMS X2 10NF 250V 1 5 16V ~ ~ SOLID ALU 15UF 16V SOLID ALU 0.22UF 250V RMS X2 0.22UF 250V RMS X2 0.33UF 50V MULT LAYR IONF 630V
D300 D301
bYW77-2O O BYW77-20O
L300 L30 1 L302
L246 L243 L252
R300 R301 R302 R303
27 3.9K 3.9K 5.62K
S
THOMSON THOMSON DELTA DELTA DELTA MF/2.5W/500V MF/1.6W/500V MF/1.6W/500V MF/O 6W/250V I
SERIES
19/08/1987
januari 1991
Stappenmotor-sturing
I
33 AY
dAO
_. .
II
januari 1991
Bijlage C13
Bijlage C14
Stappenmotor-sturing
.
januari 1991
.
Bijlage C15
Siappenmotor-sturing
P369
L1W
f
. cv . cc . OVP
Title: PC boards
P 370 A bvpc Modifications
januari 1991
8187 U,..
§6-40. S 15-18S28 -10
Date: 5-337
Date App. delta elektronika b\
Bijlage C16
Stappenmotor-sturing
P 371A
3 CON300
januari 1991
O
u L
c
N
L
r4 O
I
I
ni --__
+
Stappenmotor-sturing
O
L
L
1------
r'
m
N
I r----l.IM Ir.
la i
--1 I
I I
I I
I
I
I 1 I
I I I
I: 18
I
I
I 1 s
I
1;
I:
7-
I I
!
januari 1991
Bijlage C17
I 4
6
8 10
12
14
16 I8
20 22
28 2.
26
JO
Title:
S6-40,s 15-18, S 28-10
Date: Modifications
5-'87
Date App delta elektronika b v