Statistical Approach to the Description of Random ...

5 downloads 116 Views 408KB Size Report
aInternational Solar Energy Research Center Konstanz, Rudolf-Diesel-Str. 15, ... Mäckel et al. calculated “mean pyramid base length” from SEM pictures [7].
Available online at www.sciencedirect.com

Energy Procedia 8 (2011) 135–140

SiliconPV: 17-20 April 2011, Freiburg, Germany

Statistical Approach to the Description of Random Pyramid Surfaces using 3D Surface Profiles E. Wefringhausa*, C. Kesnara, M. Löhmannb a

International Solar Energy Research Center Konstanz, Rudolf-Diesel-Str. 15, 78467 Konstanz, Germany b RENA GmbH, Ob der Eck 5, 78148 Gütenbach, Germany

Abstract 3D surface profiles obtained from a variety of mono-crystalline wafers textured under different conditions were investigated. Topographical parameters taking single pyramids heights and distances into account were analysed with regard to their statistical distribution. The statistical analysis yielded appropriate distribution functions allowing for quantitative description and comparison of random pyramid surfaces.

© under responsibility of of SiliconPV 2011. © 2011 2011 Published Publishedby byElsevier ElsevierLtd. Ltd.Selection Selectionand/or and/orpeer-review peer-review under responsibility SiliconPV 2011. Keywords: Anisotropic texturing; random pyramids; topography; laser scanning microscope; distribution functions

1. Introduction In solar cell production anisotropic texturing of mono-crystalline wafers, resulting in random upright pyramids, is a standard technique. Most widely KOH/IPA is employed, but recently a lot of alternatives have been developed [1-4]. Light coupling and light trapping in textured wafers, and thus performance of solar cells, depend on surface topography. Surface topography, i.e. (uniformity of) pyramid coverage, pyramid density and pyramid height, is usually assessed by single, randomly taken SEM pictures. These pictures are compared in order to derive qualitative statements as “a more uniform pyramid geometry” [5] or very rough classifications as “inhomogeneous pyramidal texture with pyramid size 1-6 μm” [6]. Mäckel et al. calculated “mean pyramid base length” from SEM pictures [7]. Souren et al. used AFM and LSM to calculate roughness parameters from measured height data [8]. The scope of this work was to define additional parameters which describe the surface characteristics from the statistical point of view.

* Corresponding author. Tel.: +49-7531-36183-21; fax: +49-7531-36183-11; E-mail address: [email protected].

1876–6102 © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of SiliconPV 2011. doi:10.1016/j.egypro.2011.06.114

136

E. Wefringhaus et al. / Energy Procedia 8 (2011) 135–140

2. Methods Figure 1 outlines how 3D surface data were generated, handled and evaluated. Applying different textures (2.1) Determination of surface profiles by measuring confocal laser scanning microscope (2.2) Calculation of pyramid height / distances and derived parameters by MountainsMap (2.3)

Evaluation of parameter statistics by EasyFit (2.4)

Fig. 1. Data generation, handling and evaluation.

2.1. Textures 20 wafers were taken from different experiments to generate a variety of different surfaces regarding pyramid size, distances and distribution. Textures were carried out using different pre-cleaning steps (no pre-cleaning, O3, SC1) and processes (standard KOH/IPA as well as alternative processes [3] and RENA monoTEX). 2.2. Determination of surface profiles 3D surface profiles were obtained by means of a measuring confocal laser scanning microscope (mcLSM) using an Olympus LEXT OLS4000 [9]. The edge length of the obtained pictures was 128 µm with a resolution of 1024x1024 pixels. 2.3. Processing of surface profiles and generation of topographical parameters The 3D surface profiles were transformed using an algorithm written in MountainsMap software. The raw height layer was filtered according to ISO/DIS 25178 [10, 11]. Furthermore a surface tilt correction was applied. Motifs (the pyramids) were separated using watershed algorithm. For statistical evaluation open motifs appearing at the edge of the pictures were excluded. A typical raw profile and a segmented profile are shown in Figure 2. From (x,y,z)-coordinates of motif peaks (pyramid tips) topographical parameters are derived describing the random pyramid surface (Table 1). 2.4. Evaluation of topographical parameter statistics The characterisation of mcLSM pictures by MountainsMap results in n data for each topographical parameter (see Table 1), where n is the number of motifs (pyramids) (e.g. 427 in Figure 2). Analysing the data parameter-wise by descriptive statistics yields median (and other quantiles), skewness S, and kurtosis K (compare [8]). Since each parameter is greater than zero per definition, data can obviously not be normally distributed. In order to find an appropriate distribution function, data were analysed by the maximum likelihood method using the software EasyFit. 37 bounded, non-negative distributions were considered and ranked according to significance using Kolmogorow-Smirnow, Anderson-Darling, and Chi-square tests, respectively.

137

E. Wefringhaus et al. / Energy Procedia 8 (2011) 135–140

0

0

20

40

60

80

100

120 μm

μm 9

10 20

8

30

7

40

6

50 60

5

70

4

80 90

3

100

2

110

1

120

0

μm

Number of motifs

427

Fig. 2. Raw height profile obtained from mcLSM (left side) and watershed segmented surface after applying filters and surface tilt correction (right side). The + signs mark peaks (pyramid tips) and the black lines the boundaries to adjacent motifs (pyramids). Table 1. Topographical parameters describing random pyramid surfaces generated by MountainsMap (top) and topographical parameters derived herefrom (bottom). “Idealities” should approach 1 in case of an ideal texture with uniform pyramids. Name

Explanation

Abbreviation

Height 1

Height between highest saddle point and peak (pyramid tip)

H

Height 2

Height of peak (pyramid) from the lowest point of the surface

Z

Coflatness

Maximum vertical distance between the pyramid tip and the tips of adjacent pyramids

CF

Min Pitch / Pitch / Max Pitch /

Minimum / mean / maximum horizontal distance between the pyramid tip and the tips of adjacent pyramids

MinP / P / MaxP

Base length

Pyramid base length calculated from Z: a (Z) = 1.414 Z

a

Ideality 1

MinPitch divided by base length a (Z)

MinP/a

Ideality 2

Height 1 divided by height 2

H/Z

3. Results Table 2 summarizes the results of the statistical analysis. Details, explaining the method of ranking the distribution functions, are depicted in the appendix. Appropriate distribution functions were found for all defined parameters with the exception of Minimum Pitch. Results are exemplarily illustrated in Figure 3. Table 2. Appropriate distribution functions for defined topographical parameters (in brackets: number of distribution parameters). Parameter

Appropriate distribution function

Distribution to be rejected (in two out of three tests, p = 0.05)

Height 1, H

Fatigue life (3P)

2 of 20 times

Height 2, Z

Johnson SB (4P) / Burr (4P)

0 of 11 times (9 times not applicable) / 1 of 20 times

Coflatness, CF

Johnson SB (4P)

0 of 20 times

Minimum Pitch, MinP

No appropriate distribution found, but best fitting: Dagum (4P), Inverse Gaussian (3P), Frechet (3P)

Pitch, P

Johnson SB (4P)

2 of 18 times (2 times not applicable)

Maximum Pitch, MaxP

Generalized Extreme Value (3P)

0 of 20 times

Ideality 1, minP/a

Fatigue life (3P)

4 of 20 times

Ideality 2, H/Z

Johnson SB (4P)

4 of 20 times

138

E. Wefringhaus et al. / Energy Procedia 8 (2011) 135–140

0,4

0,14

0,36

0,12

0,32

0,1

0,28 0,24

0,08

0,2 0,16

0,06

0,12

0,04

0,08

0,02

0,04 0

1

2

3

0

4

4

6

H [μm] 0,11 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0

2

4

6

0,22 0,2 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0

8

1

2

3

4

5

8

10

0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02

2

4

6

8

0,01 0

P [μm] 0,12 0,11 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0

10

MinP [μm]

CF [μm] 0,12 0,11 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0

8

Z [μm]

0,1

0,2

MinP / a

2

4

6

MaxP [μm]

0,3

0,24 0,22 0,2 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0

0,1

0,2

0,3

0,4

H/Z

Fig. 3. Probability densities for height H (fatigue life distribution), height Z (Burr distribution), coflatness CF (Johnson SB distribution), minimum pitch MinP (Dagum distribution), pitch P (Johnson SB distribution), maximum pitch MaxP (generalized extreme value distribution), ideality MinP/a (fatigue life distribution), and ideality H/Z (Johnson SB distribution) for a sample textured by KOH/IPA.

E. Wefringhaus et al. / Energy Procedia 8 (2011) 135–140

4. Outlook Distribution functions found for the different defined topographical parameters allow for quantitative description and comparison of random pyramid surfaces. Further investigations are ongoing with respect to Classification of textured wafers according to process conditions, Correlation of distribution function parameters and roughness parameters, Correlation of distribution function parameters and wafer reflection, Correlation of distribution function parameters and solar cell performance, Moreover, statistical methods describing the spatial distribution of pyramids (e.g. by dispersion indices) are under investigation.

References [1] Birmann K, Zimmer M, Rentsch J. Fast alkaline etching of monocrystalline wafers in KOH/CHX. Proc. 23rd EU PVSEC, Valencia, Spain; 1-5 September 2008, p. 1608-11. [2] Wefringhaus E, Helfricht A. KOH/surfactant as an alternative to KOH/IPA for texturisation of monocrystalline silicon. Proc. 24th EU PVSEC, Hamburg, Germany; 21-25 September 2009, p. 1860-2. [3] Krümberg J, Melnyk I, Schmidt M, Michel M, Fidler T, Kagerer M et al. New innovative alkaline texturing process for CZ silicon wafers. Proc. 24th EU PVSEC, Hamburg, Germany; 21-25 September 2009, p. 1748-50. [4] Moynihan M, O´Connor C, Barr B, Tiffany S, Braun W, Allardyce G et al. IPA free texturing of mono-crystalline solar cells. Proc. 25th EU PVSEC / 5th WC PEC, Valencia, Spain; 6-10 September 2010, p. 1332-36. [5] Vazsonyi E, De Clercq K, Einhaus R, Van Kerschaver E, Said K, Poortmans J et al. Improved anisotropic etching process for industrial texturing of silicon solar cells. Solar Energy Materials & Solar Cells 1999; 57: 179-88. [6] Ximello N, Haverkamp H, Hahn G. Influence of pyramid size of chemically textured silicon wafers on the characteristics of industrial solar cells. Proc. 25th EU PVSEC / 5th WC PEC, Valencia, Spain; 6-10 September 2010, p. 1761-4. [7] Mäckel H, Cambre DM, Zaldo C, Albella JM, Sánchez S, Vázquez C et al. Characterisation of monocrystalline silicon texture using optical reflectance patterns. Proc. 23rd EU PVSEC, Valencia, Spain; 1-5 September 2008, p. 1160-3. [8] Souren FMM, Van de Sanden MCM, Kessels WMM, Rentsch J. Quantitative characterization of dry textured surfaces. Proc. 24th EU PVSEC,. Hamburg, Germany; 21-25 September 2009, p. 1909-13. [9] Fabich M. Advanced confocal laser scanning microscopy. Physics´ Best 2010; Special Issue: 18-21. [10] ISO/DIS 25178-2:2008. Geometrical product specifications (GPS) – surface texture: Areal – Part 2: Terms. definitions and surface texture parameters. [11] ISO/DIS 25178-3:2008. Geometrical product specifications (GPS) – surface texture: Areal – Part 3: Specification operators.

139

140

E. Wefringhaus et al. / Energy Procedia 8 (2011) 135–140

Appendix A. Method of ranking distribution functions according to significance (example: Pitch P). Distribution

Kolmogorow Smirnow

Anderson Darling

SoR*

appl.**

mean rank

SoR*

appl.**

mean rank

Chi-square SoR*

appl.**

mean rank

Beta

156

20

7.80

90

20

4.50

138

20

6.90

Burr (4P)

198

20

9.90

159

20

7.95

189

20

9.45

Chi-Squared (2P)

600

20

30.00

556

20

27.80

510

20

25.50

Dagum (4P)

289

20

14.45

249

20

12.45

243

20

12.15

Erlang (3P)

399

20

19.95

366

20

18.30

283

20

14.15

Exponential (2P)

612

20

30.60

572

20

28.60

517

20

25.85

Fatigue Life (3P)

209

20

10.45

177

20

8.85

170

20

8.50

Frechet (3P)

468

20

23.40

423

20

21.15

155

10

15.50

Gamma (3P)

193

20

9.65

157

20

7.85

199

20

9.95

Gen. Extreme Value

148

20

7.40

142

20

7.10

157

19

8.26

Gen. Gamma (4P)

171

20

8.55

98

20

4.90

142

20

7.10

Gen. Logistic

358

20

17.90

350

20

17.50

334

20

16.70

Gen. Pareto

328

20

16.40

594

20

29.70

Inv. Gaussian (3P)

390

20

19.50

362

20

18.10

296

20

14.80

Johnson SB

58

18

3.22

79

18

4.39

117

16

7.31

Kumaraswamy

256

20

12.80

221

20

11.05

259

20

12.95

Log-Gamma

166

6

27.67

149

6

24.83

146

6

24.33

Log-Logistic (3P)

317

20

15.85

319

20

15.95

295

20

14.75

Log-Pearson 3

172

20

8.60

164

20

8.20

166

19

8.74

Lognormal (3P)

212

20

10.60

198

20

9.90

161

20

8.05

Nakagami

300

20

15.00

287

20

14.35

254

20

12.70

Pearson 5 (3P)

242

20

12.10

243

20

12.15

195

20

9.75

Pearson 6 (4P)

224

20

11.20

198

20

9.90

184

20

9.20

Pert

349

20

17.45

327

20

16.35

329

20

16.45

Phased Bi-Expon.

606

20

30.30

607

20

30.35

574

20

28.70

Phased Bi-Weibull

651

19

34.26

647

19

34.05

412

13

31.69

Power Function

589

20

29.45

552

20

27.60

308

13

23.69

Rayleigh (2P)

409

20

20.45

373

20

18.65

336

20

16.80

Reciprocal

634

20

31.70

600

20

30.00

538

20

26.90

Rice

431

20

21.55

416

20

20.80

377

20

18.85

Wakeby

63

20

3.15

480

20

24.00

8

1

8.00

Weibull (3P)

230

20

11.50

208

20

10.40

254

20

12.70

0

* SoR = Sum of Ranks, ** appl. = distribution applicable in n out of 20 cases (pictures/textures); five clearly non-fitting distributions were excluded from table due to space constraints: Levy (2P), Pareto, Pareto 2, Triangular, and Uniform.

Suggest Documents