Strength Development and Hydration Behavior of Self ... - MDPI

11 downloads 2056 Views 2MB Size Report
Mar 10, 2016 - Samsung C&T Corporation, 14, Seocho-daero 74-gil, Seocho-gu, Seoul ... slow hydration [3]; thus, it is widely recognized that GGBFS alone shows few cementing properties ... GGBFS could be much greater than expected.
materials Article

Strength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water Hyeoneun Park 1 , Yeonung Jeong 1 , Jae-Hong Jeong 2 and Jae Eun Oh 1, * 1 2

*

School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan 689-798, Korea; [email protected] (H.P.); [email protected] (Y.J.) Samsung C&T Corporation, 14, Seocho-daero 74-gil, Seocho-gu, Seoul 137-956, Korea; [email protected] Correspondence: [email protected]; Tel.: +82-52-217-2815

Academic Editor: Jorge de Brito Received: 14 January 2016; Accepted: 1 March 2016; Published: 10 March 2016

Abstract: In this study, ground granulated blast-furnace slag (GGBFS) samples from Singapore, Korea, and the United Arab Emirates were hydrated with purified water to estimate the cementing capabilities without activators. Raw GGBFS samples and hardened pastes were characterized to provide rational explanations for the strengths and hydration products. The slag characteristics that influenced the best strength of raw GGBFS were identified. Although it is widely recognized that GGBFS alone generally shows little cementing capability when hydrated with water, the GGBFSs examined in this study demonstrated various strength developments and hydration behaviors; one of the GGBFS samples even produced a high strength comparable to that of alkali- or Ca(OH)2 -activated GGBFS. In particular, as the GGBFS exhibited a greater number of favorable slag characteristics for hydraulic reactivity, it produced more C-S-H and ettringite. The results demonstrated a reasonable potential for commercial GGBFS with calcium sulfates to function as an independent cementitious binder without activators. Keywords: GGBFS; calcium sulfates; hydration with water; cementless binder; strength

1. Introduction The American Concrete Institute (ACI) and the American Society for Testing and Materials (ASTM) previously used the terminology “ground granulated blast-furnace slag” (GGBFS) to denote the ground form of glassy granular material that develops when molten blast-furnace slag, which is an industrial byproduct waste of steel manufacturing, is rapidly cooled. In 2003, however, “GGBFS” was replaced with the term “slag cement” by the ACI (ACI 233R-03) [1] and the ASTM (C125-11) [2], at the request of GGFBS manufacturers (the details of the request and discussion on the terminology are not provided in these articles). Thus, GGBFS, or slag cement, gradually came to be recognized as a separate cementitious constituent rather than as a supplementary material for concrete production. Despite the new terminology, the self-cementing ability of GGBFS mixed with pure water continues to be ignored in related academia and industry. When GGBFS is hydrated with pure water (hereafter, this reaction is denoted as the “self-activation of GGBFS”), a protective film quickly forms on the surface of the GGBFS particles, resulting in a very slow hydration [3]; thus, it is widely recognized that GGBFS alone shows few cementing properties when mixed with pure water [4–6] unless they are activated with activating chemicals such as alkaline hydroxides, soluble silicates, Portland cement, or lime [4–9]. However, when calcium sulfates (e.g., CaSO4 , and CaSO4 ¨ 2H2 O) are incorporated into GGBFS, the behavior of its self-activation could be significantly different from that of GGBFS without any

Materials 2016, 9, 185; doi:10.3390/ma9030185

www.mdpi.com/journal/materials

Materials 2016, 9, 185

2 of 11

calcium sulfates, because these chemicals may considerably promote the hydration of GGBFS with even small quantities of activators [10]; thus, the strength of the self-activated paste of commercial GGBFS could be much greater than expected. Therefore, given that most commercial GGBFS powders in current markets contain additional calcium sulfates in the forms of anhydrite (CaSO4 ), hemihydrate (CaSO4 ¨ 1/2H2 O), or gypsum (CaSO4 ¨ H2 O), from an engineering perspective, the self-activation of commercial GGBFS with calcium sulfates is more important than that of GGBFS without calcium sulfates. Currently, however, no study to date has investigated the self-activation of commercial GGBFS, although a few earlier studies briefly introduced the self-activation of noncommercial GGBFS [4–6]. In this study, three commercial GGBFS samples were purchased from three different locations (i.e., Korea, Singapore, and the United Arab Emirates). The GGBFS samples were hydrated with deionized (DI) water and characterized using compressive strength testing, X-ray fluorescence (XRF), power X-ray diffraction (XRD), a laser diffraction particle size analyzer, and a thermogravimetric analyzer (TGA). 2. Experimental Program This study investigated three GGBFS samples that were commercially available for construction in Singapore (labeled S-Slag), the Republic of Korea (labeled K-Slag), and Dubai, in the United Arab Emirates (labeled D-Slag). S-Slag, a commercial GGBFS, was ground with additives in Singapore, but the raw granulated blast-furnace slag (GBFS) was imported from Japan. Likewise, D-Slag was manufactured in Dubai, but its original GBFS was a blended material using GBFSs from China and India, while K-Slag was manufactured using raw GBFS from Korea. Each vendor used different types and quantities of additives in the GGBFS production. The raw GGBFSs were examined using XRF (S8 Tiger wavelength dispersive (WDXRF) spectrometer, Bruker, Billerica, MA, USA), powder XRD (high-power X-ray diffractometer, Rigaku, Tokyo, Japan), and laser diffraction particle-size analysis (HELOS (HI 199) and RODOS, Sympatec, Clausthal-Zellerfeld, Germany) to determine basic material properties. Loss-of-ignition (LOI) values for the raw GGBFS samples were determined using TGA (SDT Q600, TA Instruments, New Castle, DE, USA). The GGBFSs were mixed only with deionized (DI) water; each was homogenized by dry-stirring for five minutes and mixed with DI water at a weight ratio of water-to-GGBFS (w/G) of 0.4. All mixing procedures were conducted following ASTM C305 [11]. The freshly mixed pastes were cast in cubic molds of 5 cm ˆ 5 cm ˆ 5 cm for compressive strength testing. The strength result for each mixture was reported as an average value of the testing results of three identical specimens. Small fractions of pastes were diluted with DI water at a weight ratio of water to GGBFS (w/G) = 2 to monitor the changes of the diluted pastes’ pH values for seven days to obtain approximate estimates of the pH of the pore solutions. For more accurate measurements, the pH of the pore solution should be measured directly after being extracted from the hardened paste; however, an earlier study [4] demonstrated that the pH value trends of the diluted pastes were not different from those of the extracted solutions in early days. Following the compressive strength testing, the fractured inner pieces were collected and finely ground for the XRD and TGA. Each XRD test was performed on the same day that each compressive strength testing was conducted. The XRD patterns for the raw GGBFSs and the hardened pastes were recorded using a high-power powder X-ray diffractometer (Rigaku, Tokyo, Japan) with Cu-Kα radiation (λ = 1.5418 Å) within a range of 50˝ –60˝ in 2θ. An internal standard (NIST RMS 676a, crystalline alumina 99.02% ˘ 1.11%) was used to calculate the weight content of the glass phase of the raw GGBFS [12]. All XRD patterns were analyzed using X’pert HighScore Plus software [13] with the Internal Center for Diffraction Data (ICDD) PDF-2 database [14] and the Inorganic Crystal Structure Database (ICSD) [15].

Materials 2016, 9, 185

3 of 11

The TGA data were collected using an SDT Q600 (TA Instruments, New Castle, DE, USA) with an alumina pan, from ambient temperature to 800 ˝ C at a heating rate of 10 ˝ C/min in a nitrogen gas environment. Materials 2016, 9, 185 

3 of 11 

3. Results and Discussion

3. Results and Discussion 

3.1. Materials Parameters of GGBFS

3.1. Materials Parameters of GGBFS 

The XRD patterns of the raw GGBFSs are presented with identified phases in Figure 1. The  XRD  patterns  of  the  raw  GGBFSs  are  presented  with  identified  phases  in  Figure  1.  Mineralogical GGBFS compositions were semiquantitatively calculated using internal standard [12] Mineralogical GGBFS compositions were semiquantitatively calculated using internal standard [12]  and reference intensity ratio (RIR) methods [16]; the results are shown in Table 1. and reference intensity ratio (RIR) methods [16]; the results are shown in Table 1. 

S-Slag

K-Slag

D-Slag Reference patterns for identified phases

00-005-0586 (Calcite) 00-077-2010 (CaO) 01-085-0796 (Quartz) 01-080-0787 (Anhydrite)

98-016-1628 (Gypsum)

5

10

20

30

40

50

Position [°2Theta] (Copper (Cu))

60

 

Figure 1. XRD patterns of raw ground granulated blast‐furnace slag (GGBFS) samples with identified 

Figure 1. XRD patterns of raw ground granulated blast-furnace slag (GGBFS) samples with identified crystalline phases.  crystalline phases. Table 1. Mineralogical compositions of raw GGBFSs (wt.%) from XRD analysis. 

Table 1. Mineralogical compositions of raw GGBFSs (wt.%) from XRD analysis. Glass Content  Raw  CaSO4  CaSO4∙2H2O  Glass  CaO  Calcite  Quartz  Without Anhydrite  Glass Content GGBFS  (Anhydrite)  (Gypsum)  Phase  Raw CaSO4 CaSO4 ¨ 2H2 O Glass and Gypsum  CaO Calcite Quartz Without Anhydrite GGBFS (Gypsum) Phase S‐Slag  (Anhydrite) 4.7  3.2  ‐  2.6  ‐  89.5  97.2 Gypsum and K‐Slag  6.0  ‐  0.2  ‐  1.7  92.1  98.2  S-Slag 4.7 3.2 2.6 89.5 97.2 D‐Slag  ‐  ‐  ‐  2.4  ‐  97.6  97.6  K-Slag 6.0 0.2 1.7 92.1 98.2 D-Slag 2.4 97.6 97.6 Although quantifications using the RIR method are generally less accurate than those obtained  via the Rietveld method, the RIR method was chosen for this study because (1) this method is much  Although quantifications using the RIR method are generally less accurate than those obtained easier to use; and (2) the resolutions of the measured XRD patterns in this study were not sufficiently  via the Rietveld method, the RIR method was chosen for this study because (1) this method is much high to produce notable differences between these two methods. To increase the accuracy of the RIR  easiermethod, more than 10 reference patterns for each phase were selected from the PDF‐2 database and  to use; and (2) the resolutions of the measured XRD patterns in this study were not sufficiently high averaged for quantification.  to produce notable differences between these two methods. To increase the accuracy of the RIR In Table 1, anhydrite and gypsum are noted as the external chemicals, which are conventionally  method, more than 10 reference patterns for each phase were selected from the PDF-2 database and incorporated  during  the  milling  process  for  manufacturing  GGBFS;  CaO  is  often  incorporated  in  averaged for quantification. Korea to meet the compositional requirements of the Korean Standards Association (KSA) for GGBFS 

Materials 2016, 9, 185

4 of 11

In Table 1, anhydrite and gypsum are noted as the external chemicals, which are conventionally incorporated during the milling process for manufacturing GGBFS; CaO is often incorporated in Korea to meet the compositional requirements of the Korean Standards Association (KSA) for GGBFS (i.e., Materials 2016, 9, 185  4 of 11  KSB > 1.6); thus, to correctly compare the content of the glass phase between GGBFSs, the anhydrite, gypsum, and >  CaO becompare  excluded. After these were excluded, only (i.e.,  KSB  1.6); content thus,  to should correctly  the  content  of  the chemicals glass  phase  between  GGBFSs,  the small anhydrite, gypsum, and CaO content should be excluded. After these chemicals were excluded, only  differences were found in the content of the raw GGBFS glass phases; however, the lowest content small  differences  were  found  in  the  content  of  the  raw  GGBFS  glass  phases;  however,  the  lowest  the of S-Slag’s glass phase might indicate the lowest potential for strength development, although content  of  S‐Slag’s  glass  phase  might  indicate  the  lowest  potential  for  strength  development,  relationship between glass content and strength remains uncertain [17]. although the relationship between glass content and strength remains uncertain [17].  The oxide compositions of the raw GGBFSs are presented in Table 2. Because it is known The oxide compositions of the raw GGBFSs are presented in Table 2. Because it is known that  that the content of CaO, Al2 O3 , SiO2 , MgO, Na2 O, and K2 O influence the hydraulic reactivity of the content of CaO, Al2O3, SiO2, MgO, Na2O, and K2O influence the hydraulic reactivity of GGBFS in  GGBFS in blended Portland cements and cementless GGBFS binders [17], study  this study calculated blended  Portland  cements  and  cementless  GGBFS  binders  [17],  this  calculated  three three compositional indicators: basicity (KSB) (= (CaO + MgO + Al O )/SiO ) from the Korean Standards 3 2 compositional indicators: basicity (KSB) (= (CaO + MgO + Al22O3)/SiO 2) from the Korean Standards  Association (KSA) [18]; thethe  chemical modulus (CaO+ +MgO)/SiO MgO)/SiO the atomic Association  (KSA)  [18];  chemical  modulus (CM) (CM)  (= (=  (CaO  2)  [19];  and and the  atomic  2 ) [19]; percentage of network-modifying elements glass phase  phase(Net‐MD)  (Net-MD) atomic percentage percentage  of  network‐modifying  elements in in  the the  glass  (=  (= atomic  percentage  of    of (Ca +(Ca + Na + K + Mg)) [17], as shown in Table 1. In Net‐MD, the externally added fractions of Ca were  Na + K + Mg)) [17], as shown in Table 1. In Net-MD, the externally added fractions of Ca were excluded. Since their higher values suggest the higher potential reactivity of GGBFS, these indicators  excluded. Since their higher values suggest the higher potential reactivity of GGBFS, these indicators implied  that hydraulic the  hydraulic  reactivity  of  the  S‐Slag  would  be  the  highest,  while  that  K‐Slag  implied that the reactivity of the S-Slag would be the highest, while that of of  thethe  K-Slag would would  be  the  lowest.  The  LOI  values  per  the  TGA  were  2.0%,  2.5%,  and  2.0%  in  weight  for  the    be the lowest. The LOI values per the TGA were 2.0%, 2.5%, and 2.0% in weight for the S-, K-, and S‐, K‐, and D‐Slags, respectively.  D-Slags, respectively. Table 2. Chemical compositions of raw GGBFSs from XRF analysis. 

Table 2. Chemical compositions of raw GGBFSs from XRF analysis. Oxide Composition (wt. %) Parameters  GGBFS  Oxide Composition CaO  SiO 2  Al2O3 MgO  SO 3 TiO2(wt. K 2%) O Fe 2O3 MnO Na2O KSB 1  CM 2  Parameters Net‐MD 3 GGBFS 3 CaO SiO2 Al2 O3 MgO SO3 TiO2 K2 O Fe2 O3 MnO Na2 O KSB 1 CM 2 S‐Slag  46.6  29.8  12.6  4.7  4.3  0.6  0.4  0.3  0.2  0.2  2.1  1.7  52.8 Net-MD S-Slag 46.6 29.8 12.6 4.7 4.3 0.6 0.4 0.3 0.2 0.2 2.1 1.7 52.8 2.6  4.1 4.1  0.9  0.6  1.0  1.4  K-SlagK‐Slag  43.4 43.4  32.8 32.8 13.613.6  2.6 0.9 0.6 1.0 0.3  0.3 0.5  0.51.8  1.8 1.4 49.9  49.9 D-SlagD‐Slag  46.3 46.3  31.8 31.8 13.513.5  4.7 0.6 0.4 0.5 0.2  0.2 0.2  0.22.0  2.0 1.6 52.8  52.8 4.7  1.8 1.8  0.6  0.4  0.5  1.6  1

2

1  KSB  KSB (basicity) = (CaO= +(CaO  MgO ++ Al in3)/SiO weight ratio; CM (chemical modulus) = (CaO + MgO)/SiO (basicity)  MgO  +  Al22O 2  in  weight  ratio;  2  CM  (chemical  modulus)  =    2 2 O3 )/SiO 3 Net-MD (atomic % of network modifying elements in glass phase) = Ca + Na + K + Mg. in weight ratio; 3 (CaO + MgO)/SiO2 in weight ratio;   Net‐MD (atomic % of network modifying elements in glass phase)  = Ca + Na + K + Mg. 

The particle-size distributions of raw GGBFS powders are presented in Figure 2. Overall, the The particle‐size distributions of raw GGBFS powders are presented in Figure 2. Overall, the  particle-size distributions were relatively similar. As seen in Figure 2, S-Slag powder is the finest, particle‐size distributions were relatively similar. As seen in Figure 2, S‐Slag powder is the finest,  while D-Slag powder is the coarsest, although the biggest difference between the cumulative curves while D‐Slag powder is the coarsest, although the biggest difference between the cumulative curves  appeared at a mere ~5%, around the size of 8 µm. Because the higher content of the small-sized appeared  at  a  mere  ~5%,  around  the  size  of  8  μm.  Because  the  higher  content  of  the  small‐sized  particles tendstends  to increase the hydraulic reactivity of GGBFS [20,21], S-Slag seems to beto  more favorable particles  to  increase  the  hydraulic  reactivity  of  GGBFS  [20,21],  S‐Slag  seems  be  more  in terms of developing greater strength. favorable in terms of developing greater strength. 

Density distribution

0.9

S-Slag

90

0.8

K-Slag

80

0.7

D-Slag

70 60

0.6

50

0.5 ~ 5% at most

0.4

40

0.3

30

0.2

20

0.1

10

Cumulative distribution (%)

100

1.0

0

0.0 0.1

1

10 Particle size (μm)

100

 

Figure 2. Particle‐size distribution of raw GGBFS. 

Figure 2. Particle-size distribution of raw GGBFS.

Table 3 summarizes all of the measured parameters, which are known to be important factors  for producing higher hydraulic reactivity, with relative intensities from the lowest (●) to the highest 

Materials 2016, 9, 185

5 of 11

Table 3 summarizes all of the measured parameters, which are known to be important factors for producing higher hydraulic reactivity, with relative intensities from the lowest ( ) to the highest ( ) Materials 2016, 9, 185  5 of 11  to compare the values of parameters between raw GGBFS samples. Overall, the S-Slag showed the highest (●●●) to compare the values of parameters between raw GGBFS samples. Overall, the S‐Slag showed  potential, while the D-Slag demonstrated the lowest potential for high-strength production. the highest potential, while the D‐Slag demonstrated the lowest potential for high‐strength production. 

Table 3. Relative comparison of material parameters between raw GGBFS samples. Table 3. Relative comparison of material parameters between raw GGBFS samples. 

Positive Parameters for Increasing Hydraulic Reactivity of GGBFS

Positive Parameters for Increasing Hydraulic Reactivity of GGBFS Values of CM and KSB Values of CM and KSB  Atomic % content of network modifying elements    Atomic % content of network modifying elements (Ca + (Ca + Na + K + Mg) (Net‐MD) in glass phase  Na + K + Mg) (Net-MD) in glass phase Content of calcium sulfate source  Content of calcium sulfate source Fraction of smaller particles  Fraction of smaller particles Content of alkalis (i.e., Na2O and K2O)  Content of alkalis (i.e., Na2 O and K2 O) Content of glass phase without external chemicals 

Content of glass phase without external chemicals *

S-Slag

K-Slag

D-Slag

S‐Slag  K‐Slag  D‐Slag ●●●  ●●  ●●●  ●●● 

●● 

●●● 

●●●  ●●●  ●●  ●● 

●●  ●●  ●●●  ●●● 

●  ●  ●●  ●● 

* ●●●: relatively high; ●●: relatively intermediate; ●: relatively low.  : relatively high; : relatively intermediate; : relatively low.

3.2. Characterization of Hardened Pastes  The compressive strength testing results of all the hardened pastes are illustrated in Figure 3.  3.2. Characterization of Hardened Pastes

The  D‐paste  shows  a  curve  similar  to  those  that  appear  in  the  literature  [5,6];  thus,  the  curve  is 

Theprobably typical of the self‐activation of GGBFS without the addition of calcium sulfate for strength  compressive strength testing results of all the hardened pastes are illustrated in Figure 3. development;  S‐  and  demonstrate  strength  The D-paste shows however,  a curve the  similar to K‐pastes  those that appear quite  in thedifferent  literature [5,6];developments.  thus, the curve is Although the greatest strength of the S‐paste was expected, it was surprising that it was even greater  probably typical of the self-activation of GGBFS without the addition of calcium sulfate for strength than that of the Ca(OH)2‐ or NaOH‐activated GGBFS described in earlier studies [7,22,23]. Note that  development; however, the S- and K-pastes demonstrate quite different strength developments. the K‐ and D‐pastes produced similarly low values of strength at 28 days; however, the early strength  Although the greatest strength of the S-paste was expected, it was surprising that it was even greater of the K‐paste, at 7 days, was significantly higher than that of the D‐paste; this is likely due to the  than that of the Ca(OH)2 - or NaOH-activated GGBFS described in earlier studies [7,22,23]. Note that presence of a sulfate source in K‐Slag, because the calcium sulfate source could dramatically increase  early strengths by forming ettringite [10].  the K- and D-pastes produced similarly low values of strength at 28 days; however, the early strength In this study, the strength was not determined by any single dominant parameter; rather, it was  of the K-paste, at 7 days, was significantly higher than that of the D-paste; this is likely due to the determined by the comprehensive consequence of all the material parameters of GGBFS (Table 3).  presence of a sulfate source in K-Slag, because the calcium sulfate source could dramatically increase The relative comparison of these parameters predicted that the S‐ and D‐pastes would produce the  early strengths by forming ettringite [10]. highest and the lowest strengths, respectively. 

45 S-paste

Compressive Strength (MPa)

40

38.7

K-paste

35

D-paste

30 25

22.1

20

16.2

15

10.7

13.9

10 3.2

5 0 0

7

14 Curing Days

21

28

 

Figure 3. Strength developments of self‐activation of GGBFS mixed with purified water. 

Figure 3. Strength developments of self-activation of GGBFS mixed with purified water. Figure 4 shows the XRD patterns with the identified phases for hardened pastes at 7 and 28 days.  In the XRD patterns, the reference patterns from the ICDD PDF‐2 database were presented with the  In this study, the strength was not determined by any single dominant parameter; rather, it was PDF numbers for the identified phases below the experimental XRD patterns; however, because the 

determined by the comprehensive consequence of all the material parameters of GGBFS (Table 3). The relative comparison of these parameters predicted that the S- and D-pastes would produce the highest and the lowest strengths, respectively.

Materials 2016, 9, 185

6 of 11

Materials 2016, 9, 185 

6 of 11 

Figure 4 shows the XRD patterns with the identified phases for hardened pastes at 7 and 28 days. ICDD PDF‐2 database did not contain any amorphous information, the reference pattern for C‐S‐H was  In the XRD patterns, the reference patterns from the ICDD PDF-2 database were presented with the taken from the XRD pattern of the 22‐year‐old β‐C2S paste [24] after eliminating the peaks of Ca(OH)2.  PDF numbers for the identified phases below the experimental XRD patterns; however, because the As  main  reaction  products,  C‐S‐H  (calcium  silicate  hydrate)  appeared  in  all  samples,  but  ICDD PDF-2(Ca database did not contain any amorphous information, the reference pattern for C-S-H ettringite  6Al2(SO4)3(OH)12∙26H2O)  was  found  only  in  the  S‐  and  K‐pastes.  While  the  S‐paste  was taken from the XRD pattern of the 22-year-old β-C2 S paste [24] after eliminating the peaks of showed few differences in the peak intensities of ettringite between 7 and 28 days, the K‐paste peaks  Ca(OH) 2. showed some growth from 7 to 28 days. 

(a) 

(b)

Figure 4. XRD patterns and identified phases for hardened pastes at (a) 7; and (b) 28 days.  Figure 4. XRD patterns and identified phases for hardened pastes at (a) 7; and (b) 28 days.

The  XRD  patterns  suggest  that  very  small  quantities  of  akermanite  (Ca2MgSi2O7)  might  be  As main reaction products, C-S-H (calcium silicate hydrate) appeared in all samples, but ettringite formed in all hardened pastes during hydration, since there was no akermanite in any of the raw  (CaGGBFS samples. The calcite (CaCO only in the S-2) were the remaining crystalline phases from  and K-pastes. While the S-paste showed few 3) and quartz (SiO 6 Al2 (SO4 )3 (OH)12 ¨ 26H2 O) was found differences in the peak intensities of ettringite between 7 and 282days, the K-paste peaks showed some the raw GGBFS. Unlike previous studies on CaO‐ and Ca(OH) ‐activated GGBFS [7,22], none of the  growth from 7 to 28 any  days.formation  of  Ca(OH)2  at  any  of  the  ages,  probably  due  to  a  shortage  of    samples  showed  available Ca ions.  The XRD patterns suggest that very small quantities of akermanite (Ca2 MgSi2 O7 ) might be formed The  temporal  changes  the  pH  values  the  was diluted  (w/G  =  were  for    in all hardened pastes duringof hydration, sincefor  there no pastes  akermanite in2)  any of monitored  the raw GGBFS seven  days  (as  shown  Figure  5),  (SiO during  which  following  observations    samples. The calcite (CaCOin  quartz the the  remaining crystalline phaseswere  frommade:  the raw 3 ) and 2 ) were (1) The S‐paste showed the highest pH values for most of the seven days; (2) the D‐paste exhibited  GGBFS. Unlike previous studies on CaO- and Ca(OH)2 -activated GGBFS [7,22], none of the samples distinctively lower pH values (~12) than those of the K‐paste (~12.7) during the first day; (3) however,  showed any formation of Ca(OH)2 at any of the ages, probably due to a shortage of available Ca ions. the  pH temporal values  of  the  D‐  and  K‐pastes  became  roughly  although  the for values  The changes of the pH values for the dilutedsimilar  pastesafter  (w/Gone  = 2)day,  were monitored seven fluctuated over time.  days (as shown in Figure 5), during which the following observations were made: (1) The S-paste

showed the highest pH values for most of the seven days; (2) the D-paste exhibited distinctively lower pH values (~12) than those of the K-paste (~12.7) during the first day; (3) however, the pH values of the D- and K-pastes became roughly similar after one day, although the values fluctuated over time.

Materials 2016, 9, 185

7 of 11

Materials 2016, 9, 185 

7 of 11 

14.0 13.5

pH

13.0 12.5 12.0 11.5

S-paste (w/G = 2)

K-paste (w/G = 2)

D-paste (w/G = 2)

11.0 0

1

2

3 Days

4

5

6

7

 

Figure 5. Temporal changes in pH values of diluted pastes of GGBFS powders (w/G = 2) for seven days. 

Figure 5. Temporal changes in pH values of diluted pastes of GGBFS powders (w/G = 2) for seven days. An earlier study [4] reported that the pH values of pore solutions or diluted pastes were mainly  governed by the dissolution of Ca, Na, and K ions from the GGBFS when it was mixed with pure  An earlier study [4] reported that the pH values of pore solutions or diluted pastes were mainly water. When the pH increases, the dissolution of GGBFS is promoted [3,4,17]; thus, the higher pH value  governed by the dissolution of Ca, Na, and K ions from the GGBFS when it was mixed with pure water. of the diluted paste indirectly indicates the higher degree of the dissolution of GGBFS in the paste.  When the pH increases, the dissolution of GGBFS is promoted [3,4,17]; thus, the higher pH value of In this study, the pH of diluted GGBFS pastes seemed to be more affected by (1) the particle‐size  the diluted paste indirectly indicates the higher degree of the dissolution of GGBFS in the paste. distribution; (2) the alkali content; and (3) the calcium sulfate content, rather than the other material  In this study, such  the pH of diluted GGBFS pastes seemed to As  be more by (1) the particle-size parameters  as  glass  content  or  chemical  modulus  [15].  for  the affected particle‐size  distribution,  GGBFS with a higher fraction of small particles tended to show the higher pH value of the solution.  distribution; (2) the alkali content; and (3) the calcium sulfate content, rather than the other material Despite  small alkali  content  (less modulus than 1.1%) [15]. in all As the  GGBFS  samples,  the distribution, alkalis  in  raw GGBFS parameters such as the  glass content or chemical for the particle-size GGBFS may increase the pH value of the diluted pastes more significantly than CaO or MgO [25];  with a higher fraction of small particles tended to show the higher pH value of the solution. note that a high pH value (~14) was often achieved by the dissolved alkalis in the pore solution of  Despite the small alkali content (less than 1.1%) in all the GGBFS samples, the alkalis in raw cementitious materials [3]. However, in this study, the alkali content in the GGBFS varied slightly,  GGBFS with  maydifferences  increase the value of the diluted pastes morerather  significantly than CaO or the  MgO [25]; that pH ranged  from  0.6%  to  1.1%.  Therefore,  than  the  alkali  content,  note that a high pH value (~14) was often achieved by the dissolved alkalis in the pore solution of additional calcium sulfate content (i.e., gypsum and anhydrite) could be more responsible for the pH,  given  materials that  a  high [3]. concentration  3  tends  increase  solubility  of  alkalis  cementitious  cementitious However, of  in SO this study,to the alkalithe  content in the GGBFSin varied slightly, with materials [26].  differences that ranged from 0.6% to 1.1%. Therefore, rather than the alkali content, the additional The high content of alkalis and calcium sulfates in the K‐Slag explains why the pH values of the  calcium sulfate content (i.e., gypsum and anhydrite) could be more responsible for the pH, given that K‐paste were higher than those of the D‐paste during the first 24 h; after 24 h, however, the extensive  a high concentration of SO3 tends to increase the solubility of alkalis in cementitious materials [26]. formation of ettringite in the K‐paste (see Figure 4) may have led to the low pH values (~11.8) for the  Thefirst three days due to the depletion of dissolved Ca and sulfate ions; after four days, the pH of the  high content of alkalis and calcium sulfates in the K-Slag explains why the pH values of the K-pasteK‐paste gradually increased due to the further dissolution of Ca; however, because there were few  were higher than those of the D-paste during the first 24 h; after 24 h, however, the extensive sulfate  ions  left  in  the  dissolution  behavior  of  K‐Slag  to  be  similar (~11.8) to    formation of ettringite inthe  theK‐paste,  K-paste (see Figure 4) may have led towas  thelikely  low pH values for that of D‐Slag.  the first three days due to the depletion of dissolved Ca and sulfate ions; after four days, the pH of Although the alkali content of S‐Slag was the same as that of D‐Slag, or even less than that of    the K-paste gradually increased due to the further dissolution of Ca; however, because there were K‐Slag, the significantly higher calcium sulfate content in S‐Slag was likely to significantly increase  few sulfate ions left in the K-paste, the dissolution behavior of K-Slag was likely to be similar to that the dissolution of alkalis, resulting in the highest pH values.  of D-Slag. Figure 6 illustrates the gradual reduction of the GGBFS glass phases, which were manifested in  amorphous‐hump  curing was days. the Note  that as the  continuing  decrease  of  amorphous  Although the alkalichanges,  contentwith  of S-Slag same that of D-Slag, or even less than that of indicates  the  progressive  of  the in GGBFS  S‐paste  exhibited  K-Slag, humps  the significantly higher calciumdissolution  sulfate content S-Slagglass  wasphase.  likely The  to significantly increase the significant further dissolution of the glass phase beyond seven days, which must be responsible for  dissolution of alkalis, resulting in the highest pH values. the significant strength increase of the S‐paste after seven days, while the K‐ and D‐pastes showed  Figure 6 illustrates the gradual reduction of the GGBFS glass phases, which were manifested in much  smaller  amorphous‐hump  decreases  before  seven  days  and  no  further  reduction  after    amorphous-hump seven days.  changes, with curing days. Note that the continuing decrease of amorphous humps indicates the progressive dissolution of the GGBFS glass phase. The S-paste exhibited significant The larger amorphous‐hump reduction of the S‐paste may be explained by the above discussions  on pH and by several beneficial characteristics of S‐Slag in terms of hydraulic reactivity, which are  further dissolution of the glass phase beyond seven days, which must be responsible for the significant strengthsummarized in Table 3. In particular, according to the network theory by Zachariasen [17,27], Na, K,  increase of the S-paste after seven days, while the K- and D-pastes showed much smaller Ca, and Mg are the typical network‐modifying elements in vitreous blast‐furnace slag, and thus the  amorphous-hump decreases before seven days and no further reduction after seven days. highest  content  of  these  metallic  elements  of  S‐Slag  was  likely  to  increase  the  degree  of 

The larger amorphous-hump reduction of the S-paste may be explained by the above discussions on pH and by several beneficial characteristics of S-Slag in terms of hydraulic reactivity, which are summarized in Table 3. In particular, according to the network theory by Zachariasen [17,27], Na, K, Ca, and Mg are the typical network-modifying elements in vitreous blast-furnace slag, and thus the highest content of these metallic elements of S-Slag was likely to increase the degree of depolymerization of the network structure of the amorphous phase, contributing to the higher degree of dissolution of glass in the S-paste.

Materials 2016, 9, 185

8 of 11

Materials 2016, 9, 185 

8 of 11 

depolymerization of the network structure of the amorphous phase, contributing to the higher degree 

The continuing dissolution of the glass phase after seven days in the S-paste was probably related of dissolution of glass in the S‐paste.  to the residual gypsum at seven days. In this study, calcium sulfates were consumed mainly for The  continuing  dissolution  of  the  glass  phase  after  seven  days  in  the  S‐paste  was  probably  producing ettringite. Despite the large formation of ettringite in the S-paste at seven days, unlike the related to the residual gypsum at seven days. In this study, calcium sulfates were consumed mainly  K-paste,for producing ettringite. Despite the large formation of ettringite in the S‐paste at seven days, unlike  its XRD pattern continued to show residual amounts of gypsum. Given that the XRD analysis the K‐paste, its XRD pattern continued to show residual amounts of gypsum. Given that the XRD  of the S-paste showed little change in terms of ettringite after seven days, the residual gypsum was analysis  the  S‐paste  showed  little  change  in  terms ofof alkalis ettringite  after  days,  the  residual  probably used of  mainly for facilitating the dissolution and theseven  GGBFS glass phase beyond gypsum  was  probably  used  mainly  for  facilitating  the  dissolution  of  alkalis  and  the  GGBFS  glass  seven days. phase beyond seven days. 

(a) 

(b)

  (c) Figure 6. Gradual reduction of GGBFS glass phase with curing days. (a) S‐paste; (b) K‐paste; (c) D‐paste. 

Figure 6. Gradual reduction of GGBFS glass phase with curing days. (a) S-paste; (b) K-paste; (c) D-paste. Figure  7  provides  the  TGA  results  with  derivative  of  thermogravimetry  (DTG)  of  the  28‐day  hardened  samples  with  the  identified  phases.  The  total  weight  losses  of  all  samples  in  this  study  appeared  to  be  significantly  smaller  than  those  of  the  hardened  GGBFS  samples  with  various  Figure 7 provides the TGA results with derivative of thermogravimetry (DTG) of the 28-day activators described in the literature [7,23]. The DTG results displayed C‐S‐H, ettringite, and calcite  hardened samples with the identified phases. The total weight losses of all samples in this study as major weight losses (see Table 4), and also showed a few unknown phases that were not identified  appeared to be significantly smaller than those of the GGBFS samples with activators in  the  XRD  at  several  high  temperatures  over  500 hardened °C.  The  D‐paste  did  not  show  any various formation    of ettringite.  described in the literature [7,23]. The DTG results displayed C-S-H, ettringite, and calcite as major Note  that  all  pastes  similarly  had  peaks  in  the  temperature  range that of  calcite  weight losses (see Table 4), and also showed a few unknown phases weredecomposition,  not identified  in the 600–650 °C, in the DTG. However, the XRD results show that the weight loss in the K‐paste was not  ˝ XRD at several high temperatures over 500 C. The D-paste did not show any formation of ettringite.

Note that all pastes similarly had peaks in the temperature range of calcite decomposition, 600–650 ˝ C, in the DTG. However, the XRD results show that the weight loss in the K-paste was not a calcite but rather an unknown phase, because calcite was not detected in the XRD. Additionally, there was no possibility of calcite formation during the TGA test because the TGA test was performed in a nitrogen gas environment. Thus, the weight losses in the S- and D-pastes in that temperature range were likely to include not only calcite, but also the same unknown phase found in the K-paste.

Materials 2016, 9, 185 

9 of 11 

a calcite but rather an unknown phase, because calcite was not detected in the XRD. Additionally,  there was no possibility of calcite formation during the TGA test because the TGA test was performed  Materials 2016, 9, 185 9 of 11 in a nitrogen gas environment. Thus, the weight losses in the S‐ and D‐pastes in that temperature  range were likely to include not only calcite, but also the same unknown phase found in the K‐paste.  100

1.6 S-paste

98

D-paste

Ettringite

1.0

TGA curves

94

1.2

C-S-H 0.8

92

DTG (%/°C)

96 TG (wt. %)

1.4

K-paste

0.6 90

Calcite and unknown phase

0.4

DTG curves 88

Unknown

0.2 0.0

86 0

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 Temperature (Ԩ)

 

Figure 7. TGA and DTG results of 28‐day hardened paste samples. 

Figure 7. TGA and DTG results of 28-day hardened paste samples. Table 4. Temperature range of weight loss for reaction products from TGA analysis. 

Table 4. Temperature range of weight loss for reaction products from TGA analysis. Phase 

Phase C‐S‐H 

C-S-H Ettringite  Gypsum  Ettringite Calcite (CaCO 3)  Gypsum

Temperature Range of Weight Loss  105 °C [28]  Temperature Range of Weight Loss 120–145 °C [25]  105 ˝ C [28] 106 ± 4 °C for first peak, 129 ± 4 °C for second peak [29]  120–145 ˝ C [25] C‐S‐H loses its water over a broad temperature range, but the maximum  106 ˘ 4 ˝ C forloss occurs at 120–160 °C [30]  first peak, 129 ˘ 4 ˝ C for second peak [29] C-S-H loses its water over a broad temperature range, but the 100–200 °C for C‐S‐H(I), 115–125 °C for C‐S‐H [3]  maximum loss occurs at 120–160 ˝ C [30] 183 ± 3 °C [29]  ˝ 100–200 C for C-S-H(I), 115–125 ˝ C for C-S-H [3] 80–130 °C [30,31]  80–220 °C (max. 167 °C) via transformation to anhydrite [32]  183 ˘ 3 ˝ C [29] 80–130 ˝ C [30,31] 100–200 °C due to dehydration [33]  720–760 °C [25]  80–220 ˝ C (max. 167 ˝ C) via transformation to anhydrite [32] ˝ 680–760 °C [30]  100–200 C due to dehydration [33] ˝

C [25] It  is  difficult  to  accurately  estimate  the  weight 720–760 percentage  of  ettringite  for  hardened  samples  Calcite (CaCO 3) ˝ C [30] 680–760 because its weight‐loss peak closely overlaps with the C‐S‐H peak; however, note that the ettringite  started to decompose at a temperature (near 80 °C) lower than that of the C‐S‐H (over 100 °C) [31];  It isthus, the greatest weight loss of the S‐paste under 100 °C in the TGA indicates that it produced the  difficult to accurately estimate the weight percentage of ettringite for hardened samples largest quantity of ettringite, similar to the XRD result.  because its weight-loss peak closely overlaps with the C-S-H peak; however, note that the ettringite Up  to  a  temperature  of  200  °C,  the  S‐paste  displayed  a  much  larger  weight  loss    started (i.e.,  to decompose at a temperature (near 80 ˝ C) lower than that of the C-S-H (over 100 ˝ C) [31]; C‐S‐H +  ettringite)  than  that  of  the  K‐paste;  thus,  the  large formation  of ettringite  and  C‐S‐H  thus, the greatest weight loss of the S-paste under 100 ˝ C in the TGA indicates that it produced the could be one of the possible causes of the S‐paste’s best strength.  Despite the large formation of ettringite in K‐paste, it is interesting that the 28‐day strength of  largest quantity of ettringite, similar to the XRD result. ˝ C, than  only  slightly  greater  of  the  displayed D‐paste.  The aD‐paste  have  produced a  Upthe  toK‐paste was  a temperature of 200 the that  S-paste muchmay  larger weight loss (i.e., higher quantity of C‐S‐H than K‐paste because the values of the DTG curves over 100 °C were similar  C-S-H + ettringite) than that of the K-paste; thus, the large formation of ettringite and C-S-H could be between the D‐ and K‐pastes, although the curve of the K‐paste also contained a large ettringite peak. 

one of the possible causes of the S-paste’s best strength. Despite the large formation of ettringite in K-paste, it is interesting that the 28-day strength of the K-paste was only slightly greater than that of the D-paste. The D-paste may have produced a higher quantity of C-S-H than K-paste because the values of the DTG curves over 100 ˝ C were similar between the D- and K-pastes, although the curve of the K-paste also contained a large ettringite peak. 4. Conclusions This study collected three commercial GGBFS powders from Singapore, Korea, and the United Arab Emirates. These GGBFS samples were hydrated only with purified DI water to estimate their cementing capabilities as independent cementitious binders without activators. The following

Materials 2016, 9, 185

10 of 11

conclusions were made based on an analysis of the results of particle-size distribution, XRF, XRD, compressive strength tests, TGA, and pH measurement: (1)

(2)

(3) (4) (5) (6)

(7)

The raw GGBFS samples showed quantitative and qualitative differences in the material parameters, which were compositional indicators (CM, KSB, and Net-MD), and particle-size distribution, as well as calcium-sulfate, alkali, and glass-phase content. In this study, the strength was not governed by any single dominant parameter, but was rather the comprehensive consequence of all material parameters of the raw GGBFS (summarized in Table 3); the relative comparison of these parameters predicted that the S- and D-pastes would produce the highest and the lowest strengths, respectively. S-Slag produced a high strength that was comparable to that of alkali- or Ca(OH)2 activated GGBFS. All paste samples produced C-S-H, but only the S- and K-pastes formed ettringite as a main-reaction product; the ettringite formation improved the early strength of the S- and K-pastes. The S-paste formed the largest amount of C-S-H and ettringite, which could be one of the possible causes for the best strength of the S-paste. The degree of dissolution of GGBFS with purified water was indirectly estimated through the monitoring of the pH of diluted GGBFS paste and the gradual reduction of amorphous humps in the XRD analysis, which were increased more by the smaller particle size, the higher alkali content, and the higher calcium-sulfate content of the GGBFS than by the other material parameters, such as a high glass content; in particular, the calcium-sulfate content appeared to be the most responsible for the dissolution. The highest degree of dissolution of GGBFS was found in the S-paste, which also showed the extended dissolution of the glass phase after seven days, unlike the other pastes. These also explain the best strength of the S-paste.

Acknowledgments: This research was supported by the Commercializations Promotion Agency for R&D Outcomes (COMPA), funded by the Ministry of Science, ICT and Future Planning (MISP) (2015K000130). Author Contributions: Hyeoneun Park and Jae Eun Oh conceived and designed the experiments. Hyeoneun Park and Yeonung Jeong performed the experiments and analyzed the data. Jae-Hong Jeong contributed materials. All the authors discussed the results. Hyeoneun Park wrote the manuscript. Jae Eun Oh revised the manuscript and supervised this work. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4. 5. 6. 7. 8.

9.

Slag Cement in Concrete and Mortar; ACI report 233R-03; American Concrete Institute: Farmington Hills, MI, USA, 2003. Standard Terminology Relating to Concrete and Concrete Aggregate; ASTM C 125; ASTM: West Conshohocken, PA, USA, 2011. Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997. Song, S.; Jennings, H.M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag1. Cem. Concr. Res. 1999, 29, 159–170. [CrossRef] Bellmann, F.; Stark, J. Activation of blast furnace slag by a new method. Cem. Concr. Res. 2009, 39, 644–650. [CrossRef] Chen, Q.-H.; Tagnit-Hamou, A.; Sarkar, S.L. Strength and Microstructural Properties of Water Glass Activated Slag; MRS Proceedings; Cambridge University Press: Cambridge, UK, 1991; p. 49. Kim, M.S.; Jun, Y.; Lee, C.; Oh, J.E. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 2013, 54, 208–214. [CrossRef] Jeong, Y.; Oh, J.E.; Jun, Y.; Park, J.; Ha, J.-H.; Sohn, S.G. Influence of four additional activators on hydrated-lime [Ca(OH)2 ] activated ground granulated blast-furnace slag. Cem. Concr. Comp. 2016, 65, 1–10. [CrossRef] Karim, M.R.; Hossain, M.M.; Khan, M.N.N.; Zain, M.F.M.; Jamil, M.; Lai, F.C. On the utilization of pozzolanic wastes as an alternative resource of cement. Materials 2014, 7, 7809–7827. [CrossRef]

Materials 2016, 9, 185

10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.

24. 25.

26. 27. 28. 29. 30.

31. 32. 33.

11 of 11

Matschei, T.; Bellmann, F.; Stark, J. Hydration behaviour of sulphate-activated slag cements. Adv. Cem. Res. 2005, 17, 167–178. [CrossRef] Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency; ASTM C 305–11; American Society for Testing and Materials: West Conshohocken, PA, USA, 2011. Madsen, I.C.; Scarlett, N.V.Y. Quantitative Phase Analysis, Powder Diffraction: Theory and Practice; Royal Society of Chemistry: Cambridge, UK, 2008; pp. 298–331. PANalytical; X’Pert HighScore Plus; PANalytical: Almelo, The Netherlands, 2012. PDF-2; Database Sets; International Centre for Diffraction Data: Newtown Square, PA, USA, 2011. Allmann, R.; Hinek, R. The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 412–417. [CrossRef] [PubMed] Hubbard, C.R.; Snyder, R.L. RIR—Measurement and use in quantitative XRD. Powder Diffr. 1988, 3, 74–77. [CrossRef] Shi, C.; Roy, D.; Krivenko, P. Alkali-activated Cements and Concretes; CRC Press: New York, NY, USA, 2006. Ground Granulated Blast-Furnace Slag for Use in Concrete; Korean Standard Association: Seoul, Korea, 2009; Volume 2563. Specification for Ground Granulated Blastfurnace slag for Use with Portland Cement; The British Standards Institution: London, UK, 1992; Volume 6699. Wan, H.; Shui, Z.; Lin, Z. Analysis of geometric characteristics of GGBS particles and their influences on cement properties. Cem. Concr. Res. 2004, 34, 133–137. [CrossRef] Wang, P.Z.; Trettin, R.; Rudert, V. Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems. Adv. Cem. Res. 2005, 17, 161–167. [CrossRef] Yang, K.-H.; Cho, A.-R.; Song, J.-K.; Nam, S.-H. Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr. Build. Mater. 2012, 29, 410–419. [CrossRef] Ben Haha, M.; Le Saout, G.; Winnefeld, F.; Lothenbach, B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011, 41, 301–310. [CrossRef] Mohan, K.; Taylor, H.F.W. Analytical electron microscopy of cement pastes: IV, β-dicalcium silicate pastes. J. Am. Ceram. Soc. 1981, 64, 717–719. [CrossRef] Bakolas, A.; Aggelakopoulou, E.; Moropoulou, A.; Anagnostopoulou, S. Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes. J. Therm. Anal. Calorim. 2006, 84, 157–163. [CrossRef] Hansen, W.; Pressler, E. Solubility of Ca(OH)2 and CaSO4 2H2 O in dilute alkali solutions. Ind. Eng. Chem. 1947, 39, 1280–1282. [CrossRef] Zachariasen, W.H. The atomic arrangement in glass. J. Am. Chem. Soc. 1932, 54, 3841–3851. [CrossRef] Hashem, F.; Amin, M.; El-Gamal, S. Improvement of acid resistance of Portland cement pastes using rice husk ash and cement kiln dust as additives. J. Therm. Anal. Calorim. 2013, 111, 1391–1398. [CrossRef] Sha, W.; Pereira, G. Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag. Cem. Concr. Res. 2001, 31, 327–329. [CrossRef] Sha, W. Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement. In Proceedings of the International Conference on Advances in Building Technology, Hong Kong, China, 4–6 December 2002; pp. 881–888. Ramachandran, V.S. Applications of Differential Thermal Analysis in Cement Chemistry; Chemical Publishing Company, Inc.: New York, NY, USA, 1969. Yu, Q.; Brouwers, H. Gypsum: An investigation of microstructure and mechanical properties. In Proceedings 8th fib International PhD Symposium in Civil Engineering, Lyngby, Denmark, 20–23 June 2010; pp. 20–23. Vassileva, C.G.; Vassilev, S.V. Behaviour of inorganic matter during heating of Bulgarian coals: 1. Lignites. Fuel Process. Technol. 2005, 86, 1297–1333. [CrossRef] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents