Miguel A. Mendez-Rojas,(1) Satish G. Bodige,(1) Krzysztof Ejsmont,(1) and William H. Watson(1)*. Received June 27, 2001. A series of phenyldialkylamine, ...
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
C 2002) Journal of Chemical Crystallography, Vol. 31, No. 4, April 2001 (°
Structures and nonlinear optical properties of polar 2-amino-1,2,3-triazolequinone derivatives Miguel A. Mendez-Rojas,(1) Satish G. Bodige,(1) Krzysztof Ejsmont,(1) and William H. Watson(1) * Received June 27, 2001
A series of phenyldialkylamine, dimethoxyphenyl, and nitrothiophene derivatives of 2-amino-1,2,3-triazolequinones was characterized by NMR, IR, mass spectroscopy, cyclic voltammetry, and chemical analyses. The solvatochromic procedure was used to evaluate the potential of nine compounds for nonlinear optical applications, and the possible failure of this model is discussed. The crystal structures of seven compounds were deter˚ b = 7.633(2) A, ˚ c = 15.940(3) A, ˚ β = 105.19(3)◦ ; mined: (4) P21 /c, a = 15.430(3) A, ˚ b = 9.6579(9) A, ˚ c = 18.517(2) A, ˚ β = 95.907(2)◦ ; (5) P21 /c, a = 20.201(2) A, ˚ b = 8.515(3) A, ˚ c = 17.312(5) A, ˚ α = 89.347(7)◦ , β = (6) P-1, a = 7.769(2) A, ˚ b = 8.9605(8) A, ˚ c = 11.630(1) A, ˚ 83.219(6)◦ , γ = 86.001(7)◦ ; (7) P-1, a = 8.1365(7) A, ˚ b = 9.720(3) α = 79.553(2)◦ , β = 75.048(2)◦ , γ = 82.080(2)◦ ; (8) P-1, a = 8.298(3) A, ˚ c = 10.033(3) A, ˚ α = 84.803(6)◦ , β = 83.735(6)◦ , γ = 77.659(5)◦ ; (10) P21 /n, A, ˚ b = 13.980(1) A, ˚ c = 13.975(1) A, ˚ β = 106.590(2)◦ ; (12) P21 /n, a = 8.4300(7) A, ˚ b = 14.206(3) A, ˚ c = 12.758(3) A, ˚ β = 91.016(5)◦ . a = 7.715(2) A, KEY WORDS: Quinones; triazoles; nonlinear optics; solvatochromism.
tuning the HOMO and LUMO levels via ligand modification.2,3 Recently, we reported an investigation of potential nonlinear optical effects in a series of 2-amino-1,2,3-triazolequinones coupled to the ferrocene moiety.4 That study reported the use of solvatochromism as a potentially simple method for screening compounds for NLO behavior.5−7 The method works if there is a large difference in the excited-state and ground-state dipole moments with sufficient overlap of the orbitals that mixing can occur under perturbation of a polar solvent. The shifts in the UV–Visible absorption spectra arising from these perturbations can be used to estimate the hyperpolarizability (βCT ) although numerous assumptions are involved. In this paper we report the investigation
Introduction Research on new materials exhibiting nonlinear optical (NLO) behavior continues to be of primary interest in many industrial and university laboratories.1 The investigation of organometallic compounds as nonlinear optical materials is an area of more recent interest.2 These compounds often exhibit charge transfer bands in the visible region, large transition dipole moments, accessible redox centers, facile introduction of chirality, and the capability of fine (1)
Department of Chemistry, Texas Christian University, Box 298860, Fort Worth, Texas 76129. * To whom correspondence should be addressed; e-mail: w.watson@ tcu.edu.
217 C 2002 Plenum Publishing Corporation 1074-1542/01/0400-0217/0 °
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
218
Style file version Nov. 07, 2000
Mendez-Rojas, Bodige, Ejsmont, and Watson
Scheme 1.
of nine 2-amino-1,2,3-triazolequinone derivatives (Scheme 1) using the solvatochromic procedure. The crystal structures of seven of these compounds (4–8, 10, and 12) are reported in this paper. The synthesis of the starting materials 1–3 and related compounds were reported earlier.8−10 The synthetic procedures and physical data for the new compounds are described herein.
Experimental Melting points (uncorrected) were measured on a Thomas Hoover apparatus. UV–Visible absorption spectra were recorded with a Varian Cary 3 spectrophotometer in 1.0 cm quartz cells. IR spectra of solids pressed in KBr pellets were recorded on a Midac Systems FTIR at a spectral
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
2-amino-1,2,3-triazolequinone derivatives resolution of 4 cm−1 . Mass spectra were obtained on a Finnigan OWA1020 GC–MS spectrometer by the deep insertion probe method. 1 H NMR spectra were recorded on a Varian XL-300 spectrometer with CDCl3 as solvent using TMS as an internal standard. Cyclic voltammetry studies were performed on a BAS CV-50W potentiostat/galvanostat, using a standard threeelectrode microcell with a Pt disk as working electrode, a saturated calomel reference electrode (SCE) and a Pt wire as auxiliary electrode. The voltage range was from −1.6 to +1.6 V with scan rates of 50, 100, 200, and 250 mV/s. Ferrocene was added to all samples as an internal reference.11 Chemical analyses were performed by M-H-W Laboratories. All commercial reagents were used without further purification. The syntheses of starting materials and derivatives were reported previously.8−10 Synthesis 2-[1-aza-2-(4-(diethylamino)phenyl)vinyl]2-hydrobenzo[f]benzotriazole-4,9-dione (4) or 2(yliminomethylphenyl-N,N-diethylamino)naptho1,2,3-triazole-4,9-dione. To a solution of 1 (1.00 g, 4.67 mmol) in refluxing CH3 OH were added 0.83 g (4.7 mmol) of p-diethylaminobenzaldehyde. The reaction mixture was refluxed overnight, cooled to room temperature and an orange solid recovered by vacuum filtration. Slow evaporation of a nitromethane solution yielded red shiny prismatic crystals suitable for X-ray diffraction (1.64 g, yield 78%). m.p. 244–246◦ C. 1 H NMR δ 9.37 (s, 1H), 8.33 (m, 2H); 7.84 (m, 4H), 6.73 (d, 2H), 3.47 (m, 4H), 1.25 (t, 6H). IR (cm−1 ) 1688, 1612, 1572, 1528, 1498, 1493, 1435, 1416, 1398, 1362, 1321, 1275, 1238, 1225, 1177, 1155, 1076, 1010, 976, 822, 783, 718, 666, 536, 519. Mass spectrum (m/z) (%): 373 (M+ , 56), 374 (15), 358 (100), 359 (24), 172 (6), 161 (5), 159 (26), 131 (41), 133 (26), 118 (13), 114 (32), 105 (15), 104 (49), 102 (12), 91 (13), 89 (28), 77 (26), 76 (38), 65 (7), 63 (13). Anal.
10:49
Style file version Nov. 07, 2000
219 Calcd for C21 H19 N5 O2 : C, 67.55; H, 5.13. Found: C, 67.38; H, 5.25. 2-[1-aza-2-(4-(diethylamino)phenyl)vinyl]5,6-dimethyl-2-hydrobenzo-triazole-4,7-dione (5) or 2-(yliminomethylphenyl-N,N-diethylamino)benzene-1,2,3-triazole-5,6-dimethyl-1,4-dione. In methanol (15 mL), 0.50 g (2.60 mmol) of 2 was dissolved and 0.46 g (2.60 mmol) of p-diethyl-aminobenzaldehyde was added with stirring. The mixture was refluxed overnight. A dark purple solid was recovered by vacuum filtration and recrystallized from nitromethane (0.35 g, yield 38%). m.p. 233–234◦ C. 1 H NMR δ 9.29 (s, 1H), 7.81 (d, 2H), 6.69 (m, 2H), 3.46 (m, 4H), 2.19 (s, 6H), 1.23 (t, 6H). IR (cm−1 ) 2980, 1682, 1609, 1572, 1520, 1439, 1402, 1379, 1350, 1323, 1302, 1275, 1242, 1179, 1155, 1078, 1041, 1011, 980, 829, 779, 727, 719, 700, 658, 538, 517, 500, 457, 436, 413. Mass spectrum (m/z) (%): 352 (11), 351 (50, M+ ), 337 (22), 336 (100), 133 (11), 131 (13), 104 (8), 89 (7), 77 (7). Anal. Calcd for C19 H21 N5 O2 : C, 64.94; H, 6.02. Found: C, 64.86; H, 6.55. Small blue prisms suitable for X-ray analysis were grown from nitromethane by slow evaporation of the solvent. 2-[1-aza-2-(4-(diethylamino)phenyl)vinyl]5,8-dihydroxy-3-hydrobenzo[f]-benzotriazole-4, 9-dione (6) or 2-(yliminomethylphenyl-N,N-diethylamino)naphtho-1,2,3-triazole-5,8-dihydroxo4,9-dione. In 15 mL of methanol, 0.20 g (0.81 mmol) of 3 was dissolved and 0.15 g (0.85 mmol) of p-diethylaminobenzaldehyde was added with stirring. The reaction mixture was refluxed overnight. A dark blue precipitate was separated by vacuum filtration and recrystallized from nitromethane (0.050 g, yield 15%). m.p. 297–298◦ C. IR (cm−1 ) 1620, 1610, 1572, 1530, 1493, 1451, 1431, 1368, 1339, 1321, 1238, 1163, 984, 943, 853, 828, 787, 716, 585, 525, 463. 1 H NMR δ 9.39 (s, 1H), 7.88 (d, 2H), 7.34 (s, 2H), 6.75 (d, 2H), 3.14 (m, 4H), 1.56 (t, 6H), 1.25 (s, 2H). Mass spectrum (m/z) (%): 378 (23), 377 (100, M+ − C2 H5 ), 188 (13), 148 (11), 147 (33), 146 (45), 145 (44), 132 (13), 119 (15), 118 (16),
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
220 91 (12), 79 (10), 77 (16), 63 (12). Anal. Calcd for C21 H19 N5 O4 : C, 60.21; H, 4.72. Found: C, 60.03; H, 4.56. X-ray quality black needles were grown from nitromethane by slow evaporation of the solvent. 2-[1-aza-2-(4-(dimethylamino)phenyl)vinyl]2-hydrobenzo[f]benzotriazole-4,9-dione (7) or 2-(yliminomethylphenyl-N,N-dimethylamino) naphtho-1,2,3-tri-azole-4,9-dione. In 10 mL of methanol, 1.00 g (4.67 mmol) of 1 was dissolved and reacted with 0.71 g (4.7 mmol) of p-dimethyl-aminobenzaldehyde. The mixture was refluxed overnight. A red solid was recovered by vacuum filtration and recrystallized from nitromethane by slow evaporation of the solvent yielding dark purple prisms (1.30 g, yield 80%). m.p. 324–325◦ C. 1 H NMR δ 9.49 (s, 1H), 8.35 (m, 2H), 7.86 (m, 2H), 7.70 (s, 1H), 7.45 (d, 1H), 7.05 (d, 2H), 3.99 (s, 6H). IR (cm−1 ) 1690, 1613, 1572, 1531, 1491, 1472, 1437, 1400, 1375, 1323, 1281, 1240, 1223, 1200, 1179, 1169, 1126, 1044, 999, 978, 945, 820, 791, 715, 666, 654, 538, 519, 432. Mass spectrum (m/z) (%): 345 (M+ , 100), 146 (61), 132 (37), 131 (8), 119 (19), 118 (42), 114 (37), 104 (31), 102 (11), 91 (28), 89 (17), 79 (14), 76 (44), 65 (14), 63 (19). Anal. Calcd for C19 H15 N5 O2 : C, 66.08; H, 4.38. Found: C, 66.01; H, 4.36. 2-[1-aza-2-(4-(dimethylamino)phenyl)vinyl]5,6-dimethyl-2-hydrobenzo-triazole-4,7-dione (8) or 2-(yliminomethylphenyl-N,N-dimethyl)benzene1,2,3-triazole-5,6-dimethyl-1, 4-dione. In 20 mL of methanol, 0.50 g (2.6 mmol) of 2 was dissolved and refluxed with 0.40 g (2.6 mmol) of p-dimethylaminobenzaldehyde. After refluxing the mixture overnight, the resulting dark red solid was recovered by vacuum filtration and recrystallized from nitromethane by slow evaporation of the solvent yielding dark purple needles (0.25 g, yield 29%). m.p. 258–259◦ C. 1 H NMR δ 9.32 (s, 1H), 7.84 (d, 2H), 6.74 (d, 2H), 3.11 (s, 6H), 2.20 (s, 6H). IR (cm−1 ) 1674, 1611, 1576, 1545, 1435, 1408, 1366, 1302, 1277, 1231, 1209, 1177, 1167, 1125, 1032, 999, 984, 939, 826, 789, 721, 685, 662, 567, 540, 523, 476. Mass spectrum (m/z) (%): 325 (10), 324 (21), 323 (100, M+ ),
Style file version Nov. 07, 2000
Mendez-Rojas, Bodige, Ejsmont, and Watson 148 (10), 147 (33), 146 (29), 145 (23), 132 (17), 120 (11), 118 (16), 92 (10), 91 (10), 77 (13), 65 (11). Anal. Calcd for C17 H17 N5 O2 : C, 63.14; H, 5.30. Found: C, 62.89; H, 5.27. 2-[1-aza-2-(3,4-dimethoxyphenyl)vinyl]-2hydrobenzo[f]benzotriazole-4,9-dione (9) or 2-(yliminomethyl-3,4-dimethoxybenzaldehyde)naphtho-1,2,3-triazole-4,9-dione. In methanol (20 mL), 1.00 g (4.67 mmol) of 1 was dissolved and refluxed with 0.78 g (4.7 mmol) of 3,4dimethoxybenzaldehyde overnight. A yellow precipitate was recovered by vacuum filtration and recrystallized from nitromethane by slow evaporation of the solvent (1.20 g, yield 71.0%). m.p. 289–290◦ C. 1 H NMR δ 9.48 (s, 1H), 8.37 (d, 2H), 7.86 (d, 2H), 7.70 (s, 1H), 7.45 (d, 1H), 7.00 (d, 1H), 3.99 (s, 6H). IR (cm−1 ) 1688, 1597, 1574, 1514, 1491, 1468, 1427, 1400, 1385, 1285, 1261, 1227, 1163, 1148, 1027, 974, 854, 822, 768, 721, 615, 434. Mass spectrum (m/z) (%): 363 (M+ , 23), 362 (100), 164 (11), 163 (76), 150 (14), 148 (25), 142 (12), 135 (21), 120 (22), 115 (10), 114 (87), 107 (32), 105 (11), 104 (45), 102 (13), 92 (61), 90 (12), 89 (10), 88 (15), 87 (10), 79 (64), 78 (13), 77 (72), 76 (76), 75 (20), 74 (12), 66 (15), 65 (18), 64 (39), 63 (38), 62 (13). Anal. Calcd for C19 H14 N4 O4 : C, 62.98; H, 3.89. Found: C, 63.09; H, 3.81. 2-[1-aza-2-(3,4-dimethoxyphenyl)vinyl]-5,6dimethyl-2-hydrobenzotriazole-4,7-dione (10) or 2-(yliminomethyl-3,4-dimethoxybenzaldehyde)benzene-1,2,3-triazole-5,6-dimethyl-1,4-dione. In 15 mL of methanol, 0.50 g (2.60 mmol) of 2 was dissolved and refluxed overnight with 0.44 g (2.7 mmol) of 3,4-dimethoxybenzaldehyde. A yellow solid was recovered by vacuum filtration and recrystallized from nitromethane by slow evaporation of the solvent (0.30 g, yield 34%). m.p. 274–275◦ C. 1 H NMR δ 9.40 (s, 1H), 7.67 (s, 1H), 7.41 (d, 1H), 6.97 (d, 2H), 3.98 (s, 6H), 2.21 (s, 6H). IR (cm−1 ) 1672, 1593, 1574, 1512, 1459, 1425, 1408, 1381, 1304, 1283, 1261, 1240, 1211, 1150, 1034, 1017, 986, 974, 920, 854, 820, 768, 723, 685, 613, 590. Mass spectrum (m/z) (%): 342 (12), 341 (21), 340 (100), 164 (11), 163 (27), 150 (10), 148 (10), 120 (10), 92 (35), 79 (15),
C21 H19 N5 O2 CCDC-1003/6036 373.4 Red Prismatic 213 0.20 × 0.10 × 0.10 Monoclinic P21 /c 15.430(3) 7.633(2) 15.940(3) 90.0 105.19(3) 90.0 1811.8(6) 4 1.369 0.092 2.64–23.28 Empirical 7875 2603 2603/0/256 0.0010(9) 1.028 0.0335; 0.0878 0.0408; 0.0918 0.15; −0.15
C38 H41 N10 O4 CCDC-1003/6037 702.82 Blue-purple Prismatic 296 0.50 × 0.23 × 0.18 Monoclinic P21 /c 20.201(2) 9.6579(9) 18.517(2) 90.0 95.907(2) 90.0 3593.5(6) 4 1.299 0.088 2.03–22.50 Empirical 14645 4687 4687/0/477 0.0000(4) 1.078 0.0827; 0.229 0.127; 0.255 0.52; −0.23
5 C22 H23 N6 O6 CCDC-1003/6038 466.46 Black Prismatic 213 0.30 × 0.20 × 0.10 Triclinic P-1 7.769(2) 8.515(3) 17.312(5) 89.347(7) 83.219(6) 86.001(7) 1134.5(6) 2 1.365 0.102 1.18–22.50 Empirical 4742 2972 2972/0/313 0.039(4) 0.962 0.0445; 0.0986 0.0824; 0.113 0.13; −0.13
6 C19 H15 N5 O2 CCDC-1003/6039 345.36 Red-purple Prismatic 213 0.33 × 0.23 × 0.13 Triclinic P-1 8.1365(7) 8.9605(8) 11.630(1) 79.553(2) 75.048(2) 82.080(2) 802.0(1) 2 1.430 0.097 1.93–28.80 Empirical 5175 3584 3584/0/238 0.003(2) 0.964 0.043; 0.111 0.068; 0.122 0.22; −0.17
7 C17 H17 N5 O2 CCDC-1003/6040 323.36 Purple Needle 213 0.60 × 0.05 × 0.05 Triclinic P-1 8.298(3) 9.720(3) 10.033(3) 84.803(6) 83.753(6) 77.659(5) 784.0(4) 2 1.370 0.094 2.05–22.48 Empirical 3289 2041 2041/0/222 0.0000(8) 0.873 0.0651; 0.104 0.117; 0.122 0.20; −0.18
8 C17 H16 N4 O4 CCDC-1003/6041 340.34 Yellow-orange Prismatic 213 0.23 × 0.16 × 0.10 Monoclinic P21 /n 8.4300(7) 13.980(1) 13.975(1) 90.0 106.590(2) 90.0 1578.4(2) 4 1.432 0.105 2.11–22.50 Empirical 6566 2056 2056/0/231 0.0011(6) 0.984 0.0395; 0.0934 0.0632; 0.102 0.15; −0.12
10 C13 H9 N5 O4 S CCDC-1003/6042 331.31 Yellow Prismatic 213 0.2 × 0.2 × 0.2 Monoclinic P21 /n 7.715(2) 14.206(3) 12.758(3) 90.0 91.016(5) 90.0 1398.0(6) 4 1.574 0.262 2.15–23.26 Empirical 6280 2012 2012/0/211 0.004(7) 1.016 0.0456; 0.116 0.0641; 0.126 0.31; −0.34
12
Journal of Chemical Crystallography (JOCC)
Formula CCDC deposit no. F.W. Color Habit Temp (K) Dimensions (mm) Crystal System Space group ˚ a, A ˚ b, A ˚ c, A α, deg β, deg γ , deg ˚3 V, A Z Dcalc (Mg m−3 ) µ (mm−1 ) Theta range (◦ ) Abs. correction Total reflections Unique reflections Data/res/parameters Extinction coeff. Goodness of fit on F 2 R1; wR2 [I > 2σ (I)] R indices (all data) ρmax ; ρmin
4
Table 1. Crystal, Structure Solution, and Refinement Data for Compounds 4–8, 10, and 12
P1: GTJ/HAK P2: HAK
PP368-366484 February 14, 2002 10:49 Style file version Nov. 07, 2000
2-amino-1,2,3-triazolequinone derivatives 221
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
222
Mendez-Rojas, Bodige, Ejsmont, and Watson
77 (21), 65 (16). Anal. Calcd for C17 H16 N4 O4 : C, 60.00; H, 4.74. Found: C, 60.22; H, 4.90. 2-[1-aza-2-(5-nitro(2-thienyl))vinyl]-2hydrobenxo[f]benzotriazole-4,9-dione (11) or 2(yliminomethyl-5-nitro-2-thiophene)naphtho-1,2, 3-triazole-4,9-dione. To a suspension of 0.25 g (1.2 mmol) of 5 in 20 mL of methanol, 0.19 g (1.2 mmol) of 5-nitro-2-thiophenecarboxyaldehyde was added. After refluxing overnight, a yellow powder was recovered by vacuum filtration and recrystallized from nitromethane (0.15 g, yield 36%). m.p. > 330◦ C. The compound was insoluble in CDCl3 . IR (cm−1 ) 3019, 1690, 1591, 1584, 1533, 1505, 1439, 1407, 1341, 1321, 1279, 1227, 1123, 1036, 976, 841, 831, 816, 804, 725, Table 2. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ 2 × 103 ) for Compound 4 Displacement Parameters (A Atom
x
y
z
a Ueq
N(1) N(2) N(3) N(4) N(5) O(1) O(2) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21)
2034(1) 1988(1) 1229(1) 2739(1) 5821(1) 1351(1) −627(1) 914(1) 1233(1) 742(1) −174(1) −505(1) 11(1) 2716(1) 3482(1) 4247(1) 5002(1) 5052(1) 4268(1) 3516(1) −1348(1) −334(1) 5948(1) 6592(1) −1680(1) −1175(1) 5668(1) 7235(1)
1185(2) 1623(2) 2388(2) 1298(2) 1815(2) 969(2) 3661(2) 1625(2) 1713(2) 2440(2) 3125(2) 3100(2) 2417(2) 1923(2) 1759(2) 792(2) 776(2) 1759(2) 2671(2) 2667(2) 3791(2) 2465(2) 3065(2) 707(2) 3820(2) 3163(2) 2361(2) 1516(2)
9201(1) 8383(1) 7924(1) 8087(1) 6103(1) 10755(1) 7679(1) 10074(1) 9288(1) 8507(1) 8379(1) 9178(1) 9981(1) 7333(1) 6980(1) 7405(1) 7112(1) 6372(1) 5927(1) 6228(1) 9135(1) 10704(1) 5450(1) 6497(1) 9858(1) 10644(1) 4535(1) 7286(1)
32(1) 30(1) 32(1) 32(1) 32(1) 39(1) 45(1) 31(1) 29(1) 29(1) 32(1) 31(1) 31(1) 30(1) 29(1) 31(1) 31(1) 28(1) 30(1) 31(1) 39(1) 36(1) 33(1) 37(1) 43(1) 42(1) 44(1) 49(1)
aU eq
Style file version Nov. 07, 2000
is defined as one-third of the trace of the orthogonalized Ui j tensor.
Table 3. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ 2 × 103 ) for Compound 5 Displacement Parameters (A Atom
x
y
z
Ueq
N(1) N(2) N(3) N(4) N(5) N(6) N(7) N(8) N(9) N(10) O(1) O(2) O(3) O(4) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38)
1942(2) 2523(2) 2816(2) 2800(2) 4886(2) 3068(3) 2544(3) 2171(3) 2306(3) 557(2) 801(2) 2885(2) 4058(3) 2034(2) 1285(3) 1849(2) 2376(2) 2416(3) 1856(3) 1342(3) 3304(3) 3674(2) 4227(3) 4621(3) 4490(3) 3922(2) 3531(2) 1904(3) 773(3) 5539(3) 6068(3) 4663(4) 5010(5) 3606(3) 3097(4) 2566(3) 2486(3) 3039(3) 3539(3) 1785(3) 1510(3) 902(3) 585(3) 867(3) 1478(3) 1790(3) 2969(4) 4080(3) −91(3) −684(3) 827(3) 602(4)
8344(5) 7775(4) 8195(4) 6810(5) 2365(6) 3394(7) 4098(6) 3895(5) 5125(6) 9719(5) 10165(6) 9866(4) 1321(6) 2310(5) 10129(6) 9204(6) 9134(5) 9954(5) 10923(5) 11020(6) 6161(6) 5170(5) 4548(6) 3631(6) 3264(6) 3881(5) 4798(5) 11772(6) 12009(7) 1921(7) 3004(8) 1659(11) 2429(10) 1577(7) 2590(7) 2872(6) 2121(6) 1110(6) 892(6) 5712(7) 6768(6) 7366(6) 8316(6) 8748(6) 8149(7) 7205(7) 359(7) −154(7) 10305(6) 9429(7) 10153(6) 9307(9)
4284(2) 4517(2) 5157(2) 4069(2) 3014(3) 5756(4) 5570(3) 4911(4) 6064(3) 7540(2) 4464(2) 6501(2) 5546(3) 3491(3) 4905(3) 4834(3) 5366(3) 6032(3) 6084(3) 5561(3) 4376(3) 3996(3) 4375(3) 4061(3) 3328(3) 2944(3) 3267(3) 6770(3) 5601(4) 3370(3) 3384(4) 2263(5) 1826(6) 5076(4) 5166(3) 4653(4) 3952(3) 3869(3) 4381(4) 5829(4) 6325(4) 6073(3) 6462(3) 7153(3) 7416(3) 7008(4) 3142(4) 4283(4) 7266(3) 7372(4) 8267(3) 8863(4)
68(1) 60(1) 61(1) 67(1) 89(2) 103(2) 79(1) 93(2) 103(2) 69(1) 112(2) 87(1) 139(2) 109(2) 71(2) 60(1) 56(1) 63(1) 62(1) 67(2) 61(1) 57(1) 63(1) 65(2) 61(1) 63(1) 59(1) 85(2) 98(2) 84(2) 106(2) 142(4) 166(4) 83(2) 81(2) 71(2) 71(2) 70(2) 75(2) 95(2) 73(2) 68(2) 64(2) 61(1) 77(2) 82(2) 108(2) 114(3) 74(2) 95(2) 85(2) 119(3)
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
2-amino-1,2,3-triazolequinone derivatives 662, 532, 496. Mass spectrum (m/z) (%): 353 (M+ , 13), 308 (12), 307 (57), 279 (11), 196 (8), 115 (66), 114 (100), 104 (57), 102 (11), 96 (12), 95 (94), 88 (25), 82 (19), 81 (12), 77 (12), 76 (99), 75 (22), 74 (17), 70 (16), 69 (42), 64 (20), 63 (18), 62 (12). Anal. Calcd for C15 H7 N5 O4 S: C, 50.99; H, 2.0. Found: C, 50.71; H, 1.99. 1-[1-aza-(5-nitro(2-thienyl))vinyl]-5,6dimethyl-2-hydrobenzotriazole-4,7-dione (12) or 2-(yliminomethyl-5-nitro-2-thiophene)benzene-1, 2,3-triazole-5,6-dimethyl-1,4-dione. In 20 mL of methanol, 0.50 g (2.6 mmol) of the triphenyl-
Table 4. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ 2 × 103 ) for Compound 6 Displacement Parameters (A Atom
x
y
z
Ueq
N(1) N(2) N(3) N(4) N(5) N(6) O(1) O(2) O(3) O(4) O(5) O(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22)
−1445(10) −939(9) −1921(12) 530(10) 7495(9) 9906(17) −3743(6) −5009(6) −7730(5) −6537(5) 8305(16) 11110(20) −4048(12) −2917(11) −3212(13) −4712(12) −5890(10) −5566(11) 1407(12) 2929(11) 3875(14) 5346(14) 5982(11) 5050(14) 3565(12) −7345(13) −6721(15) 8255(8) 8434(9) −8466(8) −8154(12) 7453(9) 7601(10) 9818(10)
2030(8) 3473(11) 4683(7) 3869(7) 3443(8) 8404(12) −228(6) 6118(6) 5697(6) −662(6) 8442(11) 8594(17) 1206(11) 2361(13) 3978(12) 4671(10) 3574(15) 1915(17) 2702(10) 2918(14) 1650(10) 1788(11) 3285(16) 4581(10) 4372(11) 4146(9) 924(10) 4985(10) 2080(10) 3110(17) 1537(15) 5971(9) 1656(10) 8045(8)
1892(3) 1997(3) 1759(3) 2314(3) 3979(3) 2817(9) 1382(3) 1110(2) 454(3) 764(3) 3054(7) 2959(10) 1313(4) 1568(4) 1483(4) 1168(4) 894(3) 979(4) 2591(4) 2954(4) 3242(5) 3579(4) 3654(4) 3363(5) 3022(4) 553(4) 714(4) 4016(4) 4324(5) 288(4) 372(4) 4690(4) 5114(5) 1947(5)
53(2) 51(2) 52(2) 53(2) 75(2) 168(5) 76(2) 65(2) 67(1) 80(2) 243(6) 354(11) 51(2) 44(2) 42(2) 50(2) 44(2) 46(2) 53(2) 50(2) 63(2) 69(2) 60(2) 59(2) 58(2) 53(2) 54(2) 89(2) 103(3) 65(2) 66(2) 119(3) 146(4) 110(3)
223 phosphine adduct of 2 was suspended and refluxed with 0.41 g (2.6 mmol) of 5-nitro2-thiophenecarboxyaldehyde. After refluxing overnight, a yellow powder was recovered by vacuum filtration and recrystallized from nitromethane by slow evaporation of the solvent yielding yellow needles suitable for X-ray diffraction analysis (0.30 g, yield 35%). m.p. 206–208◦ C. 1 H NMR δ 9.56 (s, 1H), 7.98 (d, 1H), 7.61 (d, 1H), 2.23 (s, 6H). IR (cm−1 ) 3100, 1676, 1655, 1589, 1535, 1503, 1443, 1410, 1375, 1337, 1298, 1267, 1207, 1121, 1052, 1036, 978, 918, 845, 812, 733, 721. Mass spectrum (m/z) (%): 331 (24, M+ ), 301 (10), 286 (15), 285 (92), 257 (7), 192 (7), 177 (9), 148 (9), 124 (8), 120 (16), 115 (58), 109 (13), 97 (10), 96 (13), 95 (100), 94 (19), 93 (19), 92 (66), 83 (13), 82 (31), 81 (31), 71 (13), 70 (15), 69 (37), 67 (21), 66 (37), 65
Table 5. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ 2 × 103 ) for Compound 7 Displacement Parameters (A Atom
x
y
z
Ueq
O(1) O(2) N(1) N(2) N(3) N(4) N(5) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19)
361(1) 6923(1) 3164(2) 4780(2) 5901(2) 5153(2) 9400(2) 1827(2) 3246(2) 4921(2) 5455(2) 4042(2) 2335(2) 6743(2) 7364(2) 6328(2) 6992(2) 8750(2) 9785(2) 9105(2) 4433(2) 1086(2) 8377(2) 11167(2) 3172(2) 1501(2)
117(1) −2378(1) 806(2) 660(2) −272(2) 1510(2) 4214(2) −438(2) −116(2) −769(2) −1815(2) −2134(2) −1503(2) 1352(2) 2142(2) 3133(2) 3831(2) 3558(2) 2573(2) 1895(2) −3092(2) −1870(2) 5344(2) 3842(2) −3449(2) −2838(2)
2051(1) 615(1) 2977(1) 3080(1) 2411(1) 3846(1) 6841(1) 1720(1) 2177(1) 1822(1) 936(1) 433(1) 811(1) 3876(1) 4627(1) 5383(1) 6092(1) 6109(1) 5336(1) 4623(1) −434(1) 320(2) 7542(2) 6916(2) −914(2) −534(2)
48(1) 52(1) 36(1) 35(1) 36(1) 37(1) 41(1) 34(1) 33(1) 32(1) 35(1) 33(1) 33(1) 36(1) 34(1) 38(1) 38(1) 34(1) 36(1) 36(1) 39(1) 40(1) 50(1) 49(1) 45(1) 46(1)
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
224
Style file version Nov. 07, 2000
Mendez-Rojas, Bodige, Ejsmont, and Watson
(63). Anal. Calcd for C13 H9 N5 O4 S1 ·CH3 NO2 : C, 47.13; H, 2.74. Found: C, 47.24; H, 3.05.
X-ray analysis X-ray data were collected on a Bruker SMARTTM 1000 CCD-based diffractometer. The frames were integrated with the SAINT software package12 using a narrow-frame integration algorithm, and the structures were solved and refined using the SHELXTL program package.13 All structures were checked using PLATON.14 Table 1 contains crystal data , collection parameters, and refinement criteria for the Compounds 4–8, 10, and 12. Tables 2–8 report atomic positional parameters while Table 9 gives selected bond distances and angles for the compounds. Figures 1–7 present thermal ellipsoid or packing diagrams for the seven compounds.
Table 6. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ × 103 ) for Compound 8 Displacement Parameters (A Atom
x
y
z
Ueq
N(1) N(2) N(3) N(4) N(5) O(1) O(2) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17)
7457(4) 5839(5) 4761(5) 5366(5) 652(5) 10316(4) 3949(4) 8854(6) 7449(5) 5830(6) 5389(6) 6849(6) 8444(6) 3775(6) 3035(6) 1321(6) 493(6) 1415(6) 3179(6) 3969(6) 6442(6) 9890(6) −1153(6) 1619(6)
9587(4) 9644(5) 10537(4) 8771(4) 5827(5) 10497(4) 12684(4) 10993(5) 10538(5) 11106(5) 12181(5) 12640(5) 12112(5) 8956(5) 8131(5) 8378(5) 7644(5) 6583(5) 6330(5) 7098(5) 13774(5) 12579(5) 6144(5) 4626(5)
2330(4) 2293(4) 3090(4) 1419(4) −1723(4) 3280(4) 5110(4) 3689(5) 3240(5) 3683(5) 4686(5) 5145(5) 4687(5) 1366(5) 554(5) 587(5) −153(5) −976(5) −1031(5) −281(5) 6157(5) 5173(5) −1707(5) −2443(5)
33(1) 33(1) 35(1) 34(1) 46(1) 46(1) 53(1) 34(1) 26(1) 29(1) 34(2) 34(2) 32(1) 40(2) 30(1) 36(2) 32(1) 32(1) 38(2) 35(2) 44(2) 46(2) 53(2) 55(2)
Table 7. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ 2 × 103 ) for Compound 10 Displacement Parameters (A Atom
x
y
z
Ueq
N(1) N(2) N(3) N(4) O(1) O(2) O(3) O(4) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17)
5428(2) 4793(3) 3312(3) 5582(3) 5361(2) 340(2) 8609(2) 11360(2) 4214(3) 4238(3) 2958(3) 1462(3) 1422(3) 2675(3) 7059(3) 8132(3) 7727(3) 8835(3) 10369(3) 10774(3) 9655(3) −112(3) 2655(4) 7099(3) 12862(3)
6567(1) 5707(1) 5689(1) 4832(1) 8663(1) 6624(1) 1491(1) 1966(1) 8198(2) 7155(2) 6625(2) 7078(2) 8142(2) 8656(2) 4921(2) 4124(2) 3158(2) 2453(2) 2707(2) 3653(2) 4354(2) 8613(2) 9730(2) 1182(2) 2195(2)
6192(1) 6295(2) 6460(2) 6256(2) 6120(2) 6776(2) 6246(1) 5939(1) 6254(2) 6303(2) 6466(2) 6605(2) 6526(2) 6368(2) 6196(2) 6151(2) 6227(2) 6165(2) 6012(2) 5957(2) 6033(2) 6651(2) 6285(2) 6415(2) 5700(2)
51(1) 49(1) 52(1) 52(1) 78(1) 76(1) 60(1) 64(1) 55(1) 46(1) 46(1) 53(1) 55(1) 55(1) 51(1) 47(1) 47(1) 46(1) 46(1) 54(1) 55(1) 79(1) 83(1) 65(1) 78(1)
Calculations Theoretical calculations were performed using PC Spartan Pro.15 Geometries were optimized using Density Functional methods SVWN/DN and pBP/DN**. Most compounds are not soluble enough for accurate measurements of the ground state dipole moments, but previous work indicates a discrepancy of about 10–15% between calculated and measured values.4 Calculated values in Table 11 were used in the solvatochromic analysis. Electrochemical analysis Electrochemical data are given in Table 10. All compounds exhibit a one-electron reversible process similar to the quinone–semiquinone couple (E1/2 = −0.59 to −0.91 V), but the hydroquinone couple is not observed. Compounds 4,
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
2-amino-1,2,3-triazolequinone derivatives Table 8. Atomic Coordinates (×104 ) and Equivalent Isotropic ˚ 2 × 103 ) for Compound 12 Displacement Parameters (A Atom
x
y
z
Ueq
S(1) N(1) N(2) N(3) N(4) N(5) O(1) O(2) O(3) O(4) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13)
1248(1) 4798(3) 4046(3) 4136(3) 3211(3) −382(4) 6736(3) 5103(3) −631(3) −916(3) 6446(4) 5429(4) 5023(4) 5572(4) 6732(4) 7106(4) 3047(4) 8225(5) 7435(4) 2188(4) 1978(4) 1047(4) 588(4)
4384(1) 4765(2) 5266(2) 6206(2) 4914(2) 3583(2) 4577(1) 7969(1) 4404(1) 2901(2) 5337(2) 5439(2) 6313(2) 7204(2) 7098(2) 6240(2) 4018(2) 6120(2) 8007(2) 3637(2) 2704(2) 2581(2) 428(2)
6035(1) 2585(2) 3338(2) 3261(2) 4197(2) 7668(2) 617(2) 2210(2) 7929(2) 8156(2) 1012(2) 1969(2) 2381(2) 1892(2) 985(2) 556(2) 4247(2) −384(3) 570(3) 5144(2) 5409(3) 6336(2) 6735(2)
36(1) 37(1) 36(1) 39(1) 38(1) 42(1) 58(1) 59(1) 60(1) 59(1) 38(1) 33(1) 34(1) 37(1) 36(1) 37(1) 38(1) 57(1) 47(1) 33(1) 40(1) 39(1) 33(1)
5, and 8 exhibit an additional one-electron reversible processes at 1.02, 1.02, and 1.03 V, respectively. Several irreversible processes are observed with the thiophene derivatives 11 and 12; however, some of the irreversible steps in 4–6, and 8 may be due to traces of impurities. UV–Visible spectra The absorption spectra of Compounds 4–12 were measured in the nonpolar solvent 1,4dioxane and in the polar solvents CHCl3 , CH2 Cl2 , acetone, and DMF. The molar absorption coefficients were determined in 1,4-dioxane and the data are presented in Table 11. Discussion The two-state model solvatochromic shift in a solvent with dielectric constant εI , refractive index ηI is given by the McRae equation16 where a
225 is the cavity radius. νg + (µ2g − µ2e ) · n2i − 1 ¸ νs = hεo a 3 2n2i + 1 " # 2 µg (µg − µe ) (εi − 1) (ni − 1) − + hεo a 3 (εi + 2) (n2i + 2) It is apparent from the limited data in Table 11 that most compounds show little variation with dielectric constant which indicates either the McRae two-state model is not appropriate or the actual hyperpolarizability is very small and the materials are not candidates for nonlinear optical materials. An attempt to analyze these data by methods described previously4 confirmed that according to this model the estimated hyperpolarizabilities were orders of magnitude smaller than those considered reasonable for nonlinear optical applications. However, Compound 4 was investigated recently for third-order nonlinearity by the Z-scan technique using a 88 ps pulse source laser at 532 nm.17 The imaginary part of the nonlinear susceptibility contains contributions from orders higher than χ 3 . The data were fitted to a model involving the ground state and two excited states18 which may account partially for the failure of the McRae equation. The data also implied a negative η2 contribution to the refractive index. This study would imply that techniques other than solvatochromism should be used for these systems. In Compound 4 (Fig. 1) all ring systems are planar. The quinonetriazole system is planar (σp = 0.046) with the phenylamine group twisted by 17.3(1)◦ from this plane. The most significant in˚ between O(1) and termolecular contact is 2.398 A H(11)(x, 1/2 − y, 1/2 + z), O(1)· · ·C(7) = 3.253 ˚ C ---- H· · ·O = 152.6◦ . Short intermolecular conA, tacts between an oxygen atom and the C(7) hydrogen atom are observed in four of the structures, and probably indicates an increase in polarity of this C ---- H bond. The two independent molecules of Compound 5 are shown in the packing diagram, Fig. 2. At room temperature the structure is
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
226
Mendez-Rojas, Bodige, Ejsmont, and Watson ˚ and Valence Angles (◦ ) Table 9. Selected Interatomic Distances (A) Atom
C(1) C(1) C(1) C(2) C(2) C(3) C(3) C(4) C(4) C(5) C(5) C(6) N(1) N(2) N(2) N(4) C(7)
O(1) C(2) C(6) C(3) N(1) C(4) N(3) C(5) O(2) C(6) C(14) C(15) N(2) N(3) N(4) C(7) C(8)
O(1) O(1) C(2) N(2) C(1) N(1) N(3) C(2) N(3) C(3) C(3) O(2) C(4) C(1) N(2) N(1) N(1) N(3) N(2) N(2) N(4)
C(1) C(1) C(1) C(2) C(2) C(2) C(3) C(3) C(3) C(4) C(4) C(4) C(5) C(6) N(1) N(2) N(2) N(2) N(3) N(4) C(7)
4
5A
1.225(2) 1.464(2) 1.490(2) 1.392(2) 1.341(2) 1.469(2) 1.341(2) 1.491(2) 1.222(2) 1.417(2) 1.388(2) 1.391(2) 1.330(2) 1.342(2) 1.383(2) 1.285(2) 1.441(2) C(2) C(6) C(6) C(1) C(3) C(3) C(2) C(4) C(4) O(2) C(5) C(5) C(6) C(5) C(2) N(3) N(4) N(4) C(3) C(7) C(8)
123.1(1) 122.6(1) 114.3(1) 126.9(1) 123.8(1) 109.2(1) 109.6(1) 123.0(1) 127.4(1) 123.0(1) 114.2(1) 122.8(1) 122.6(2) 121.9(1) 102.2(1) 117.3(1) 117.1(1) 125.6(1) 101.7(1) 115.6(1) 120.6(1)
1.208(6) 1.464(1) 1.483(8) 1.376(7) 1.342(6) 1.461(7) 1.354(6) 1.480(7) 1.220(6) 1.348(7) 1.507(7) 1.503(7) 1.327(5) 1.332(5) 1.402(6) 1.279(6) 1.441(7) 122.6(6) 121.8(5) 115.6(5) 128.2(5) 121.1(5) 110.7(5) 108.1(5) 123.4(5) 128.5(5) 122.4(5) 114.9(5) 122.7(5) 122.3(5) 122.5(5) 101.5(4) 117.4(4) 118.4(4) 124.2(4) 102.3(4) 114.3(4) 122.5(5)
5B 1.220(7) 1.442(9) 1.440(9) 1.358(8) 1.347(8) 1.481(8) 1.386(7) 1.503(8) 1.197(6) 1.330(7) 1.523(8) 1.513(8) 1.274(7) 1.382(7) 1.465(7) 1.234(7) 1.517(9) 123.1(7) 122.6(7) 114.3(6) 125.2(7) 124.5(6) 110.3(7) 109.7(6) 120.8(6) 129.6(6) 123.8(6) 113.1(5) 123.1(6) 123.3(6) 124.0(6) 101.2(6) 121.7(6) 120.6(6) 117.6(6) 97.1(5) 114.4(6) 116.5(7)
6 1.235(7) 1.468(8) 1.464(8) 1.389(7) 1.343(7) 1.433(8) 1.341(7) 1.472(8) 1.243(7) 1.427(8) 1.392(8) 1.393(8) 1.337(6) 1.330(6) 1.386(6) 1.286(7) 1.427(8) 122.7(8) 123.5(9) 113.8(8) 126.0(9) 123.8(5) 110.2(8) 108.5(8) 122.3(9) 129.2(9) 122.7(8) 116.5(8) 120.8(9) 120.6(9) 122.9(9) 101.4(4) 117.3(6) 115.2(8) 127.5(8) 102.7(6) 114.8(6) 121.7(7)
7 1.219(5) 1.471(2) 1.494(2) 1.395(2) 1.336(2) 1.461(2) 1.340(2) 1.498(2) 1.222(2) 1.414(2) 1.388(2) 1.388(2) 1.337(2) 1.339(2) 1.384(2) 1.291(2) 1.439(2) 123.1(2) 122.8(1) 114.2(1) 126.9(1) 123.5(2) 109.6(1) 109.1(1) 123.5(1) 127.4(1) 123.7(2) 114.1(1) 122.2(2) 122.6(2) 122.1(1) 102.1(1) 117.0(1) 117.2(1) 125.8(1) 102.2(1) 114.1(1) 121.8(2)
8 1.244(5) 1.458(6) 1.506(5) 1.381(6) 1.356(5) 1.478(6) 1.354(6) 1.507(6) 1.235(5) 1.359(6) 1.526(6) 1.511(5) 1.336(4) 1.353(5) 1.413(5) 1.301(5) 1.456(6) 122.8(5) 121.1(4) 116.2(4) 128.5(4) 122.5(5) 108.9(4) 111.0(5) 122.6(5) 126.4(5) 123.6(5) 114.4(4) 122.0(5) 123.2(5) 121.0(4) 101.8(4) 118.0(2) 117.8(4) 124.2(4) 100.3(4) 114.3(4) 122.8(5)
10 1.223(3) 1.460(3) 1.496(3) 1.381(3) 1.339(3) 1.473(3) 1.342(3) 1.491(4) 1.218(3) 1.347(3) 1.506(3) 1.506(3) 1.341(3) 1.333(3) 1.400(3) 1.278(3) 1.448(3) 122.4(2) 122.5(2) 115.1(2) 127.5(2) 122.9(2) 109.6(2) 109.7(2) 122.0(2) 128.3(2) 123.0(2) 114.9(2) 122.1(2) 122.9(2) 122.2(2) 101.7(2) 117.2(2) 118.0(2)b 124.8(2)b 101.8(2) 113.6(2) 124.1(2)
12 1.214(3) 1.470(4) 1.501(4) 1.386(4) 1.336(4) 1.476(4) 1.334(4) 1.483(5) 1.218(3) 1.369(4) 1.501(4)a 1.500(5)a 1.337(3) 1.340(3) 1.375(3) 1.280(4) 1.439(4) 122.5(3) 122.2(3) 115.3(2) 128.5(2) 122.0(3) 109.4(3) 109.8(3) 122.6(3) 127.5(3) 122.3(8) 115.1(2) 122.6(3) 122.5(3) 122.0(3) 102.0(2) 117.0(2) 116.5(2)b 126.5(2)b 101.7(2) 116.2(3) 117.4(3)a
a C(14) bN
1
C(9), C(15) C(8), C(8) C(10). and N3 reversed.
ordered, but at 213 K the data are poor due to the onset of a phase transition. All ring systems are planar in the two molecules (σp = 0.006−0.23). In the molecule containing C(1) the phenyl ring is rotated by 12.2(7)◦ with respect to the quinonetriazole moiety, but with omission of the methyl groups the second molecule is completely planar with only a 0.1(8)◦ rotation of the phenyl group. Except for the methyl hydrogen
atoms there are no significant short intermolecular interactions. Compound 6 crystallizes with a molecule of nitromethane (Fig. 3). Excluding the two methyl groups the molecule is planar with only a 4.8(4)◦ twist between the quinonetriazole moiety and the phenyl ring. There are two intramolecular ˚ hydrogen bonds, O(4) · · · O(1) = 2.581(6) A, ◦ O(4) ---- H(4)· · · O(1) = 145.9 ; O(3) · · · O(2) =
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
2-amino-1,2,3-triazolequinone derivatives
227
Table 10. Cyclic Voltammetry Data for Compounds 4–12 and Reference Quinonesa Irreversible E (V)b Compound
Reversible E1/2 (V)b
Benzoquinone 2,3-DCNQ Chloranil 4 5 6 7 8 9 10 11 12
−0.50, −1.33 −0.40, −1.20 +0.04, −0.86 +1.02, −0.77 +1.02, −0.65 −0.59 −0.76 +1.03, −0.62 −0.73 −0.61 −0.91 −0.67
Oxidation
−1.16 −1.08 −0.61 — — — — −0.13, −0.27 −1.01, −0.28
Reduction
— — — — −1.30 — — −0.54, −0.71 −1.21
a All data utilize CH
4 3 CN as solvent with 0.1 M (n-Bu) NClO4 as electrolyte at 298 K. potentials are calibrated by reference to the standard ferrocene couple (E1/2 = 0.400 V relative to NHE).11
b All
Table 11. UV–Visible Absorption Data for Compounds 4–12
εb ηD c 4 5 6 7 8 9 10 11 12
Dioxane
CHCl3
CH2 Cl2
Acetone
DMF
µ (×10−30 M)a
2.21 1.422 421(25.6)d 409(38.5) 419(31.6) 411(32.7) 401(33.4) 365(16.8) 357(24.2) 375(59.9) 373(21.8)
4.81 1.433 435 419 437 426 413 368 361 375 373
8.93 1.424 434 420 440 425 413 368 360 375 373
20.7 1.359 421 414 425 420 406 363 355 373 371
36.7 1.431 432 419 430 425 411 368 361 378 376
19.3 20.4 17.5 17.5 18.0 9.8 11.3 19.6 18.6
a Calculated
dipole moment. constant of the solvent. c Index of refraction of the solvent. dλ 3 −1 cm−1 ). max in nm (molar absorption coefficient ×10 L mol b Dielectric
Fig. 1. Thermal ellipsoid drawing of Compound 4 with ellipsoids drawn at the 30% probability level.
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
228
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
Mendez-Rojas, Bodige, Ejsmont, and Watson
Fig. 2. Packing diagram form, Compound 5.
Fig. 3. Thermal ellipsoid drawing for Compound 6 with ellipsoids drawn at the 30% probability level.
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
Style file version Nov. 07, 2000
2-amino-1,2,3-triazolequinone derivatives
229
Fig. 4. Thermal ellipsoid drawing of Compound 7 with ellipsoids drawn at the 30% probability level.
˚ O(3) ---- H(3)· · · O(2) = 145.7◦ . The only 2.561 A, significantly shortened van der Waals contact is between a hydrogen on the nitromethane and O(1) ˚ (2.48 A). Compound 7 is planar with σp = 0.045 for the entire molecule with only a 0.47(6)◦ twist between the triazole system and the phenyl ring (Fig. 4). The most significant intermolecular contact is between O(1) and the hydrogen atom on ˚ C(7) of an adjacent molecule, O(1)· · ·H = 2.48 A, ˚ O(1)· · ·C(7) = 3.334(2) A, C ---- H· · · O = 150.5◦ . Compound 8 is planar with σp = 0.055 for the entire molecule with a 3.9(2)◦ twist between the triazole system and the phenyl ring (Fig. 5). The most significant intermolecular interaction is again between O(1) and the hydrogen ˚ O(1)· · ·C(7) = atom on C(7), O(1)· · ·H = 2.57 A, ◦ ˚ ---3.414(6) A, C H· · ·O = 149.6 . Compound 10 is planar with σp = 0.038 for the entire molecule with a 2.1(1)◦ twist between
the triazole system and the phenyl ring (Fig. 6). There are no short interactions involving the hydrogen atom on C(7). Compound 12 is nearly planar with σp = 0.093 for the entire molecule with a 3.4(1)◦ twist between the triazole moiety and the thiophene ring (Fig. 7). The most significant intermolecular interaction is between a nitro-oxygen atom O(4) and the hydrogen on atom C(7), O(4)· · ·H = ˚ O(4)· · ·C(7) = 3.170(4) A, ˚ C ---- H· · ·O = 2.34 A, ◦ 148.0 . The molecular systems reported in this study are essentially planar with polar groups connected via an unsaturated linkage. These systems are expected to exhibit large second order NLO effects; however, the solvatochromic procedure failed to confirm this hypothesis. A negative result indicates either no large second-order effect or a failure of the two-state model. A pulse laser Z-scan investigation indicated that Compound 4 shows
Fig. 5. Thermal ellipsoid drawing of Compound 8 with ellipsoids drawn at the 30% probability level.
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
10:49
230
Style file version Nov. 07, 2000
Mendez-Rojas, Bodige, Ejsmont, and Watson
Fig. 6. Thermal ellipsoid drawing of Compound 10 with ellipsoids drawn at the 35% probability level.
Fig. 7. Thermal ellipsoid drawing of Compound 12 with ellipsoids drawn at the 30% probability level.
significant higher order NLO effects17 that would indicate a probable failure of the solvatochromic model. A further comparison of these systems and techniques will be pursued. Acknowledgments We thank the Robert A. Welch Foundation for financial support (Grant 0074, WHW) and for a fellowship to Miguel Mendez-Rojas).
References 1. Marder, S.R. In Materials Chemistry, an Emerging Discipline; Interrante, L.V.; Casper, L.A.; Eds.; American Chemical Society: Washington, DC, 1995; pp 189–210.
2. Long, N.J. Angew. Chem., Int. Ed. Eng. 1995, 34, 21. 3. Cummings, S.C.; Cheng, L.-T.; Eisenberg, R. Chem. Mat. 1997, 9, 440. 4. Mendez-Rojas, M.A.; Bodige, S.G.; Watson, W.H. J. Chem. Crystallogr. 1999, 29, 1225. 5. Bosshard, C.; Knopfle, G.; Prˆetre, P.; G¨unter, P. J. Appl. Phys. 1992, 71, 1594. 6. Paley, M.S.; Harris, J.M.; Looser, H.; Baumert, J.C.; Bjorklund, G.C.; Jundt, D.; Twieg, R.J. J. Org. Chem. 1989, 54, 3774. 7. Chen, C.-T.; Liao, S.-Y.; Lin, K.-J.; Chen, C.-H.; Lin, T.-Y. Inorg. Chem. 1999, 38, 2734. 8. Sun, D.; Krawiec, M.; Campana, C.F.; Watson, W.H. J. Chem. Crystallogr. 1997, 27, 577. 9. Bodige, S.G.; Mendez-Rojas, M.; Watson, W.H. J. Chem. Crystallogr. 1999, 29, 931. 10. Sun, D.; Watson, W.H. J. Org. Chem. 1997, 62, 4082. 11. Gagne, R.R.; Koval, C.A.; Lisensky, G.C. Inorg. Chem. 1980, 19, 2854. 12. SAINT Version 6.02; Bruker Analytical X-ray systems, Inc., Copyright 1997–1999. 13. SHELXTL Version 5.1; Bruker Analytical X-ray Systems, Inc., Copyright 1998.
P1: GTJ/HAK
P2: HAK
Journal of Chemical Crystallography (JOCC)
PP368-366484
February 14, 2002
2-amino-1,2,3-triazolequinone derivatives 14. (a) Spek, A.L. Acta Crystallogr., Sect. A 1990, 46, C34. (b) Speck, A.L. PLATON—A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2001. 15. Spartan Pro for Windows Wavefunction, Inc., 18401 Von Karman Ave., Ste. 370, Irvine, CA 92612.
10:49
Style file version Nov. 07, 2000
231 16. McRae, E.G. J. Phys. Chem. 1957, 61, 582. 17. Rangel Rojo, R.; Stranges, L.; Kar, A.K.; Mendez-Rojas, M.A.; Watson, W.H. SPIE Proceedings 2001, 4 & 19, 514. 18. Rangel Rojo, R.; Matsuda, H.; Kasai, H.; Nakanshi, H. J. Opt. Soc. Am. B 2000, 17, 1376.