To Be Submitted to the Astronomical Journal
arXiv:astro-ph/0011168v1 8 Nov 2000
SUBSTRUCTURE IN CLUSTERS CONTAINING WIDE-ANGLE TAILED RADIO GALAXIES. I. NEW REDSHIFTS JASON PINKNEY1 Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 89109
[email protected] JACK O. BURNS1 Office of Research and Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211
[email protected] MICHAEL J. LEDLOW1 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
[email protected] 1 ´ PERCY L. GOMEZ Department of Physics and Astronomy, Rutgers University PO Box 849, Piscataway, NJ 08855
[email protected]
and JOHN M. HILL Steward Observatory, University of Arizona, Tucson, AZ 85721-0065
[email protected] ABSTRACT We present new redshifts and positions for 635 galaxies in nine rich clusters containing Wide-Angle Tailed (WAT) radio galaxies. Combined with existing data, we now have a sample of 18 WAT-containing clusters with more than 10 redshifts. This sample contains a substantial portion of the WAT clusters in the VLA 20 cm survey of Abell clusters, including 75% of WAT clusters in the complete survey (z≤0.09), and 20% of WAT clusters with z>0.09. It is a representative sample which should not contain biases other than selection by radio morphology. We graphically present the new data using histograms and sky maps. A semi-automated procedure is used to 1
Former address: Department of Astronomy, New Mexico State University, Box 30001/Dept. 4500, Las Cruces, NM 88003
–2– search for emission lines in the spectra in order to add and verify galaxy redshifts. We find that the average apparent fraction of emission line galaxies is about 9% in both the clusters and the field. We investigate the magnitude completeness of our redshift surveys with CCD data for a test case, Abell 690. This case indicates that our galaxy target lists are deeper than the detection limit of a typical MX exposure, and they are 82% complete down to R=19.0. The importance of the uniformity of the placement of fibers on targets is posited, and we evaluate this in our datasets. We find some cases of non-uniformities which may influence dynamical analyses. A second paper will use this database to look for correlations between the WAT radio morphology and the cluster’s dynamical state.
Subject headings: galaxies: clusters: general galaxies: distances and redshifts galaxies: jets
1.
Introduction
Wide-angle tailed radio galaxies (WATs) are a powerful type of FR-I (“edge-darkened”, Fanaroff & Riley 1974) radio galaxy associated with first-ranked ellipticals in clusters. Generally, the tails of a WAT bend in a common direction, giving the source an overall V, or C shape (see O’Donoghue et al. 1990 for a radio survey). The mechanism which bends the WATs is poorly understood. Ram pressure caused by motion through the intracluster medium (ICM) was suspected from the time of discovery (Owen and Rudnick 1976). The sticking point in this hypothesis is that ≈ 1000 km s−1 relative velocities may be required for bending (Eilek et al. 1984), and the host galaxies, typically gE, D and cD, should have much smaller peculiar velocities with respect to their cluster (Malumuth 1992, Burns 1986). A subcluster merger hypothesis has emerged linking the bent morphology of WATs to the dynamical state of the host cluster (Pinkney et al. 1993, hereafter Pi93, Gomez et al 1997, Roettiger et al. 1996, Loken et al. 1995). In it, the WAT acts as a stationary weathervane, its tails indicating the local flow of ICM in the stormy environment of a cluster-subcluster merger (Burns 1998). If this hypothesis is true, then WAT’s should be beacons of cluster mergers. This hypothesis is difficult to confirm for a single cluster: only radial peculiar velocities can be ruled out for the WAT galaxy, and the optical signatures of merger can be subtle during post-merger epochs when the ICM motion is still sufficient to shape the WAT (Loken et al. 1995; Pinkney et al. 1996). A large database can provide statistical leverage to test the subcluster-merger hypothesis. In particular, a distribution of WAT radial peculiar velocities can constrain the true WAT velocities, thereby testing the moving-WAT hypothesis. Moreover, the occurrence rate of significant substructure can be compared to a control sample of radio-quiet clusters. In this paper, we present new velocities and positions of over 600 galaxies in 9 WAT clusters. This will
–3– be combined with published data for 9 additional WAT clusters. These data will be used to probe the connection between WAT bending and cluster evolution in paper II. In this paper, section 2 will contain the sample selection criteria. Section 3 describes the observations and reductions. In section 4, we compare our velocities to published ones and discuss the emission line content. Finally, in section 5 we examine the completeness and spatial uniformity of our redshift surveys.
2.
WAT Cluster Sample Selection
Our primary selection criterion for clusters was radio morphology. Clusters with high resolution radio data were preferred; if there is a morphological trait among WATs that correlates with their dynamical state, we want it to be apparent in the existing maps. We also required ◦ galaxies with mV < ∼ 18.0 (Pinkney et al. 1994, hereafter Pi94), and δ < 72 for observation with the Steward Observatory 2.3-m telescope + MX spectrometer. Our resources for sample selection include the VLA survey of 11 WATs by O’Donoghue et al. (1990, hereafter OOE), and the 20 cm VLA Survey of Abell Clusters (Owen & Ledlow 1997 and references therein). This survey contains 38 radio sources informally classified as “WAT” or “WAT?”, 8 of which comprise 2.3% of the complete cluster sample (0.0 ≤ z ≤ 0.09). The survey uses the VLA C-array (1.4 GHz), with adequate resolution (3-15′′ ) to reveal the WAT morphology out to z∼0.2. The VLA maps in OOE generally have higher resolution and sensitivity. Therefore, we attempted to draw as many clusters from this survey as possible. However, several of the OOE clusters are beyond the redshift and declination limits of the MX spectrometer. We emphasize that we did not select WATs by the apparent angle formed by their tails as it might bias the peculiar velocity measurements. Fortunately, the OOE survey included a wide variety of morphologies, so that WATs with strongly bent and weakly bent tails were present. We obtained new optical spectra for 7 Abell clusters from OOE: A98, A160, A690, A1446, A1684, A2214, and A2462, and for 1 Abell cluster not in OOE, A2220. Together with the published databases for A115 (Beers, Huchra, & Geller 1983), A400 (Beers et al. 1992), A623 and A2304 (G´ omez 1998), A1346 (Slinglend et al. 1998), A1940 (Huchra et al. 1992), A1569 (Gomez et al 1997), and A2634 (Pi93, Scodeggio et al. 1995), we have redshift databases for 16 Abell clusters with WATs. In addition, we observed a poor cluster containing the WAT 1313+073 (Patnaik et al 1986). We will also include the published database for the poor cluster containing the WAT 1919+479 (Pi94). Both are good examples of the WAT morphology with excellent radio maps available. We argue that inclusion of these poor clusters is appropriate in this study because the X-ray and radio properties of poor and rich clusters overlap (Price et al. 1991, Burns et al. 1996), and redshift-corrected membership counts of poor clusters overlap those of richness class 0 and 1 Abell clusters (Andersen & Owen 1994). The radio properties of our combined sample of 18 WATs are shown in Table 1. This sample
–4– contains 6/8 (75%) of WAT clusters in the complete 20 cm VLA survey (z ≤ 0.09), and 7/30 (23%) of the WAT clusters in the high redshift portion of the VLA survey. The ROSAT X-ray data for five of these clusters were discussed in G´ omez et al. (1997). The quantities “Extent”, r/AC , and log(P1400 ) in Table 1 might all conceivably be correlated with global cluster properties. We will return to these in paper II.
3.
Multifiber Spectroscopy
The spectral observations of cluster galaxies were made with the MX multifiber spectrometer (Hill & Lesser 1986) on the Steward Observatory 2.3-meter telescope. The MX uses mechanical probes to position 2′′ diameter fibers in the focal plane with 0.′′ 5 precision. The useful field diameter is 45′ . Up to 32 fibers are assigned to galaxies, while 29 are placed on the sky. Our initial detector was a TI 800x800 CCD which became unreliable after our Dec. 31, 1991 run (Table 2). For the remaining runs, we used Loral 1200×800 CCDs. The Loral chips had a superior full well capacity, readout noise, and Q.E. (which exceeded 90% at 4000˚ A). Our first Loral chip had a problem with excessive ‘cosmic rays’ caused by a radioactive coating on the chip. On the next run, the second Loral chip lacked the radioactive coating. However, it had a problem with large gradients in bias which varied with time. This problem was handled in reduction by replacing standard bias subtraction with subtraction of a surface fit to inter-aperture counts. The old 300 lines/mm diffraction grating was switched with a 400 lines/mm grating (4890˚ A blaze) for −1 ˚ the Dec 1992 run. This changed the dispersion from 3.6 to 2.6 A pix and the spectral resolution improved from 8.3 ˚ A to 6.1 ˚ A. After two useful runs with the second chip, a third Loral chip was used which had a stable bias level. Some sample spectra from our surveys are shown in Figure 1. The spectral range was nominally reduced to 3800-6900 ˚ A for cross-correlation. Our basic CCD reduction, spectral extraction and cross-correlation procedures are much the same as in Pi93 and Pi94. Post-correlation reduction includes a new, objective algorithm for combining the velocities produced by 21 templates. This algorithm uses the r value of the CCF (cross-correlation function, Tonry & Davis 1979), and the number of templates agreeing on the same velocity (within a 600 km s−1 range) as criteria for including or excluding velocities in an average. We use three categories for a galaxy’s final velocity measurement, category 1 (hereafter C1), those with an average r value ≥ 3.5 and at least 4 templates in agreement; category 2 (hereafter C2), those with 3.0 ≤ r < 3.5 and at least 4 templates in agreement; and “invalid”, those which do not fall into the above categories. The C2 category includes velocities which are > ∼ 50% likely to be determined from the correct peak in the CCF. Therefore, C2 galaxies can be classed as cluster members or non-members with some accuracy, but should be omitted from analyses of the velocity distribution. The r value was also used in combining redundant observations of galaxies: spectra with low r were excluded from the velocity determination if high r spectra existed. The final velocities and positions are tabulated in Table 3. The fourth and fifth columns contain the C1 and C2 velocities, respectively. Galaxies with invalid measurements, with
–5– no measurements, and stars, are omitted. To determine the velocity errors (column 6, Table 3), we fitted a curve to the relation between velocity deviation and the r value of the CCF (similar to Pi94, Hill & Oegerle 1993). We used 251 repeat spectra of galaxies from 4 clusters taken with the Loral CCD systems for this calibration. The resulting fit is ǫ(r) = 486.7(1.0 + r)−1 . When three or more good spectra were obtained, the standard deviation was used as the velocity error. If the calculated errors were less than 20 km s−1 , the final velocity error was set to 20 km s−1 . The last two rules also applied to emission line velocities (see §4.2). An emission line redshift would only be adopted if the cross-correlation results had a larger scatter or r < ∼ 4.0. If only one spectrum existed, the standard deviation of velocities derived from each emission line was used. All C2 velocities were assigned an error of 200 km s−1 , to discourage their use for purposes that require greater velocity precision.
4.
The WAT Velocity Database
A collage of histograms is shown for our nine new datasets in Figures 2 and 3. It is clear that the WATs are associated with real systems in redshift space. Also, visual inspection of these figures reveals obvious velocity substructure in clusters such as A98, and A160. In Table 4 we summarize the cluster velocity distributions. Here we use the traditional mean and standard deviation and apply them to the velocities within ±4000 km s−1 of the WAT. These estimators of velocity centroid and dispersion are notoriously poor in the presence of outliers or substructure (Beers et al. 1990). In Paper II, we will account for substructure in the datasets and apply more robust estimators to the velocity distribution.
4.1.
Comparison with literature
As a check on our velocity measurements, we have compared our results to those published for A2462 (also called A3897, Katgert et al. 1998) and A98 (Beers, Geller, & Huchra, 1982; Faber & Dressler 1977; Zabludoff et al. 1990) in Table 5. Redshifts for A98 were first obtained by Faber & Dressler 1977 (FD) and were added to by Beers, Geller, & Huchra, 1982 (BGH). The average difference between our velocities and those of BGH and FD combined is -67 km s−1 , with σ=113 km s−1 (N=7). This standard deviation is consistent with random errors in velocity of 80 km s−1 . Zabludoff et al. (1990) later took the data added by BGH and re-reduced it with a new template. The difference between our velocities and the velocities in Zabludoff et al. are 40 km s−1 , with σ=157 (N=5). Two velocities were measured by Faber & Dressler 1977 and ourselves, but not BGH, they differed by -193 and -132 km s−1 . We wish to add to our dataset the 21 BGH/FD galaxies which we did not observe. The measured zero-point shift (-67 km s−1 ) is only marginally inconsistent with no shift (1.6σ), so we will not attempt to correct for it. We have precisely re-measured the positions of the BGH
–6– galaxies on our quick-V frame based on their finding chart. We include them in Table 3, and give them ID’s that begin with “0”. Table 5 compares the 12 velocities in Abell 2462 which were measured by both ENACS (ESO Nearby Abell Cluster Survey) and us. The mean difference (after removing the 325 km s−1 CMB correction used by ENACS) was -98.8 km s−1 with a standard deviation of 111.2 km s−1 . One velocity, ENACS # 12, was adopted since we had no measurement. The ENACS galaxies are labeled in the notes column of Table 3. Our velocities are in reasonable agreement with published values.
4.2.
Emission Line Galaxy Survey
We searched our data for emission line galaxies (ELGs). The primary goals were to strengthen the accuracy of the velocity measurements and to increase cluster membership. The codes in column 7 of Table 3 indicate the presence of emission lines in the spectra. Emission line redshifts were measured in a two-stage process. The first stage identified potential redshift systems using IRAF-based scripts and a Fortran program. Each spectrum was continuum-subtracted and its positive features over ≈ 2×RMS were identified. Each feature was fitted with a Gaussian. The features were then searched for redshift systems containing any 2 or more of 15 lines produced by [OI], [OII], [NeIII], [OIII], [NI], [NII], [SII] or the Balmer series. To reduce spurious results, the program rejected features that were: 1) too close to 4 major night sky lines, 2) too thin (FWHM≤ 3.8 ˚ A), 3) too wide (FWHM≥ 25 ˚ A), or 4) too low in flux (< 20 DN). The program ranked the systems based upon how well their features agree in redshift, and the number of features they contain. In the second stage, the output from the automated search was used as a guide to judge the final validity of each system. We judged redshift systems based on the line id’s, fluxes, FWHM, redshift agreement with each other and agreement with cross-correlation results. We also visually inspected the candidates to look for lines missed by the automated search, and to choose between the redshift systems. A spectrum had to have at least 2 lines of [OII], [OIII] λ5007, Hβ, or Hα to be acceptable, while lines of [OI], [OIII] λ4363, [NeIII], and [NI] were insufficient. Moreover, we expected line ratios to be typical of astrophysical environments, e.g., the [OIII] λ4959 line flux should not be much larger than that of λ5007, and Hβ should not be larger than Hα. Convincing ˚ ˚ lines typically had FWHM > ∼ 6 A and rarely exceeded 15 A. The sensitivity limit in equivalent −1 ˚ width was roughly -5 to -10A. Real line systems typically had internal scatter < ∼ 100 km s . An example of a convincing ELG spectrum is shown in Fig 1c. We show the results of our ELG survey in Table 6. Here we see a range of 0 - 20% in the percentage of cluster members with emission, with an average of 8.6%. As a comparison, Biviano et al. (1997) find ≈ 16% in the ENACS database, although they have perhaps less stringent criteria (1 emission line is sufficient). Each of our percentages should be considered a lower limit to the
–7– true ELG percentage because many factors reduce our detection of emission lines. The positioning of the Hα line within the spectral range was the main factor (see Table 6). Abell 160 has the highest ELG% and this is probably related to the frequent inclusion of Hα within the spectral range. Another factor is the confusion of galaxy emission with night sky lines. Some members of A98 and A1446 will have their [OIII] redshifted near λ5577, and the automated program will reject any line within a window centered on that line. Despite this, the ELG% for A1446 appears high. However, the ELG fraction for non-members in the A1446 field is also high, suggesting that excellent data quality is the cause rather than cluster properties. In general, our data are not sufficiently homogeneous to make direct comparisons between ELG fractions in our clusters. The bottom row of Table 6 indicates that the apparent fraction of ELGs is roughly the same among our member and non-member (“field”) samples. This coincidence results from our particular detection limits for ELG’s and non-ELG’s. Biviano et al. (1997) find an apparent fraction of ELGs among the field about 2× greater than inside clusters (a real field-cluster difference is expected because of morphological segregation). Given that their search criteria are less stringent than ours, their sensitivity to ELG’s is higher in both environments. But the fraction of ELGs will be disproportionately higher in the field because it contains mostly spirals. So it is not surprising that our results differ.
5.
Spatial sampling and magnitude completeness
For many cluster analyses, it is important that the candidate galaxies in the cluster fields are evenly sampled. Radial variations in sampling will result in misrepresentation of the cluster velocity dispersion and mass if there is a non-constant dispersion profile. Azimuthal variations can result in overlooking subclusters that are kinematically distinct. Splotchy sampling in general can cause false positives in substructure tests that are sensitive to bimodality or asymmetry (Pinkney et al. 1996). Thus, one should be aware of the spatial uniformity of one’s cluster redshift survey. Moreover, if one wishes to compare the occurrence rate of substructure in one survey to another, it is desirable to know the depth and area of coverage in both surveys. We will address these issues as follows: first, we describe how our lists of galaxy candidates were created, second, we will estimate the completeness of these lists (hereafter, MX files), and third, we will evaluate how evenly we placed fibers on the candidate galaxies.
5.1.
Candidate galaxy selection
The cluster search fields were roughly square with sides of 3 h−1 Mpc (Table 7 gives 75 dimensions) and centered on the WAT. A digitized image was obtained from the “Quick-V” survey (DSS). Galaxies were selected by inspecting prints of the Palomar Sky Survey (PSS) with a binocular magnifier. Objects were circled on a hardcopy of the DSS image and given priorities to be used in fiber placement. We included galaxies below the magnitude limit for
–8– reliable cross-correlation (estimated from early data). We also included faint, compact objects which showed slight “fuzz” or asymmetry. The poor candidates were given low priorities so that ′′ obvious galaxies would be observed first. Coordinates were then measured to < ∼ 0. 5 precision on the DSS images using the Guide-star Astrometric Support Package (GASP). These coordinates were assembled into an MX file for each cluster. Finally, the MXPACKAGE tasks in IRAF2 are used to select targets for individual exposures. We iterated on the priorities after observing runs to eliminate the stars.
5.2.
Completeness of candidate galaxies and depth of spectra
To address the completeness of our MX files we used new CCD data obtained for Abell 690 at the M-D-M 1.3-m on Jan 4, 1999. We used a 20482 STIS CCD with 0.44 ′′ /pix. We obtained 1160 sec of total exposure in each of the V and R filters. The dithered exposures were combined to make a 14.′ 4 x 15.′ 0 image (1.15 x 1.20 h−1 75 Mpc). The gibbous Moon made the images noisy and difficult to flatfield; our limiting magnitude was R=21.2 (2.5σ). The FWHM of the PSF was about 1.′′ 8. The detection and classification of objects in these frames were done using SExtractor (Bertin & Arnouts 1996) in double-image mode. SExtractor provides a “stellarity index” (hereafter, SI) which corresponds roughly to a confidence limit (1=stellar, 0=non-stellar). SExtractor could rule out stellarity with 95% confidence (SI ≤ 0.05) down to R=19.0. We used an adaptive aperture magnitude which included all but ≈ 10% of the light for galaxies. A photometric calibration using Landolt standard stars allowed us to set the zeropoint. A comparison to 11 field stars in the USNO A01 (Monet et al. 1996) gave a zero point offset of 0.16 mag, which is less than the USNO plate-to-plate errors. We also estimated our scatter to be < 0.13 mag. The total number of MX file objects in the CCD field was 79. SExtractor classified 50 of these as non-stellar, with SI ≤0.2, 18 as ambiguous objects (0.2≤ SI ≤ 0.8), and 11 as stellar (0.8≤ SI ≤ 1.0). The numerous ambiguous and stellar objects mostly appear faint and/or compact on the PSS and were given low priorities. Most of the SI ≥0.8 objects are stars, but we measured a C1 galaxy velocity for one object with SI = 0.98. Five more examples of C1 galaxies were found with 0.2 ≤ SI ≤ 0.8. Had our MX candidates been selected based on these SI results, several real galaxies would have been omitted. This underscores the possibility that compact galaxies are often overlooked in redshift surveys (Drinkwater et al. 1999). SExtractor also erred in the opposite sense, classifying stars as galaxies, particularly where the PSF distorted near the field edge. The 3 brightest of these were omitted from the following. The completeness of our A690 MX file is plotted in Fig 4. The solid line is the fraction of 2
IRAF is distributed by the National Optical Astronomy Observatories, which is operated by AURA under cooperative agreement with the NSF.
–9– CCD galaxies that are included in the MX file. There are 4 omissions in the R=16.75 and 17.25 bins. Two of these galaxies were in fact spotted on the PSS, but failed to be catalogued because of mistakes in bookkeeping. One was excluded from MX because of its proximity to a bright star. One CCD object was overlooked. The fainter, R=17.75 bin is 100% complete. In R=18.75, the completeness of our MX file is about 70% , and it quickly drops thereafter. Combining all bins with R≤ 19.0, the A690 MX file is 82% complete. Thus, we find that our method of galaxy selection is also subject to errors, but few of these are oversights. We suspect that our other MX files were not equally deep. Table 7 shows the number of candidate galaxies for each cluster, “NCand. ”, which is a measure of how thoroughly the PSS prints were searched for candidates. However, it must be modulated by the the cluster richness count (R), search field size (Field), field star density, and redshift (Table 6). It appears that A1684 and A2220 have relatively small candidate lists for their richness, field size, etc., and thus are likely to have lower completeness. In contrast, A2462 has a relatively large NCand. . If all MX files are far deeper than the limit of the detector, the variations are inconsequential. We have examined the limit of detection by the 2.3-m + MX using the A690 CCD data. We consider a “detection” to be a spectrum with a reliable (C1) redshift. We do not expect a sharp magnitude limit because the detectability should vary with observing conditions, the compactness and spectral type of the galaxy, etc. We find that, for 1 hour exposures, about 50% of objects with 18.0 < R 18.5. Then we have a spectrum for 95% and a C1 redshift for 61%. Lacking a definitive list of galaxies in the field, we estimate that about 60% of the galaxies in A690 have reliable redshifts down to the MX limit (R=18.5). The other WAT clusters may differ in completeness. Table 7 shows the sampling percentage (“%”), or the percentage of MX file objects that were observed. For A690, the sampling percentage is 76.4%, which ranks 3rd from highest. The 1st and 2nd ranked percentages are for A1684 and
– 10 – A2220, but since these have a relatively small number of candidates (NCand. ), A690 is probably deeper. A690 had 19 exposures which should boost its completeness considerably. The clusters with the lowest sampling percentages, A1446 (42.4%) and A2214 (52.1%), are likely to have lower completeness levels because of the low number of exposures. The cluster with the lowest percentage, A2462 (34.5%), may not be especially incomplete because it has a very large catalog (NCand. =444) for its richness (0). In summary, the completeness of our A690 MX file is 82% down to R=19.0 and other clusters should scale roughly by NCand. . The sampling of our well-observed clusters (e.g., A690) is very high (about 95% to R=18.5) resulting in reliable redshifts for about 60%. Unfortunately, some of our clusters require more observations for this level of completeness. For example, we are in danger of missing substructures in A1446 and A2214 where the sampling drops below 40% in subregions.
5.3.
Spatial fairness of sampling
We were concerned with obtaining uniform spatial coverage of our clusters. The priorities we assigned to the objects in our MX files were used to control this. MXPACKAGE would reduce the priorities to avoid repetitions in consecutive exposures, and we manually reduced the priorities from night to night to better sample all the galaxies. We further influenced the spatial coverage by the choice of a center star for guiding. This made different regions of the field accessible to the probes. Finally, the density of fiber probes as a function of radius was also adjustable by the user. We have evaluated how evenly we sampled the candidate galaxies by dividing the cluster search fields into 6 subregions. These subregions are shown in Figure 5 for A690 and A2634. The subregion sampling percentages for each cluster are summarized in Table 7. Abell 1684, and 2214 appear to be undersampled in their centers compared to their outer regions. The difference between these two counts is only significant at the 1.3 and 2.3 σ level, respectively. These are fairly distant clusters with less than 5 exposures, so their cores were not thoroughly probed. Abell 2462 and 2634 are over-sampled in the center compared to the outer regions at the 4.9 and 3.1 σ levels, respectively. A2634 also shows a significantly deficient SW quadrant. Abell 160 is marginally over-sampled in the center (2.8 σ). The other clusters (including A690 in Fig. 5) are reasonably evenly sampled. Thus, we find 3σ non-uniformities in 2 cases, A2462 and A2634, and 4 other less significant cases: A160, A1684, A2214, and A2220. Even the less severe non-uniformities could influence substructure analysis and velocity dispersion measurements. We will keep this in mind for our analysis in paper II.
6.
Summary
We have presented new redshifts and positions for galaxies in 9 WAT clusters. Nineteen of our galaxies had published redshifts which are in reasonable agreement with our redshifts (i.e.,
– 11 – σ< ∼ 150). A search for emission line galaxies helped contribute cluster redshifts and improve the accuracy of our catalog. Our candidate galaxies for observation were chosen by visual inspection of the PSS. CCD data for Abell 690 indicate that its candidate list (MX file) is 82% complete down to R∼19.0. Also, 95% of A690 targets are observed, while about 60% of them have reliable redshifts down to the MX detection limit (R∼18.5). The fraction of candidates that are observed varies from cluster to cluster, and, for 2 clusters, varies strongly between subregions in the cluster. Nevertheless, the dataset is well-suited for measuring WAT peculiar velocities, and can also be used for substructure analyses with attention to the cases with uneven sampling. Paper II will use these data to look for links between the WAT radio morphology and the cluster’s dynamical state. We would like to thank George Rhee for assistance on the initial observing runs, William Oegerle for providing digitized, “Quick V” survey images which were essential for galaxy astrometry, the Steward Observatory TAC, and Frazer Owen, who kindly made available a listing of sources from the 20 cm VLA Northern Abell Cluster Survey prior to publication. Support was provided for this research by NSF grants AST-9317596, AST-9896039, and NASA grant NAGW-3152 to J. O. B., and by HST grant GO-07388.01 and LTSA grant NAG5-8238 to D. Richstone. Data were obtained (in part) using the 1.3 m McGraw-Hill Telescope of the M-D-M Observatory. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
– 12 – REFERENCES Andersen, V., & Owen, F. N. 1994, AJ, 108, 361 Beers, T.C., Flynn, K., & Gebhardt, K. 1990, AJ, 100, 32 Beers, T.C., Gebhardt, K., Huchra, J.P., Forman, W., Jones, C., & Bothun, G. 1992, ApJ, 400, 410 Beers, T. C., Geller, M. J., & Huchra, J. P. 1982, ApJ, 257, 23 Beers, T. C., Huchra, J. P., & Geller, M. J. 1983, ApJ, 264, 356 Bertin, E., & Arnouts, S., 1996, A&AS, 117, 393 Biviano, A., Katgert, P. Mazure, A., Moles, M., Hartog, R. den, Perea, J.& Focardi, P. 1997, A&A321, 84 Burns, J. O. 1986, CaJPh, 64, 373 Burns, J. O., Ledlow, M. J., Loken, C., Klypin, A., Voges, W., Bryan, G. L., Norman, M. L., & White, R. A., 1996, ApJ, 467, L49 Burns, J. O. 1998, Science, 280, 400 Drinkwater, M. J., Phillipps, S., Gregg, M. D., Parker, Q. A., Smith, R. M., Davies, J. I., Jones, J. B. & Sadler, E. M. 1999, ApJ, 511, L97 Eilek, J.A., Burns, J.O., O’Dea, C.P., & Owen, F.N. 1984, ApJ, 278, 37 Faber, S. M., & Dressler, A. 1977, AJ, 82, 3 Fanaroff, B.L. & Riley, J.M. 1974, MNRAS, 167, 31 G´ omez, P. L., 1998, Ph.D. Thesis, New Mexico State University G´ omez, P. L., Pinkney, J., Burns, J. O., Wang, Q., Owen, F. N., & Voges, W. 1997, ApJ, 474, 580 Hill, J. M. & Oegerle, W. R., 1993, AJ, 106, 831 Hill, J. M., & Lesser, M.P. 1986, Proc. Soc. Photo-Opt. Instrum. Eng. 627, 693 Huchra, J. P., Geller, M. J., Clemens, C. M., Tokarz, S. P., and Michel, A., 1992 “The CfA Redshift Catalogue”, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Katgert, P, Mazure, A., den Hartog, R., Adami, C., Biviano, A., & Perea, J. 1998, A&AS, 129, 399 Loken, C., Roettiger, K., Burns, J.O., & Norman, M. 1995, ApJ, 445, 80L
– 13 – Malumuth, E. M. 1992, ApJ, 386, 420 Monet, D., Bird, A., Canzian, B., Harris, H., Reid, N., Rhodes, A., Sell, S., Ables, H., Dahn, C., Guetter, H., Henden, A., Leggett, S., Levison, H., Luginbuhl, C., Martini, J., Monet, A., Pier, J., Riepe, B., Stone, R., Vrba, F., Walker, R. 1996, USNO-SA1.0, (U.S. Naval Observatory, Washington DC). O’Donoghue, A., Owen, F. N., & Eilek, J. A. 1990, ApJS, 72, 75 (OOE) Owen, F. N., & Rudnick, L. 1976, ApJ, 205, L1 Owen, F. N., White, R. A., & Burns, J. O. 1992, ApJS, 80, 501 Owen, F. N., White, R. A., & Ge, J.P. 1993, ApJS, 87, 135 Owen, F. N., White, R. A., & Thronson, H. A. 1988, AJ, 95, 1 Owen, F. N., & Ledlow, M. J. 1997, ApJS, 108, 41 Owen, F. N., Ledlow, M. J., & Keel, W. C. 1995, AJ, 109, 14 Patnaik, A. R., Malkan, M. A., & Salter, C. J. 1986, MNRAS, 220, 351 Pinkney, J., Burns, J. O., & Hill, J. M. 1994, AJ, 108, 2031 (Pi94) Pinkney, J., Rhee, G., Burns, J. O., Hill, J. M., Oegerle, W., Batuski, D., & Hintzen, P. 1993, ApJ, 416, 36 (Pi93) Pinkney, J., Roettiger, K., Burns, J. O., & Bird, C. M. 1996, ApJS, 104, 1 Price, R., Burns, J.O., Duric, N., Newberry, M. V. 1991, AJ, 102, 14 Roettiger, K., Burns, J. O., & Loken, C. 1996, ApJ, 473, 651 Scodeggio, M., Solanes, J. M., Giovanelli, R., & Haynes, M. P. 1995, ApJ, 444, 41 Slinglend, k., Batuski, D., Miller, C., Haase, S., & Michaud, K. 1998, ApJS, 115, 1 Tonry, J., & Davis, M. 1979, AJ, 84, 1511 Zabludoff, A. I., Huchra, J. P., & Geller, M. J. 1990, ApJS, 74, 1
This preprint was prepared with the AAS LATEX macros v4.0.
– 14 – List of Figures Fig. 1.— Spectra from the MX multifiber spectrometer. The night sky spectrum has been subtracted, but the residuals of prominent lines (marked “ns”) may be visible. a) The WAT in Abell 1684. Note the interference of night sky with Mg b. b) The WAT in Abell 1446. c) A convincing emission line spectrum from A98. d) A galaxy in A98 showing prominant Balmer absorption left of the 4000˚ A break and slight OII emission indicative of post- or ongoing- star formation. Fig. 2.— Histograms showing all C1 velocities (see text) measured in the fields of Abell 98, 160, 690, 1446, and 1684. The number of C1 velocities is shown. Fig. 3.— Histograms showing all C1 velocities measured in the fields of Cl1313+073, Abell 2214, 2220, and 2462. The number of C1 velocities is shown. Fig. 4.— Plot of completeness vs. SExtractor R magnitude within a 14.′ 4X15′ field of Abell 690. Use the left axis for the two completeness curves and the right axis for the triangles and squares. The solid curve is the fraction of SExtractor galaxies (SI ≤ 0.2) which are in the MX file (see text). The dotted curve is the fraction of the SExtractor galaxies which were actually observed by MX. The boxes are the number of SExtractor galaxies in each 0.5-mag bin, while the triangles are the number of those SExtractor galaxies which are also in the MX file. Fig. 5.— Two plots showing the uniformity of spatial sampling for Abell 690 and Abell 2634. The filled circles are candidate galaxies with a spectrum (i.e., “sampled”) and the open circles are candidates without a spectrum. The percentage of candidates observed is labelled inside six sub-regions: four equal-sized quadrants, a region inside of the circle (D = 1/2 field height), and a region outside of the circle. These sampling percentages are given for all of the clusters in Table 7. Note that Abell 2634 is undersampled in the lower right quadrant (Q4) and oversampled in the center.
– 15 – List of Tables Table 1: Radio Properties of WATs. Table 2: Log of MX Observing Runs. Table 3: Positions and Velocities of WAT cluster galaxies. Table 4: Traditional Velocity data for WAT clusters. Table 5: Comparison with Published Velocities. Table 6: Emission Line Galaxy Counts. Table 7: Spatial Fairness of MX Observations.
600
400
200
|
|
|
ns
ns
ns
|
|
|
500 400 300 200 100 500 400 300 200 100 500 400 300 200 100 0 4000
5000
6000
Abell 98 N = 101
10
5
0 Abell 160 N = 125
10
5
0 Abell 690 N =106
10
5
0 Abell 1446 N = 54
10
5
0 Abell 1684 N = 38
10
5
0 0
10000
20000
30000
40000
50000
60000
Cl1313+073 N = 60
10
5
0 Abell 2214 N = 21
10
5
0 Abell 2220 N = 23
10
5
0 Abell 2462 N = 74
10
5
0 0
10000
20000
30000
40000
50000
60000
25
1 20
0.8 15
0.6
10 0.4
5 0.2
0 14
0 16
18 R mag.
20
arXiv:astro-ph/0011168v1 8 Nov 2000
Table 1. Radio Properties of WATs Source
Cluster
Alt.Name
z1
0043+201 0053+261B 0110+152 0255+058A,B 0803-008 0836+290 1138+060 1159+583 1233+168 1306+107 1313+073 1433+553 1636+379 1638+538 1820+689 1919+479 2236–176 2335+267
A98 A115 A160 A400 A623 A690 A1346 A1446 A1569 A1684 ··· A1940 A2214 A2220 A2304 ··· A2462 A2634
4C20.04
0.1063 0.1971 0.0440 0.0226 0.0891 0.0789 0.0972 0.1025 0.0784 0.0864 0.0507 0.1402 0.1609 0.1103 0.0881 0.1022 0.0742 0.0302
3C75 4C29.30 4C58.23 4C10.35 4C55.29 4C37.48
4C47.51 PKS2236-17 3C465
r/AC 2 0.08 0.58 0.06 0.08 0.03 0.03 0.13 0.09 0.18 0.28 ··· 0.07 0.23 0.09 0.03 ··· 0.06 0.04
1
log(P1400 )3 25.12 25.35 24.45 24.65 25.31 25.12 24.97 25.24 25.23 24.80 25.01 25.28 25.55 25.21 25.11 25.32 25.22 25.17
Extent4 290 85 430 330 150 510 ··· 170 350 460 300 240 450 240 170 1200 200 320
Morph.5 WAT WAT? TJ TJ&TJ WAT? WAT WAT? WAT WAT? WAT? WAT WAT WAT WAT WAT? WAT WAT WAT
Notes6 Z,I,O I Z,I,O I,P P Z,I,O Z,I,P,O P Z,O Z I,P,O Z,P,O I P Z,I,P Z,P,O I,P
The redshift, z, is that of the radio galaxy from Owen et al. (1988, 1995). The ratio of the distance of the radio galaxy from the cluster center to the Abell radius. 3 The logarithmic radio power is given in Watts Hz−1 (H0 =75 km s−1 Mpc−1 , and q0 =0.0), and is calculated from flux densities given by Owen et al. (1992, 1993) or in OOE. 4 The maximum, projected, linear size of the source (usually between ends of the tails) given in kpc. 5 These morphologies are suggested by Owen from the 20 cm survey (Owen, private communication). 6 Z: New redshifts presented in this paper. I: Observed with Einstein IPC. P: Observed with ROSAT PSPC. O: High resolution radio data in O’Donaghue et al (1990, OOE). 2
1
Table 2. Log of MX Observing Runs Year
Date
Clusters Observed
Conditions
CCD
1991 1991 1991 1992 1992 1992 1992 1992 1993 1993 1993
Mar 12-13 Dec 29-30 Dec 31 Mar 7 May 31 Aug 26-27 Dec 26 (half) Dec 27-28 Jan 21-24 (half) Jul 22-23 Sep 15-16 (half)
A690 c1313+073 ··· A160 A690 ··· ··· A98 A160 A2462 c1919 A98 A160 A690 ··· A690 A1446 A1684 c1313 A160 c1919 A2214 a2462 A98 A160 c1919 a2462
good poor - humid good poor - blizzard ··· poor - clouds ok poor - clouds great great good
TI 800 TI 800 TI 800 TI 800 CCD out Loral 1 Loral 2 Loral 2 Loral 2 Loral 3 Loral 3
2
Table 3. Velocities and Positions of WAT Cluster Galaxies Gal. ID
RA(2000)
Abell 98 201 202 203 204 205 212 222 226 227 235 236 237 246 250 251 252 253 256 258 260 261 264 266 267 269 270 271 272 275 279 281 282 283 286 287 288
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 46 47
35.67 29.33 36.26 24.63 23.85 19.26 38.13 49.17 49.99 51.51 51.79 48.03 31.07 18.52 15.79 02.15 02.24 41.41 41.29 32.12 45.53 04.74 18.80 22.61 17.10 14.69 28.46 33.92 37.02 38.55 35.19 28.17 33.24 48.95 56.82 01.74
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
29 28 28 30 30 28 28 27 27 30 30 30 31 33 32 30 30 30 28 27 26 28 25 25 23 23 23 23 26 22 20 21 14 15 20 23
289 291 295 297 298 299 307 308 315 316 317
0 0 0 0 0 0 0 0 0 0 0
46 46 47 47 47 47 46 46 46 46 46
29.93 52.58 09.39 23.22 17.58 12.70 32.55 31.99 36.44 47.61 56.04
20 20 20 20 20 20 20 20 20 20 20
34 25 29 31 34 35 28 28 15 11 12
cz1a
cz2b
ǫc
41.8 04.4 26.3 07.1 00.0 11.6 40.8 24.1 07.6 23.3 42.4 54.9 43.7 13.9 06.3 50.4 30.4 58.8 01.8 23.3 15.8 27.5 57.5 44.8 44.1 41.9 47.9 54.6 06.1 53.3 31.0 05.3 57.1 29.4 35.4 18.0
31999 30942 32162 31261 29895 30453 30981 29315 31643 30547 31852 31066 30991 31519 30691 29872 31770 30890 28811 23715 31267 31612 41346 48228 ··· 31004 30182 32705 30954 31116 30701 36105 35375 ··· 35554 em31439
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 7277 ··· ··· ··· ··· ··· ··· ··· ··· 15163 ··· ···
87 42 44 45 77 107 97 95 52 51 51 82 103 75 92 71 79 72 101 103 72 81 96 94 200 48 66 45 90 59 51 96 88 200 48 59
27.5 23.3 17.0 21.5 54.8 24.5 23.8 27.3 24.1 23.4 23.0
··· 32553 31494 ··· 36861 52979 31766 31431 36160 ··· 36970
29315 ··· ··· 4224 ··· ··· ··· ··· ··· 36674 ···
200 100 82 200 91 98 55 87 44 200 60
DEC(2000)
3
NOTESd BGH337 WAT, BGH401 gE, BGH383 BGH320? BGH328?
stO2O3sHs Vab=31413
BCG in A98Sb
Table 3. (continued) Gal. ID
RA(2000)
DEC(2000)
cz1a
cz2b
ǫc
318 320 321 324 325 327 336 337 340 346 348 351 352 355 358 363 365 368 371 376 378 388 392 393 394 395 397
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 47 46 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 45 45 46 46 46 46 46 46 46
05.99 18.01 07.49 45.59 49.23 35.27 26.85 30.17 20.12 46.34 44.64 45.56 44.47 40.72 32.09 21.60 16.64 07.52 56.39 57.44 07.86 56.51 15.51 18.45 23.41 15.58 08.45
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
17 21 28 18 14 30 36 36 35 37 37 40 40 44 43 42 44 40 42 36 38 27 33 32 32 31 28
24.4 59.9 48.4 45.6 38.7 11.0 52.0 48.7 45.9 29.2 00.5 12.6 23.9 04.7 06.4 30.3 12.6 59.4 19.2 55.2 47.0 04.8 19.1 28.6 14.5 00.6 50.1
38919 31451 31734 23221 35977 31203 29831 29380 40217 ··· 37582 40099 ··· 17288 31358 31354 ··· ··· ··· 30373 31768 30250 30023 58287 ··· 5787 30371
··· ··· ··· ··· ··· ··· ··· ··· ··· 4644 ··· ··· 36125 ··· ··· ··· 6611 45628 4814 ··· ··· ··· ··· ··· 41869 ··· ···
100 68 77 100 80 52 106 38 104 200 98 75 200 97 88 91 200 200 200 75 58 66 48 104 200 102 52
402 403 407 408 413 414 415 416 419 420 421 423 427 428 429 430 431 432 2080 0408 0396
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 47 46 46 47 46 46 46 46 46 45 45 45 45 45 45 45 45 46 46 46
12.97 06.65 27.60 38.51 25.80 34.36 27.67 20.25 29.24 16.29 59.01 57.47 33.02 40.22 59.32 48.57 50.11 50.47 20.70 33.26 31.89
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
29 23 18 16 10 11 10 08 14 16 15 12 15 15 23 26 29 29 29 27 28
41.5 51.2 24.2 20.8 02.8 57.4 41.5 13.4 04.6 12.5 29.2 56.0 07.7 58.1 49.6 05.7 10.0 06.7 06.0 50.4 09.5
32044 36484 37169 36630 37168 35692 36274 35259 36398 37137 38904 ··· 30062 29947 31713 31146 30324 30966 30947 32456 32392
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 61204 ··· ··· ··· ··· ··· ··· ··· ··· ···
59 62 88 50 90 58 70 66 92 83 78 200 54 52 85 50 70 95 44 79 69
4
NOTESd
BGH142,FD12
O2,E+A BGH360 FD8
BGH408 BGH396
Table 3. (continued) cz1a
Gal. ID
RA(2000)
0411 0338 0311 0422 0353 0354 0125 0067 0092 0158 0221 0185 0184 0182 0175 0212 0030 0042 0095 Abell 160 201 202 203 204 205 207 208 211 212 214 217 218 220 222 224 225 226 227 228 229 230 231 233 234 236
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 46 46 45 46 46 46 46 46 46 46 46 46 45 45 45 46 46 47
25.91 19.42 16.00 47.03 21.93 20.32 24.78 29.90 15.94 43.31 29.66 13.69 04.06 59.80 52.86 40.67 08.12 52.84 14.01
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
27 29 30 26 29 28 37 38 38 36 33 34 34 35 35 33 40 41 38
32.2 40.2 18.5 55.2 04.8 58.7 17.3 56.8 07.7 03.6 17.0 50.0 50.0 07.8 11.4 38.1 43.3 00.4 09.8
31199 32855 31340 31260 33446 30387 30741 32609 32124 31336 31330 17523 30123 30772 10755 17965 30612 31497 18317
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 12 13 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12
59.64 59.94 03.73 58.68 57.66 49.91 49.49 41.17 38.22 45.24 03.93 05.98 14.70 07.48 13.85 16.28 15.64 13.26 15.73 07.47 02.89 00.16 54.08 48.04 38.04
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
29 29 30 28 28 30 30 28 28 27 27 26 26 27 29 30 30 30 30 30 31 31 32 31 33
27.4 29.4 07.1 13.9 19.7 18.2 26.1 21.9 03.1 21.5 16.3 28.8 38.5 49.8 36.9 09.5 25.0 27.3 58.2 30.8 37.5 50.3 47.8 42.2 02.4
13172 12996 12283 12846 ··· 12800 13596 29460 12807 13234 12388 24400 em13912 13080 ··· 13216 14512 12056 14085 13426 13707 2296 13849 12367 em12852
15 35 27.8 15 38 36.2 15 43 33.6
12578 13367 18281
246 247 248
1 12 27.43 1 12 25.05 1 12 23.51
DEC(2000)
5
cz2b
ǫc
NOTESd
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
100 64 53 38 40 100 39 100 49 38 100 100 45 200 37 68 51 44 80
BGH411,FD10 BGH338 BGH311 BGH422 BGH353 BGH354,FD11 BGH125,radio BGH67,FD5 BGH92 BGH158,FD9 BGH221,FD6 BGH185,FD4 BGH184,FD13 BGH182 BGH175 BGH212 BGH30 BGH42 BGH95
··· ··· ··· ··· 3994 ··· ··· ··· ··· ··· ··· ··· ··· ··· 5197 ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
100 80 62 59 200 49 51 99 51 89 65 101 150 88 200 54 46 65 20 75 41 103 45 44 77
TJ
··· ··· ···
111 79 86
O2O3sHs
O2HsO3N2 Vab=12968
Table 3. (continued) cz1a
cz2b
ǫc
15 43 16.5 15 42 26.4
em11376 11618
··· ···
55 69
1 12 40.87 1 13 16.50
15 39 29.9 15 40 35.5
2530 11475
··· ···
104 86
254 255 256 257
1 1 1 1
13 13 13 13
19.16 09.12 42.32 45.01
15 15 15 15
42 37 42 40
12.1 45.4 02.9 59.2
12980 13441 ··· 13280
··· ··· 69522 ···
68 85 200 60
259 260 261 262 264 265 266 267 268 271 272 273 274 276 278 282 283 285 292 293 294
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12
42.80 30.95 30.33 34.51 40.92 47.68 50.61 47.70 55.84 30.26 16.40 21.52 26.71 30.16 13.97 24.47 24.46 01.94 44.03 53.96 59.52
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
36 33 32 32 31 30 28 26 24 27 23 21 20 16 16 20 21 20 35 36 35
54.1 04.3 46.0 24.0 52.5 29.0 18.4 22.5 49.3 02.4 35.1 02.8 06.0 38.0 36.8 07.2 18.1 47.0 20.5 07.6 28.6
43762 13303 12024 18106 ··· 13561 13054 40233 40134 ··· 13379 ··· 12570 ··· 13583 ··· 13146 ··· 13040 12299 12348
··· ··· ··· ··· 23621 ··· ··· ··· ··· 22908 ··· 40883 ··· 20387 ··· 12360 ··· 2576 ··· ··· ···
101 71 17 60 200 42 20 74 92 200 107 200 68 200 214 200 88 200 87 47 42
295
1 13 19.86
15 29 26.3
em14649
296 299 302 303 305 312 313 314 315 316 317 318 320 323 326 327 328 329
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
··· 11365 11466 em11856 12559 ··· 13678 13209 ··· 11480 42490 18079 ··· 56704 18110 ··· 6 11410 18104
Gal. ID
RA(2000)
249 250
1 12 35.76 1 12 43.84
251 253
12 14 14 14 14 13 13 13 13 13 13 13 13 12 12 12 12 12
13.60 14.51 02.28 26.78 28.06 24.70 21.96 11.92 29.98 24.46 19.18 35.60 45.36 22.42 40.79 42.60 27.41 20.13
DEC(2000)
42 53 48 47 45 51 51 49 48 46 45 45 47 49 48 49 44 46
47.4 52.9 58.8 33.1 19.3 21.1 04.2 59.2 56.6 56.8 34.2 28.6 31.4 27.6 52.8 46.7 59.0 02.4
··· 33432 ··· ··· ··· ··· 44888 ··· ··· 29673 ··· ··· ··· 22566 ··· ··· 11127 ··· ···
49 200 65 96 80 98 200 50 47 200 71 94 94 200 105 98 200 42 89
NOTESd O2HsO3 O2O3HsN2 Vem=11615 O2O3HsN2s Vem=11455
O2HsN2S2 Vem=13221
H?
O2NeO3N2sHS2 Vem=12200 O2O3HsN2 Vab=14858
O2O3sHsNe
Hs Vem=17919
Table 3. (continued) Gal. ID
RA(2000)
DEC(2000)
cz1a
cz2b
ǫc
330 331 332 342 343
1 1 1 1 1
12 12 12 14 14
22.35 29.93 01.65 16.86 09.76
15 15 15 15 15
44 44 45 35 35
19.0 18.8 22.8 32.1 04.2
18614 11386 ··· 11472 17910
361 363 364 366 368 369
1 1 1 1 1 1
15 15 15 15 14 15
12.57 21.13 30.75 08.95 58.98 01.19
15 15 15 15 15 15
24 18 17 17 20 21
37.3 29.2 15.5 31.0 57.9 20.9
36316 36720 36637 20436 20081 20333
370 372 373 375 377
1 1 1 1 1
14 14 14 14 14
35.19 26.84 23.11 22.80 08.32
15 15 15 15 15
20 16 17 23 24
53.6 23.9 17.8 42.5 09.4
··· 18428 18332 40508 em17976
20405 ··· ··· ··· ···
110 49 46 89 48
378 382 383 384 385 387 389 395 396 397 398 400 401 405 415 416 418 420 421 422 425 427 432 435 438 442 444 445 448 453 462 465
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 14 14 14 14 14 14 14 14 14 14 11 11 11 11 11 11 11 11 11 11 11 15 15 14 14 14 14 14 15 15 14
08.09 33.50 35.30 51.45 36.45 53.96 50.42 10.18 07.45 03.41 15.75 52.94 51.68 21.99 24.87 29.76 31.31 48.58 56.60 53.33 50.22 28.21 39.52 13.45 22.43 21.33 32.34 17.33 36.05 08.42 20.89 45.96
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 15 15
24 30 30 29 26 41 38 43 43 41 38 41 39 42 34 33 34 34 27 28 21 22 14 12 14 07 08 03 59 54 02 06
00.9 09.4 49.6 35.0 25.6 27.4 37.1 28.1 33.7 35.2 11.8 55.6 50.9 25.5 21.9 51.9 16.9 12.0 58.2 10.8 01.4 05.4 42.6 45.2 48.5 21.9 28.8 35.7 29.4 02.3 27.9 07.6
··· 13004 em18087 19849 31903 ··· ··· 23584 em18645 36418 12808 18244 18069 9661 18667 17871 ··· 1451 13149 12619 17658 25183 em16395 20713 18063 18336 ··· 18568 18127 21910 38530 13175 7
57542 ··· ··· ··· ··· 15555 6970 ··· ··· ··· ··· ··· ··· ··· ··· ··· 2146 ··· ··· ··· ··· ··· ··· ··· ··· ··· 21305 ··· ··· ··· ··· ···
200 100 40 74 102 200 200 99 51 77 48 71 92 99 48 95 200 97 56 90 71 100 40 64 44 32 200 98 76 89 91 107
··· ··· 20134 ··· ··· ··· ··· ··· ··· ··· ···
66 103 200 60 150 100.8 95 40 62 61 69
NOTESd
HsN2 Vem=17814
O2HsO3sO1N2 Vem=20310
O2O3HsN2S2 Vabs=18308
O2HO3
O2NeHO3s
O2HsO3N2s
Table 3. (continued) Gal. ID
RA(2000)
cz1a
DEC(2000)
cz2b
ǫc
468 469 471 473 480 482 484 491 500 502 504
1 1 1 1 1 1 1 1 1 1 1
13 13 12 12 12 12 12 13 13 11 11
26.20 24.35 36.45 28.63 50.06 21.90 20.48 11.99 43.04 21.02 06.24
15 15 15 15 15 15 14 15 15 15 15
15 14 11 11 02 00 58 05 13 12 10
05.4 27.2 47.6 01.3 03.5 37.9 00.7 58.0 52.6 29.4 17.7
12478 12672 59949 42169 17458 8676 11752 ··· 13609 ··· 11457
··· ··· ··· ··· ··· ··· ··· 45459 ··· 51237 ···
95 95 103 96 81 87 94 200 74 200 99
505 508 511 512 514 515 516 517 519 525 531 534
1 1 1 1 1 1 1 1 1 1 1 1
11 11 11 11 11 11 11 11 11 10 10 11
32.31 48.01 36.63 26.78 25.92 50.95 46.27 54.68 09.81 24.06 37.70 07.81
15 15 15 15 15 15 14 14 14 14 15 15
10 05 04 07 01 03 58 56 54 59 06 01
59.1 53.1 41.0 50.2 02.0 44.2 39.2 51.3 10.7 11.9 49.2 04.8
em12042 em11559 41900 18078 18076 em39477 13251 42398 em18073 16409 ··· 18303
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 18012 ···
67 40 76 104 44 52 58 91 78 50 200 66
Abell 690 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 22
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
39 39 39 39 39 39 39 38 38 38 38 38 39 39 39 39 39 39 39
15.83 14.67 10.75 10.85 19.03 18.36 27.05 47.37 42.47 50.13 58.31 50.03 17.37 17.82 22.50 34.59 32.96 41.30 02.61
28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
50 50 49 48 49 48 45 46 46 51 51 55 56 52 53 51 51 53 49
38.5 10.7 21.4 31.9 09.1 35.9 11.2 18.1 23.7 16.4 44.1 16.5 00.2 00.3 29.8 33.2 02.3 52.8 15.3
23673 24663 ··· 23253 40353 40115 23552 24333 15370 23646 14448 27623 24685 24536 77610 ··· 23480 ··· 23346
··· ··· 14190 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 27556 ··· 22764 ···
75 81 200 79 103 94 107 69 78 96 106 50 82 54 150 200 398 200 63
24 25 28 31 34
8 8 8 8 8
39 39 39 39 39
37.17 38.66 24.80 16.16 31.49
28 28 28 28 29
48 47 44 57 09
34.9 19.5 41.8 46.8 12.9
23833 ··· 24207 24296 23534
··· 25100 ··· ··· ···
147 200 60 47 78
8
NOTESd
HN2 Vem=11520 O2O3sHsS2 O2O3sHs
O2HsO3
O2O3sHsN2
O2HsN2s Vem=18394 WAT
O2O3s Vem=23349
Table 3. (continued) Gal. ID 36 37 38 42 43 44 45 47 48 49 50 53 58 61 62 63 64 65 67 68 69 72 75 76 77 82 83 84 85 88 89 90 91 92 93 95 97 98 99 101 102 103 105 110 111 112 119 121
RA(2000) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
39 39 40 39 39 39 40 39 40 40 40 39 38 39 39 39 39 39 40 40 40 40 40 40 40 39 39 38 38 37 38 37 38 38 38 38 38 38 38 39 38 39 39 39 39 39 39 39
26.72 38.27 10.78 56.79 46.42 58.07 15.68 47.61 18.63 24.38 41.69 04.91 55.63 32.45 37.75 40.16 51.05 47.48 09.56 07.90 23.44 39.10 47.68 31.92 55.03 09.28 08.96 39.64 18.32 43.38 09.15 59.92 22.35 19.69 35.77 22.68 23.09 39.84 27.40 05.99 54.84 14.62 13.43 21.77 22.04 10.13 29.91 34.22
cz1a
cz2b
ǫc
24097 19829 23938 25202 32386 42538 24280 65794 64343 41654 40696 23402 ··· 24074 24861 24105 40781 23645 ··· 23828 24513 23892 ··· 50484 24723 24067 ··· 6245 27957 15483 25194 ··· 40106 2669 23663 15511 15382 23972 ··· 27782 27651 23074 24052 23992 23734 23635 65593 4648
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 33944 ··· ··· ··· ··· ··· 40524 ··· ··· ··· 25092 ··· ··· ··· 31311 ··· ··· ··· ··· 36932 ··· ··· ··· ··· ··· ··· 14776 ··· ··· ··· ··· ··· ··· ··· ··· ···
83 99 80 147 98 106 27 132 91 101 84 172 200 148 102 75 79 89 200 270 200 73 200 144 65 32 200 85 100 99 91 200 203 103 49 111 58 54 200 63 104 76 107 101 49 70 117 106
DEC(2000) 29 29 29 28 28 29 28 28 29 29 29 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 29 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
08 07 07 59 57 00 50 52 01 06 04 46 48 41 41 42 41 43 50 50 37 31 37 41 43 49 59 11 58 37 38 46 48 47 44 41 38 38 32 39 52 51 51 50 50 51 53 53
42.1 30.2 24.0 14.7 56.1 41.4 44.4 35.2 53.1 29.9 04.1 34.8 36.7 27.4 54.0 28.3 19.9 37.0 15.6 32.3 42.7 48.5 08.2 06.7 48.2 24.0 46.0 27.0 39.8 03.2 57.6 10.5 28.8 23.8 22.0 35.4 55.9 31.3 26.1 42.5 04.4 42.2 04.7 34.0 16.3 55.9 03.9 32.2
9
NOTESd
O2? O3s Vem=63684
O2?
Table 3. (continued) DEC(2000)
cz1a
cz2b
ǫc
··· ···
104 93
Gal. ID
RA(2000)
125 126
8 39 34.10 8 39 46.46
28 56 19.0 28 57 56.1
24347 32043
127 128 129 130 131 135 136 140 141 142
8 8 8 8 8 8 8 8 8 8
39 39 39 38 39 39 39 38 38 38
17.36 12.30 05.74 48.18 02.03 47.25 09.90 52.33 24.56 11.37
28 28 28 28 28 28 28 28 28 28
57 55 57 56 55 50 42 37 39 39
12.8 58.7 12.1 01.4 32.0 47.5 45.9 59.1 40.4 39.8
33469 ··· 41547 28124 24013 38355 23348 24357 16075 25422
143 145 146 147 149 151 152 154 155 158
8 8 8 8 8 8 8 8 8 8
38 38 38 38 38 38 38 38 38 38
23.78 37.84 34.27 36.82 40.73 12.65 15.08 24.97 32.86 53.84
28 28 28 28 28 28 28 28 29 28
41 44 48 48 49 57 58 59 00 57
07.1 13.9 15.3 00.2 37.7 40.9 07.3 46.3 38.5 53.7
23779 24839 40091 23506 24504 23448 7965 28435 24198 em24950
161 163 166 168 170 171 174 177 184 185 186
8 8 8 8 8 8 8 8 8 8 8
39 39 39 39 40 40 39 40 39 40 39
06.72 32.43 49.77 56.22 16.50 07.99 50.89 08.16 52.45 04.29 54.65
29 29 28 28 28 28 28 28 28 29 29
00 03 55 50 49 47 48 43 41 05 06
26.8 41.6 41.5 10.7 13.9 43.3 16.3 55.9 46.1 43.3 33.3
··· 24456 ··· 65726 23570 63229 40551 ··· 41073 15278 em32195
54197 ··· 64573 ··· ··· ··· ··· 15010 ··· ··· ···
200 106 200 51 56 83 129 200 92 12 81
187 188 189 190 195 196 408 409 411 414 415 420 421 422 423
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
39 39 40 39 40 40 39 39 39 38 38 37 37 37 38
44.05 52.58 00.17 53.12 51.90 22.58 42.40 32.90 13.41 43.91 47.43 40.62 42.61 42.84 05.26
29 29 29 29 28 28 28 28 28 29 29 28 28 28 28
05 07 10 12 50 48 34 28 35 07 11 50 47 46 42
55.2 46.9 39.7 21.8 55.3 34.1 57.3 40.5 57.9 02.4 10.9 00.0 54.2 11.2 37.9
24327 31357 58218 24234 65840 ··· 23096 29208 28037 40912 44790 31170 24704 17457 10 30003
··· ··· ··· ··· ··· 61936 ··· ··· ··· ··· ··· ··· ··· ··· ···
65 96 93 102 93 200 62 73 102 75 101 95 99 83 49
··· 12234 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
100 200 102 35 91 95 94 53 72 65 78 98 76 116 117 68 107 101 88 32
NOTESd O2HO3 Vem=32025
O2HO3 Vab=25117
O2HO3 Vab=24574
O2HO3s Vab=32082
Table 3. (continued) cz1a
Gal. ID
RA(2000)
424 425 Abell 1446 201 212 215 221 222 237 238 243 246 251 252 254 255 259 260 266 268 270 271 275 276 283 289 291 292 293 294 295 302 305 306 314 316 318 319 320 322 323 326 329 330 332 338 340 345
8 38 45.76 8 39 13.41
28 35 40.4 28 35 57.9
24270 27927
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
58 02 07.1 58 05 12.4 58 01 40.0 58 00 04.7 58 00 00.1 58 00 20.7 57 59 46.9 58 00 40.8 58 04 41.9 57 58 15.3 57 59 00.2 57 57 02.3 57 57 05.6 57 55 39.7 57 57 10.9 57 55 11.1 57 53 31.1 57 52 46.6 57 52 32.4 57 52 10.9 57 53 37.2 57 59 38.7 58 00 10.6 58 02 01.0 58 02 48.8 58 03 23.3 58 03 26.4 58 04 18.3 58 03 59.8 58 07 48.5 58 06 51.3 58 10 39.1 58 09 48.7 58 14 05.8 58 10 28.1 58 12 9.8 58 13 13.3 58 12 49.7 58 07 25.4 58 07 11.2 58 05 53.5 58 06 00.4 58 15 23.6 58 11 33.7 58 12 56.0
30826 3542 31026 31233 31641 31577 em30317 29326 ··· 30378 em32176 ··· ··· 17154 30245 30421 61342 37775 31012 45833 30614 30411 30944 30880 19354 4956 em30321 19642 ··· em10296 56182 37983 31110 29603 37782 43565 29513 em9774 44162 12371 em12330 31573 em14834 37960 37487
2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 2 3 3 2
03.68 06.51 54.72 49.99 40.26 09.28 09.60 15.66 21.95 55.70 16.03 46.58 41.60 00.40 13.29 30.87 13.52 40.12 38.44 28.86 37.97 15.74 06.14 30.74 28.46 24.73 30.77 21.52 21.22 35.60 56.18 29.86 02.68 02.08 23.98 26.39 30.47 44.52 38.28 46.97 49.78 01.25 30.95 26.60 58.85
DEC(2000)
11
cz2b
ǫc
··· ···
90 106
··· ··· ··· ··· ··· ··· ··· ··· 11247 ··· ··· 65236 12087 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 31808 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
41 91 104 90 98 63 47 95 200 53 125 200 200 93 42 80 93 85 89 88 90 50 28 72 64 99 74 52 200 89 90 73 100 88 94 80 103 70 99 34 40 66 46 100 61
NOTESd
WAT
O2HO3s
O2HO3s
O2NeHO3
O2HsO3N2
O2O3HN2
stO2O3sH O2HsO3s
Table 3. (continued) Gal. ID
RA(2000)
DEC(2000)
cz1a
cz2b
ǫc
··· 30962 ··· ··· ··· ··· ···
100 200 90 84 83 94 47
353 354 358 365 366 367 369
12 12 12 12 12 12 12
1 2 3 3 3 3 2
55.90 21.67 02.43 32.48 27.12 15.97 39.08
58 58 58 58 58 58 58
11 07 07 04 02 03 03
10.7 05.8 01.3 17.0 26.4 10.4 40.2
30597 ··· 19774 31736 31260 2288 31476
372 373 374 376 380 383
12 12 12 12 12 12
2 2 3 3 3 3
39.54 41.22 06.12 45.62 20.68 13.37
58 58 58 57 57 57
01 00 00 59 55 53
18.7 43.7 43.3 22.3 15.8 53.2
30682 30755 31977 31062 31183 em10230
384 385
12 3 11.55 12 3 13.83
57 53 36.1 57 53 23.4
··· em10209
23941 ···
200 70
387 390 Abell 1684 1 3 5 9 10 11 13 15 17 23 24 25 26 29 31 32 34 35
12 3 04.25 12 2 55.72
57 53 15.8 57 51 58.7
··· 30827
37104 ···
200 56
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
9 8 9 9 9 9 8 8 8 9 9 9 9 9 9 9 9 9
04.47 59.02 02.73 07.68 07.79 11.47 53.05 56.83 54.79 05.67 10.85 22.07 31.67 18.83 32.80 21.32 18.86 13.81
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
29 29 30 30 29 27 28 30 31 36 37 35 36 31 28 26 24 23
35.0 31.4 16.5 07.2 54.8 50.7 26.5 42.8 14.3 10.7 01.5 18.7 00.3 52.6 11.3 57.7 29.6 29.5
25961 25993 26445 ··· 25522 25982 26227 26388 25346 25222 26160 26634 26412 30340 25336 47004 25767 16811
··· ··· ··· 47346 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
38 51 65 200 44 68 90 75 30 172 147 89 71 76 74 61 43 85
39 41 43 45 46 47 50
13 13 13 13 13 13 13
8 8 8 8 8 8 8
44.75 43.09 29.07 08.99 31.28 31.02 28.61
10 10 10 10 10 10 10
27 30 30 34 33 35 40
32.0 05.5 57.3 40.3 19.2 35.7 08.1
26140 25260 33070 ··· ··· 26269 7329
··· ··· ··· 46932 47324 ··· ···
81 135 106 200 200 86 35
52 54 55 56 59
13 13 13 13 13
9 9 9 9 9
09.86 17.69 30.55 42.35 34.75
10 10 10 10 10
37 40 42 43 33
17.9 24.7 10.2 18.1 12.9
26400 ··· 25551 12 26781 26432
··· 9555 ··· ··· ···
94 200 42 64 20
··· ··· ··· ··· ··· ···
56 45 93 107 135 64
NOTESd
O2O3 Vem=31655
stO2HO3sHsO1N2 Vab=10127 stO2NeHsO3sN2 Vab=10352
WAT
gE gE
O2HO3s Vem=16859
O2HsO3sN2 Vem=7339
Table 3. (continued) Gal. ID 61 64 65 66 67 74 76 77 78 79 80 81 82 1313+073 1 2 3 5 6 7 8 11 12 13 14 16 17 19 20 21 22 23 24 25 26 27 29 32 33 35 36 37 42 43 45 48 49 50
RA(2000) 13 9 44.50 13 9 35.09
10 32 01.0 10 30 15.1
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
cz1a
DEC(2000)
25663 22625
cz2b
ǫc
··· ···
27 51
9 9 9 8 8 8 8 8 8 8 8
55.26 34.67 38.46 45.85 29.43 31.71 12.61 09.51 34.03 20.05 10.83
10 10 10 10 10 10 10 10 10 10 10
29 26 24 20 19 17 16 16 25 25 25
39.2 16.2 48.6 41.1 28.8 12.9 45.1 38.0 04.9 28.6 40.9
··· 43373 23966 25985 25557 em70490 25812 16598 25660 66440 26037
25993 ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
200 215 101 78 75 30 61 90 67 72 87
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 16 15 15 15 15 15 15 14 15 15 15 14 16 16 16 17 17
17.02 21.16 03.35 12.92 15.24 12.68 15.20 10.44 07.78 01.25 19.69 36.87 32.42 36.50 40.98 34.84 56.41 30.92 03.74 08.27 16.44 26.48 33.38 00.39 58.66 09.41 10.17 19.90 53.52 16.97 10.07 17.03 03.83 22.17
7 6 7 7 7 7 7 6 6 7 6 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 7 7 7 7 7 6 6 6
02 59 04 01 03 01 02 58 58 01 56 00 01 05 06 07 05 03 17 55 50 48 42 52 47 41 19 19 14 02 02 37 42 50
46.6 38.5 50.7 28.5 03.4 48.4 24.0 42.0 32.3 15.8 22.2 54.5 58.4 03.3 13.4 15.4 46.7 17.8 45.5 22.1 14.8 54.2 19.1 15.6 38.2 50.4 34.3 05.5 19.6 57.5 36.9 52.3 41.9 31.7
15086 14682 6233 25966 15309 ··· 15043 ··· 14595 16059 ··· 14269 15607 14777 14159 15232 14336 38630 31586 15695 15536 ··· 27395 ··· 15719 31524 ··· 13010 13109 14952 14708 14864 1788 15397
··· ··· ··· ··· ··· 13766 ··· 10722 ··· ··· 24436 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 19885 ··· 3082 ··· ··· 16497 ··· ··· ··· ··· ··· ··· ···
76 68 98 81 96 200 45 200 124 124 200 63 89 78 106 79 80 104 74 142 72 200 88 200 95 90 200 139 69 40 62 90 101 56
13
NOTESd O2HsO3s Vem=22596
O2HsO3s
WAT
Table 3. (continued) Gal. ID
RA(2000)
DEC(2000)
cz1a
cz2b
ǫc
51 54 55 62 65 66 70
13 13 13 13 13 13 13
17 17 17 17 16 16 16
46.75 25.28 18.14 52.86 52.39 36.40 57.72
6 6 7 6 7 7 7
36 52 02 49 17 18 13
55.8 51.9 20.7 45.8 23.7 33.9 09.3
··· 17757 15689 35584 14768 30808 12790
8784 ··· ··· ··· ··· ··· ···
200 99 72 104 62 101 66
71 72 73 74
13 13 13 13
17 17 17 18
02.43 31.93 36.00 06.38
7 7 7 7
09 10 18 07
58.2 30.1 01.5 38.0
14321 ··· em13680 14976
··· 30141 ··· ···
40 200 54 57
76 80 83 86 87 92 95 100 102 103 104 106 107 110 112 113 114 116 121 122 130 131 132 135 141 145 172 190 Abell 2214 1 2 4 9 10 23 25 26
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
16 16 16 16 16 15 15 15 15 15 15 16 15 15 14 16 15 15 14 16 15 16 14 14 15 15 16 16
27.62 16.02 36.97 03.34 11.51 46.54 08.64 24.69 53.05 55.54 53.68 17.03 26.74 57.02 56.46 08.27 26.20 03.11 28.34 00.49 53.58 05.47 55.62 59.45 57.88 11.84 50.18 30.11
7 7 7 6 7 6 6 6 6 6 6 6 6 7 7 7 7 7 7 6 6 6 6 6 7 7 7 7
02 06 05 56 00 59 58 54 51 55 42 37 35 17 04 26 25 29 29 47 41 35 40 43 19 07 05 16
06.0 50.0 09.4 29.9 12.3 48.2 37.0 43.7 00.2 43.8 14.3 52.3 32.4 02.9 11.5 30.7 02.1 06.1 34.3 19.3 05.0 47.1 50.3 50.8 47.3 53.8 33.8 04.4
15118 15044 14360 15958 15082 57810 15185 ··· 29065 ··· 15659 15093 ··· em13206 13627 13380 31481 27480 28253 15393 15068 ··· 27785 27400 13512 41465 em11958 ···
··· ··· ··· ··· ··· ··· ··· 20578 ··· 5894 ··· ··· 24280 ··· ··· ··· ··· ··· ··· ··· ··· 41361 ··· ··· ··· ··· ··· 7500
73 52 43 74 57 98 100 200 75 200 99 39 200 64 82 66 79 102 96 63 77 200 65 99 102 103 67 200
16 16 16 16 16 16 16 16
38 38 38 37 37 38 38 38
00.80 04.60 05.38 58.17 59.10 19.44 30.02 16.36
37 37 37 37 37 37 37 37
52 53 52 53 53 53 53 52
59.0 09.8 09.5 29.4 44.0 14.0 19.1 19.7
48526 48626 49210 49453 48278 49634 48884 66273 14
··· ··· ··· ··· ··· ··· ··· ···
67 89 92 85 46 67 85 93
NOTESd
O2HO3 Vem=12762
O2HO3s HO3s Vem=14907
O2NeHO3s
O2HsO3sN2
WAT
Table 3. (continued) Gal. ID 40 46 47 82 84 91 92 109 111 118 120 131 132 Abell 2220 206 207 210 211 214 216 217 218 220 224 225 226 228 229 230 233 234 239 246 247 250 272 287 292 293 294 Abell 2462 1 2 4 5 7 13 14
RA(2000) 16 16 16 16 16 16 16 16 16 16 16 16 16
37 37 37 39 39 37 37 37 37 36 37 38 38
DEC(2000)
cz1a
cz2b
ǫc
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
96 74 99 99 102 88 91 66 73 91 103 103 75
23.34 26.01 26.65 04.32 12.50 51.84 44.83 18.20 20.44 49.69 02.79 10.23 04.80
37 37 37 37 37 37 37 37 37 37 38 38 38
47 53 53 53 50 44 45 51 53 57 00 01 05
25.1 12.8 17.3 17.6 54.8 40.5 18.1 46.5 13.5 14.9 59.9 17.4 20.8
28788 50208 20871 48514 13983 42029 59317 51109 48623 48510 49631 18725 18552
16 41 22.53 16 40 54.90 16 39 52.02 16 40 12.10 16 39 47.56 16 37 45.80 16 37 11.04 16 37 42.11 16 38 33.30 16 37 45.94 16 38 52.69 16 39 32.63 16 39 19.57 16 39 25.76 16 39 34.80 16 38 50.21 16 38 14.68 16 39 13.61 16 39 20.28 16 38 03.65 16 40 55.59 16 38 46.49 16 38 36.95 16 39 37.37 16 39 54.43 16 39 52.95 (= A3897) 22 39 11.42 22 39 10.72 22 39 10.42 22 39 08.72 22 39 12.57 22 39 10.55 22 39 09.73
54 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 54 54 54 54 53 53 53 53 53 53
00 54 47 45 47 49 47 47 46 50 55 46 47 45 48 53 01 00 06 04 31 35 43 45 44 44
15.9 35.5 39.6 10.9 27.8 23.4 49.8 29.5 22.2 43.5 56.4 43.6 43.5 45.1 42.9 13.1 48.0 45.2 35.3 49.9 26.0 34.4 38.1 36.3 55.9 00.4
32081 32791 32083 31479 33392 31691 ··· 30506 30682 32026 30406 32991 32261 37045 33466 ··· 38751 31354 28453 20638 ··· 32723 32430 32574 36964 31717
-17 -17 -17 -17 -17 -17 -17
20 20 20 20 19 21 22
28.7 26.1 06.9 00.5 21.6 30.7 15.3
22233 22078 64660 23631 22210 22971 21610
15
··· ··· ··· ··· ··· ··· 22055 ··· ··· ··· ··· ··· ··· ··· ··· 43979 ··· ··· ··· ··· 14685 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
81 86 56 60 83 78 200 65 94 105 74 63 66 89 63 200 97 96 88 43 200 46 82 105 80 87 39 96 104 83 56 86 47
NOTESd
gE
WAT
WAT, enacs8
enacs7
Table 3. (continued) Gal. ID
RA(2000)
DEC(2000)
cz1a
cz2b
ǫc
20 24 27 28 29 36 38 41 43 48 50 51
22 22 22 22 22 22 22 22 22 22 22 22
39 39 39 39 39 39 38 39 39 38 38 38
17.98 19.41 12.25 11.45 12.81 00.64 51.97 01.90 05.88 52.01 48.13 29.33
-17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17
20 17 17 17 17 20 21 22 23 23 26 27
13.0 38.5 14.6 31.5 42.9 29.3 14.4 54.9 04.0 51.8 25.2 08.9
21944 ··· 22543 21465 21304 35868 22428 ··· 21471 35969 14715 21448
··· 21051 ··· ··· ··· ··· ··· 4159 ··· ··· ··· ···
54 200 41 64 35 75 52 200 45 90 66 84
53 57 58 59 61 62 63 64 66 72 77 78 80 83 88 89 91 93 101 102 112 114 115 117 118 119 120 126 130 135 144 152 156 157 158 163
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 38 38 38 38 38 38 38
40.65 53.38 01.06 09.53 06.86 06.70 04.61 16.78 25.70 46.57 33.21 45.55 55.51 23.75 33.54 33.86 42.17 48.15 34.43 39.52 52.27 38.10 25.63 22.73 21.34 23.61 20.93 06.26 02.69 53.55 46.32 35.99 30.43 37.37 36.49 04.21
-17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17
29 29 26 25 28 29 31 30 30 30 24 24 24 23 20 21 20 21 18 17 11 13 09 11 12 15 16 15 11 11 16 19 21 21 22 17
44.7 02.6 49.0 43.7 19.8 09.9 12.8 15.3 33.2 41.6 18.7 42.1 19.6 47.6 11.6 18.4 50.6 49.5 20.9 53.8 29.8 16.6 50.8 58.0 33.1 39.3 15.5 40.7 35.7 15.6 36.1 58.6 41.0 30.8 40.7 20.5
··· 37652 22044 21492 21592 29873 53126 22419 29997 ··· 62337 22227 14934 23607 21966 53960 23360 23108 22156 ··· 54267 15802 22676 ··· 21469 ··· 21442 22345 38023 22719 22677 21955 ··· ··· ··· ···
10200 ··· ··· ··· ··· ··· ··· ··· ··· em21792 ··· ··· ··· ··· ··· ··· ··· ··· ··· 17025 ··· ··· ··· 1375 ··· 63998 ··· ··· ··· ··· ··· ··· 8648 38083 23178 8386
200 88 89 40 98 79 96 48 87 200 74 97 80 67 75 96 66 76 44 200 68 102 91 200 46 200 102 62 77 47 80 62 200 200 200 200
16
NOTESd
enacs5 enacs3 enacs1, O3sHN2 Vem=21384
enacs11 wkO2HO3
enacs12
enacs10
enacs4 O2? enacs2
Table 3. (continued) Gal. ID 164 167 169 173 174 178 180 192 194 196 197 401 404 409 410 414 416 439 462 463 467 468 471 473 475 488 489 490 496 500 504 506 510 516 517 565 571 586 608 a
RA(2000) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
38 38 38 37 37 37 37 37 38 38 39 39 39 39 39 38 38 38 40 40 40 40 40 40 40 39 39 39 39 39 38 39 39 38 38 38 37 40 37
21.25 16.90 00.70 38.48 37.92 22.43 27.31 23.32 39.10 59.14 17.78 56.42 32.55 20.29 06.69 25.52 55.69 32.87 08.65 10.91 06.46 22.67 08.74 30.99 28.28 36.56 32.44 30.33 55.85 14.78 57.15 15.90 00.07 48.60 35.25 11.91 41.49 21.07 58.50
DEC(2000) -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17 -16 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17
21 23 25 27 28 23 22 18 32 33 32 34 34 37 36 38 41 43 15 19 22 24 24 25 27 07 07 07 58 00 02 05 06 08 06 04 06 38 35
34.6 13.7 10.4 44.3 09.8 53.6 11.8 06.3 29.3 55.6 28.8 12.6 58.0 20.2 51.2 29.1 36.4 04.1 56.7 22.0 38.6 01.9 36.2 08.5 36.9 42.2 54.2 11.5 26.2 25.7 47.9 52.8 59.5 40.2 24.8 54.9 01.1 12.5 49.7
cz1a
cz2b
ǫc
··· 23763 ··· 6683 27706 21012 20700 ··· em20808 17001 ··· 8077 31353 22361 23161 em22012 ··· 43023 28388 22424 22879 22952 22497 53217 22590 22343 21858 ··· 19053 ··· 31769 ··· 34177 22060 ··· 22550 27969 22460 41243
7635 ··· 34728 ··· ··· ··· ··· 24089 ··· ··· 22133 ··· ··· ··· ··· ··· 30760 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· em23385 ··· 23151 ··· 21481 ··· ··· 10193 ··· ··· ··· ···
200 99 200 89 72 84 56 200 74 101 200 106 81 62 81 63 200 97 72 84 68 74 83 68 90 56 42 200 107 200 96 200 107 81 200 75 104 53 94
NOTESd
O2NeHs
enacs9 enacs6 O2O3O1H
enacs13
wkO1N2HS2
Category 1 heliocentric velocity in km s−1 . Velocities beginning in ”em” are measured from emission lines. 2 heliocentric velocity in km s−1 . c Velocity error in km s−1 , see text. d Key to NOTES: WAT - wide-angle tailed radio galaxy; TJ - Twin Jet morphology; FD - id from Faber & Dressler 1977; BGH - id from Beers, Geller, & Huchra 1982; gE - giant elliptical, usually 2nd ranked in cluster. The following codes pertain to the emission line survey: H = hydrogen Balmer line; O3 = [OIII] 4363, 4959 or 5007˚ A; O2 = [OII] 3727˚ A; O1 = [OI] 6300˚ A; N1 = [NI] 5199˚ A; N2 = [NII] 6548 or 6583˚ A; Ne = [NeIII] 3869˚ A; E+A = strong H absorption blueward of Ca lines ; s = pluralizes the preceding code to refer to 2 or more lines from a species; em = emission; ab = absorption; st = strong; wk = weak; ? = uncertain. Absorption line velocities are placed in the notes column if they are significantly less certain than the emission line velocity. 17 b Category
Table 4. Traditional Velocity Data for WAT Clusters Cluster Name A98(N+S) A160 A690 A1446 A1684 Cl1313+073 A2214 A2220 A2462
Ntot
NMemb
101 125 106 54 38 60 21 23 74
69 65 57 31 29 43 13 19 48
Vµ km s−1
Sσ km s−1
31,085±96 12,814±102 24,109±69 30,865±112 25,791±79 14,742±128 49,139±156 32,274±199 22,172±97
797±73 1062±144 950±217 616±83 760±246 999±142 706±197 1297±488 784±133
Notes to Table 4. Vµ is the mean of the velocities within 4000 km s of the WAT velocity. There is no clipping or correction for substructure in these velocity samples. Sσ is the velocity dispersion as estimated by the standard deviation with a cosmological correction factor of (1+z)−1 . −1
18
Table 5. Comparison of Galaxy Velocities Galaxy ID
czus km s−1
czref km s−1
A98 203
32162±44
A98 202
30942±42
A98 201
32000±88
A98 204
31262±45
A98 205
29895±78
A98 397 A98 337 A2462 50 A2462 66 A2462 51 A2462 152 A2462 135 A2462 43 A2462 410 A2462 14 A2462 1 A2462 409 A2462 118 A2462 471
30371±53 29380±38 14715±67 29998±88 21449±85 21955±62 22720±48 21471±45 23162±82 21610±48 22234±39 22361±62 21469±47 22498±83
32041±48 32070±51 30989±40 31001±46 32164±202 31710±91 31351±54 31367±55 29860±53 29910±54 30565±100 29512±100 14746±54 29817±81 21414±78 21988±57 22369±87 21311±75 23147±60 21578±63 22198±57 22208±60 21350±63 22330±63
∆ cz km s−1 121 92 -47 -59 -164 290 -89 -105 35 -15 -193 -132 31 -181 -35 33 -351 -160 -15 -32 -36 -153 -119 -168
References 1 2 1 2 1 2 1 2 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4
References for Table 5. (1) Beers, Geller & Huchra 1982 (BGH), (2) Zabludoff, Huchra, & Geller 1990, (3) Faber & Dressler 1977, (4) Katgert, Mazure, den Hartog, Adami, Biviano, & Perea (1998).
19
Table 6. Emission Line Galaxy Counts Cluster
z1
Members2
%ELGs3
%ELGs Non-mem4
Hα5
Abell 98 Abell 160 Abell 690 Abell 1446 Abell 1684 Cl1313+073 Abell 2214 Abell 2462 TOTAL
0.1037 0.0427 0.0804 0.1029 0.0860 0.0492 0.1639 0.0739 ···
53a 65 56 30 29 42 13 48 336
1.9(1/53) 20.0(13/65) 5.4(3/56) 13.3(4/30) 3.4(1/29) 9.5(4/42) 0.0(0/13) 6.3(3/48) 8.6(29/336)
0.0(0/28) 15.0(9/60) 6.0(3/50) 24.0(6/25) 33.3(3/9) 0.0(0/17) 0.0(0/8) 0.0(0/24) 9.5(21/221)
7261˚ A 6852˚ A 7088˚ A 7240˚ A 7131˚ A 6890˚ A 7634˚ A 7050˚ A ···
1
Comments6 NS interferes w/OIII NS interferes w/Hβ NS interferes w/OIII NS interferes w/Hβ and MgB NS interferes w/Hβ NS interferes w/Hβ and MgB ···
Derived from Vµ in Table 4. Members include only C1 velocities within ≈ 4000 km s−1 of the WAT’s velocity. 3 Percentage of member, C1 galaxies with emission lines. 4 Percentage of non-member, C1 galaxies with emission lines. 5 Redshifted wavelength of Hα. 6 NS = night sky emission line. The 5577˚ A and 5195˚ A NS lines were especially problematic. a Does not include members adopted from literature. 2
20
Table 7. Spatial Uniformity of MX Observations Cluster
R1
Field2
Nexp 3
Abell 98 Abell 160 Abell 690 Abell 1446 Abell 1684 Cl1313+073 Cl1919+479 Abell 2214 Abell 2220 Abell 2462 Abell 2634
3 0 1 2 0 -0 -0 0 0 0 1
3.0x5.1 3.7x3.5 3.6x3.6 3.0x3.0 2.6x2.6 3.1x3.1 3.0x3.0 4.3x4.3 6.3x6.3 5.2x5.2 3.8x4.3
8 13 19 4 5 8 13 4 3 8 33
Q14
Q2
Q3
Q4
In
Out
NCand. 5
NSamp 6
57 69 81 43 78 62 72 33 81 38 74
56 73 79 42 67 52 60 50 100 30 74
64 54 66 47 88 52 88 78 58 31 66
73 68 83 38 83 62 89 59 65 41 56
62 94 74 34 58 69 64 33 97 54 90
59 54 79 50 90 52 86 67 65 19 57
253 337 225 191 85 190 337 140 95 444 536
152 224 172 81 66 109 232 73 71 153 368
1 Abell 2
%
7
60.0 66.5 76.4 42.4 77.7 57.4 76.3 52.1 74.7 34.5 68.7
uniform?8 yes marg,rad yes yes marg,rad yes yes marg,rad marg No,rad No,rad
Richness count. Search field dimensions in h−1 75 Mpc. (The search field was rectangular for A98 because of its bimodal appearance in X-rays.) 3 Number of 1 hour exposures taken with MX. 4 Subregion designation: Q1=upper right quadrant, Q2=upper left, Q3=lower left, Q4=lower right, In=inside circle of diameter=1/2 of the field height, Out=outside of this circle. 5 Number of candidate galaxies in MX catalog. 6 Number of sampled candidates, i.e., those with at least 1 spectrum. 7 Percentage of candidates sampled in the entire search field. 8 Estimate of how evenly the subregions are sampled. No= the sampling percentages are significantly different in some subregions (Poisson statistics), marg= the sampling is only marginally uneven, yes= the sampling is fair and even, rad=the In and Out percentages are significantly different.
21