Stochastic Calculus Cheatsheet. Standard Brownian ... g is the diffusion. Itô's
Lemma and Basic Stochastic Integration. For F(Xt). dF = dF. dX. dXt +. 1. 2. d2F.
Stochastic Calculus Cheatsheet Standard Brownian Motion / Wiener process E[dX 2 ] = dt
E[dX] = 0
limdt→0 dX 2 = dt √ Discrete approx: dX = φ dt where φ ∼ N (0, 1) dX is O(dt1/2 )
dtdX is O(dt3/2 )
Itˆo Product Rule
Characterization: 1. 2. 3. 4.
X(0) = 0 Continuous everywhere, differentiable nowhere X(t) − X(s) ∼ N (0, |t − s|) X(t + s) − X(t) is independent of X(t)
Levy’s characterization: 3. Xt is a martingale w.r.t. the filtration Ft 4. |X|2 − t is a martingale w.r.t. the filtration Ft
If dXt = αdt + βdWt and dYt = γdt + λdWt , d(Xt Yt ) = Xt dYt + Yt dXt + dXdY 1 = Xt dYt + Yt dXt + βλdt 2
Stochastic Differential Equations (General Form) dS
= f (t, S) dt + g(t, S) dXi
dSi
= fi (t, S0 , . . . , Sn ) dt + gi (t, S0 , . . . , Sn ) dXi
where f is the drift, g is the diffusion
Itˆo’s Lemma and Basic Stochastic Integration For F (Xt ) dF 1 d2 F dF = dXt + dt dX 2 dX 2
Z F (Xt ) = F (X0 ) + 0
t
dF 1 dXτ + dX 2
Z 0
t
d2 F dτ dX 2
For F (Xt , t) dF =
∂F dXt + ∂X
∂F 1 ∂2F + ∂t 2 ∂X 2
t
Z dt
F (Xt , t) = F (X0 , 0) + 0
∂F dXτ + ∂X
Z t 0
1 ∂2F ∂F + ∂t 2 ∂X 2
Functions of Stochastic Functions 1-dimensional: V (t, S) dV
= =
1. Apply Taylor expansion on V 2. Apply Itˆo’s Lemma:
∂V ∂V 1 ∂2V dt + dS + g 2 2 dt ∂t ∂S 2 ∂S ∂V ∂V 1 ∂2V ∂V +f + g 2 2 dt + g dX ∂t ∂S 2 ∂S ∂S
• dXi2 → dt • dXi dXj → ρij dt 3. Regroup the terms in dt and dXi 4. Sto.integ.: integrate the resulting DE
2-dimensional: V (t, S1 , S2 ) dV =
∂V ∂V ∂V 1 ∂2V ∂2V 1 ∂2V + f1 + f2 + g12 2 + ρg1 g2 + g22 2 ∂t ∂S1 ∂S2 2 ∂S1 ∂S1 ∂S2 2 ∂S2
dt + g1
∂V ∂V dX1 + g2 dX2 ∂S1 ∂S2
n-dimensional: V (t, S1 , . . . , Sn ) dV =
n X
n 1X
∂V ∂V + fi + ∂t ∂S 2 i i=1
i=1
gi2
n X
n X ∂ V ∂ V ∂V + ρ g g dt + gi dXi ij i j ∂Si2 i=1,j>1 ∂Si ∂Sj ∂S i i=1 2
2
dτ
Transition Density Functions Solution
Forward Kolmogorov 1 ∂2 ∂p ∂ = B(y 0 , t0 )2 p − 0 (A(y 0 , t0 )p) 0 02 ∂t 2 ∂y ∂y
log p(S, t; S 0 , t0 ) =
1 σS 0
p
2π(t0 − t)
−
S S0
e
2 + µ − 21 σ 2 (t0 − t) 2σ 2 (t0 − t)
Common Processes/Dynamics Geometric Brownian Motion (Lognormal) Brownian Motion with Drift
dS = µS dt + σS dX
dS = µ dt + σ dX
dS = µ dt + σ dX S
Cox, Ingersoll, Ross
Vasiˇcek (1977) dS = γ(¯ r − r) dt + σ dX FIXME TODO add others, Ho Lee and company...
1
dS = (υ − σS) dt + σS 2 dX
All you need to know about Sto.Calc (FIXME integrate these words of wisdom from Antoine.) • If Xt → N (µ, σ) then E(xXt ) = eµ+
σ2 2
.
• Itˆo: d(f (Xt )) • Itˆo: d(Xt Yt ) = Xt dYt + Yt dXt + 12 βλdt where dXt = αdt + βdWt and dYt = γdt + λdWt R • E[ Xt dWt ] = 0 R R • V ar[ Xt dWt ] = Xt2 dt • Girsanov’s theorem. • Generating correlated X and Y .
Martingales
Probability Spaces
Unconditional Expectation
“Let (Ω, F, P) be a probability space. . . ”
Expected value under a prob. measure (Lebesgue integral): Z Z Z E[h(X)] = h(x)p(x)dx = h(x)d(P(x)) = h(x)d P Ω ZΩ ZΩ E[1{X∈A} ] = 1{X∈A} d P = d P = P(A)
• Ω: sample space • F: filtration (information set), (Note that Ft1 ⊆ Ft2 ⊆ FT ≡ F) • P: probability measure
Ω
A
Conditional Expectation
Martingales (Definition)
(Use these to prove that a process is a Martingale; use the definition.)
E[Mt ] < ∞ E[Mt+1 |Ft ] = Mt
∀0 ≤ s ≤ t
E[Mt+1 |Ft ] ≤ Mt
(supermartingale)
E[Mt+1 |Ft ] ≥ Mt
(submartingale)
1. Linearity: E[aX + bY |F] = aE[X|F] + bE[Y |F] 2. Tower Property: if F ⊂ G, E[E[X|G] |F] = E[X|F]
Wiener ∈ Martingale (driftless) ⊂ Markov (memoryless) ⊂ nonMarkov
E[E[X|F]] = E[X] 3. Taking out what is known:
Equivalent Measures
E[X|F] = X
Absolute continuity: if P (A) = 0 → Q(A) = 0
Q is “absolutely continuous” w.r.t. P, and Q