Sugar apple (Annona squamosa L.) seed germination affected by the application of gibberellins Germinación de semillas de anón (Annona squamosa L.) afectada por la aplicación de giberelinas Fabio Ernesto Martínez M.1, Diego Miranda L.2, and Stanislav Magnitskiy2
ABSTRACT
RESUMEN
This research sought to establish the response of the germination percentage (PG), synchrony index (E), mean germination time (MGT) and mean germination rate (MGR) of Annona squamosa L. seeds from Apulo (province of Cundinamarca) and Castilla (province of Tolima), Colombia, to treatments with 0, 50, 100, 200, 400, 600, or 800 mg L-1 of gibberellic acid (GA). All of the treatments with GA increased the PG at each point of time of seed incubation. The 600 mg L-1 GA treatment resulted in higher PGs (92.3% at 16 days for Apulo and 95% at 24 days for Castilla) and lower MGTs (8.75 and 5.38 days for Apulo and Castilla, respectively) than those found with the concentration of 0 mg L-1 GA (17.68 and 10.88 days for Apulo and Castilla, respectively). Also, treating the seeds with 600 mg L-1 GA generated higher MGRs (0.18 and 0.12 germinated seeds/day for Castilla and Apulo, respectively) than those obtained with 0 mg L-1 GA (Castilla = 0.09 and Apulo = 0.06 germinated seeds/ day). Likewise, the germination was synchronized with the application of any concentration of GA. The results evidenced a positive response to the GA application, which provided a tool for the characterization of the phenomenon of dormancy in the A. squamosa seeds.
En esta investigación se buscó establecer la respuesta del porcentaje de germinación (PG), índice de sincronía (E), el tiempo medio de germinación (TMG) y la velocidad media de germinación (MGR) de semillas de anón Annona squamosa L. provenientes de Apulo (departamento de Cundinamarca) y Castilla (departamento de Tolima), Colombia, a tratamientos con 0, 50, 100 200, 400, 600 o 800 mg L-1 de ácido giberélico (GA). Todos los tratamientos con GA incrementaron los PG en cada punto del tiempo de incubación de las semillas. El tratamiento 600 mg L-1 GA generó mayores PG (92,3%, a los 16 días para Apulo y 95% a los 24 días para Castilla), menores TMG (8,75 y 5,38 días para Apulo y Castilla, respectivamente) que los hallados con la concentración de 0 mg L-1 GA (17,68 días para Apulo y 10,88 días para Castilla) y mayores VMG (0,18 y 0,12 semillas germinadas/día para Apulo y Castilla, respectivamente) que las obtenidas con 0 mg L-1 GA (Castilla = 0,09 y Apulo = 0,06 semillas germinadas/día). Así mismo, se observó una germinación más sincronizada con la aplicación de cualquier concentración de GA. Los resultados encontrados, evidencian la respuesta positiva a la aplicación de GA, lo cual brinda una herramienta en la caracterización del fenómeno de latencia en semillas de A. squamosa.
Key words: germination percentage, mean germination rate, synchrony index, mean germination time.
Palabras clave: porcentaje de germinación, velocidad media de germinación, índice de sincronía, tiempo medio de germinación.
Introduction The sugar apple or anon (Annona squamosa L.) is the most widely distributed species of the Annona genus in the world. In Colombia, it grows on the Atlantic Coast and the dry areas of the valleys in the provinces of Valle, Caldas, Huila, Tolima, Cundinamarca, Meta, and Santander, between 450 and 1,500 m a.s.l. (Buriticá and Cartagena, 2015). Although not yet officially exported, anon is a promising fruit, with high potential for international markets (Martínez, 2012). Received for publication: 16 September, 2015. Accepted for publication: 28 March, 2016.
The seeds of Annonaceae, within these A. squamosa, possess physical (impermeable seed coats) and morphological dormancy (Lemos et al., 1988; Adeniji et al., 2014; Baskin and Baskin, 2014). Morphological dormancy occurs when a rudimentary embryo occupies less than 30% of the seed volume at the time of seed dispersion, with an endosperm (endospermic seeds) that fills most of the seed and a differentiated embryo that needs specific conditions to complete its growth before germination (Baskin and Baskin, 2014). According to Pinto (2005), seed dormancy in Annonaceae is due to the degree of seed maturity and, among other Doi: 10.15446/agron.colomb.v34n1.53074
1
Tibaitata Research Center, Corporacion Colombiana de Investigacion Agropecuaria (Corpoica). Mosquera (Colombia).
[email protected] Department of Agronomy, Faculty of Agricultural Sciences, Universidad Nacional de Colombia. Bogota (Colombia)
2
Agronomía Colombiana 34(1), 17-24, 2016
factors, depends on climatic conditions during seed maturation on the mother plant and genetics of the mother plant. Therefore, difficulties in sexual propagation of the species of this family could be partially explained by seed dormancy. In A. squamosa, the seeds feature a rudimentary but distinctly underdeveloped embryo. According to Hayat (1963), the A. squamosa embryo is embedded in an abundant endosperm and has a slow growth rate, which could indicate the occurrence of morphological dormancy as specified by Baskin and Baskin (2004). The erratic and slow germination of these seeds has been reported by several authors, who proved that this can take around 30 d (Morton, 1987; Cruz, 2002), 50 d (Hernández, 1993) or 90 d (Hayat, 1963). Additionally, Stenzel et al. (2003) indicated that anon seeds have slow germination, with values that, after 2 months of germination, reach 1 to 3.8%. Also anon seeds possess germination-inhibiting chemical substances that cause dormancy; these substances together with durable and waterproof integuments are antagonistic factors to rapid and uniform germination (Pawshe et al., 1997; Stenzel et al., 2003). The positive results of gibberellin (GA) treatments on the germination of A. squamosa has been reported by several authors (Pawshe et al., 1997; Stenzel et al., 2003; Sousa et al., 2005; Lima-Brito et al., 2006; Menegazzo et al., 2012) may also indicate the presence of morphophysiological dormancy in these seeds. Morphophysiological dormancy is characterised by an underdeveloped embryo and a physiological mechanism that inhibits seed germination (Baskin and Baskin, 2004; Baskin and Baskin, 2014). The embryo with this type of dormancy has a low potential or inhibition of growth due to a high ABA/GA ratio, which disables breaking through the seed cover structures (Baskin and Baskin, 2014). Knowledge on seed germination is very important for the sexual propagation of anon as a cultivated species. At the same time, most germination studies for this species were conducted in regions with very differented edaphoclimatic characteristics to those prevailing in the producing areas of Colombia (Menegazzo et al., 2012; Adeniji et al., 2014). Also, there are contrasting reports on seed responses to the application of diverse hormones. Therefore, the aim of this study was to determine the effect of GA applications on the germination of A. squamosa seeds from two producing areas in Colombia.
Materials and methods This research was conducted in the laboratories of Plant Physiology and Genetic Resources, Faculty of Agricultural 18
Sciences, Universidad Nacional de Colombia, Bogota. The material (A. squamosa) was obtained from accessions collected from two locations: Apulo (province of Cundinamarca) and Castilla (province of Tolima) because plant individuals are distributed spontaneously in agroecosystems and not cultivated. This study was carried with fresh seeds obtained from ripe and soft-to-the-touch fruits, which were disinfected with 1% sodium hypochlorite immersion for 9 min, washed with distilled water and 96% ethanol three times, and, finally, rinsed three times with distilled water to remove any ethanol residue that may have remained on the seeds. To assess the effect of GA treatments on germination, the seeds were soaked for 72 h in distilled water only (control, 0 mg L-1 GA) and GA at 6 different concentrations: 50, 100, 200, 400, 600, or 800 mg L-1 in closed glass jars. The treatments with control were arranged in a completely randomized design with five replicates per treatment. After soaking, the seeds were removed to assess the germination. The seeds were sown in disinfected peat substrate Klasmann® (Klasmann-Deilmann GmbH, Geeste, Germany) without nutrients at a depth equal to twice the seed length and subsequently placed in a controlled environment cabinet (SGC066, Sanyo Gallenkamp, Leicester, UK) for 30 d at a constant temperature of 35ºC in the absence of light because germination of seeds of A. squamosa is indifferent to light conditions (Ferreira et al., 2002). Observations were made every 5 d for 30 d, since seeds that did not germinate after 30 d could be classified as dormant (Baskin and Baskin, 2014). Germination was recorded in those seeds that had radicle protrusion.
With the sampling data, the following parameters were ! (GP) = !" ∗ 100 !! evaluated: germination percentage (GP) ∗∗ 100 100, where, = (GP) = !" !" ∗ 100 N = number of germinated seeds and N = total number of (MGT) = !!!! 𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡s; !! ! (GP) = ∗ 100 (MGT) = 𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡 (MGT)== !!! seeds; mean !!!𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡 ;; mean !" germination time (MGT) ! germination rate (MGR) (MGR)== !!! 𝑛𝑛𝑛𝑛 ∗ 𝑡𝑡𝑡𝑡 / !!!!!! 𝑛𝑛𝑛𝑛 ,, where, ! ! (MGR) == 𝑛𝑛𝑛𝑛 ∗∗ 𝑡𝑡𝑡𝑡 / 𝑡𝑡𝑡𝑡 / !!!! 𝑛𝑛𝑛𝑛,, (MGT) = 𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡 ; !!!𝑛𝑛𝑛𝑛 !!!𝑛𝑛𝑛𝑛 !!! ni = number!!!of germinated seeds(MGR) in the ith data collection; ! (E)ith=data − !!! 𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓, t(MGR) of the collection K 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓, = time (in !! 𝑓𝑓𝑓𝑓 ! i = time=(in!days) (E) == − − and (E) !!!𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓, !!! !!! 𝑛𝑛𝑛𝑛 ∗ 𝑡𝑡𝑡𝑡 / !!! 𝑛𝑛𝑛𝑛 , days) duration of the germination test, and synchrony index ! = , ! ! (!!") ! !!!! (E) = (E)== − !!! 𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓,, where, ni = = number ,of germinated (!!"), !!!!(!!") !!!! !"# ! f = relative frequency seeds in the ith data collection and i !"# 𝑡𝑡 = , 𝑦𝑦 = !"# ! ! ! = 2006). ,, 𝑦𝑦𝑦𝑦 = = ! 𝑡𝑡𝑡𝑡!= = germination , of (Ranal and Santana, !! !! !!!! (!!") !"# !"#
𝑡𝑡 =
,
!"# !"#
=homogeneity ,, 𝑡𝑡𝑡𝑡 = 𝑡𝑡 = assumptions , 𝑦𝑦 = The of normality and of vari!! ! ! 27.2067 -1 ance!"# were assessed using SAS package. The27.2067 GAthe 0 mg L statistical R2=0.99398 GA 𝑦𝑦 = 27.2067 2 𝑡𝑡 = , 1LL −-1-19.361e(!!.!"#) GA 0 mg 𝑦𝑦 = GA 0 mg RR2== 𝑦𝑦 = (!!.!"#) (!!.!"#) datas !howed no residual normality and were transformed 1 − 9.361e 1 − 9.361e 92.5701 GA 50 mg L-1 usually R2=0.99341 GA with arcosen function √(PG/100) in(!!.!"#) germi𝑦𝑦 = used 27.2067 9 -1 92.5701 -1 92.5701 GA 0 mg L-1 R2=0.99398 200 1− 𝑦𝑦 = 𝑦𝑦 = RR22== GA 50 mg mg = mg L (!!.!"#) 50 LL-15.40eGA𝑦𝑦𝑦𝑦3 = (!!.!"#) GA 1 − 9.361e − 5.40e 5.40e(!!.!"#) 1 − 0. − nation studies (Júnior Wagner et al., 2006). ANOVA 11was 90.199 2 GA 100 mg among L-1 2 𝑦𝑦 =treatments R90.199 =0.99949 GA 92.5701 9 -1 -1 performed the differences were90.199 (!!.!"#) − 1.321e GA 50 mg Land R =0.99341 𝑦𝑦 = 𝑦𝑦 = GA 100 1mg L-1-1 GA R22= 3 400 mg L !
GA 100 mg L-1 GA 800 mg L-1
!
= 𝑦𝑦𝑦𝑦 = (!!.!"#) 1 −R0.= 1 − 5.40e(!!.!"#) GA 100 mg L − 1.321e 1.321e(!!.!"#) 11 − 96.2871 -1 2 Agron. 34(1) 2016R =0.99413 GA 800 mg L 𝑦𝑦 = Colomb. 90.199 9 96.2871 -1 -1 (!!.!"#) 96.2871 -1 1 − L1.56e R2=0.99949 GA 600 𝑦𝑦 = 𝑦𝑦 = RR22== GA 800 mg = mg L (!!.!"#) 𝑦𝑦𝑦𝑦3 = 1 − 1.321e(!!.!"#) GA 800 mg L − 1.56e 1.56e(!!.!"#) 1 − 0. 11 − 𝑦𝑦 =
96.2871 1 − 1.56e(!!.!"#)
R2=0.99413
70,348
(GP) = (MGT) =
!
!"
∗ 100
! !!! 𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡 ;
determined by the Tukey test (P≤0.05).! SAS (Statistical (MGR) = 𝑛𝑛𝑛𝑛 ∗ 𝑡𝑡𝑡𝑡 / !!!! 𝑛𝑛𝑛𝑛 , ! Analysis System), 9.1 was used. !!! (GP) = ∗version 100 !"
(E) = −
8 d, the increases in the PG dwindled. The maximum PG of 27.2% was reached after 30 d.
! !!! 𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓,
! PG response application of GA, for both areas was With the application of 200, 400, 600, and 800 mg L-1 GA, (MGT) =to the ; !!! 𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡 ! adjusted to a logistic model = , where, K is the the better PG responses were observed during the incuba!!!! (!!") ! ! (MGR) = !!! 𝑛𝑛𝑛𝑛 ∗ 𝑡𝑡𝑡𝑡 / by !!! , maximum value reached the𝑛𝑛𝑛𝑛variable, in this case the tion period. Under these concentrations, the germination !"# ! 𝑡𝑡 = of germination , 𝑦𝑦 = seed weight (g)! or the percentage (%), A is patterns were similar, with values of PG much higher than ! ! (E) = − 𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓, !"#maximum “K”, B is a the product of!!! the initial value “a” found for the treatment of 0 mg L-1 GA in the first 5 d of 𝑡𝑡 = , ! ! scale parameter = ,on the time t that influences the growth incubation (86.4, 85.6, 89.6, and 84.8%, respectively). The (!!") 27.2067 shortest rate. On!!!! the logistic model it wasGAcalculated an𝑦𝑦inflection time to reach the PG94.112 was obtained with 0 mg L-1 R2=0.99398 GA3 200 mgmaximum L-1 R2=0.99696 = 𝑦𝑦 = !"# 1 −in 9.361e 1 − 0.419e(!!.!"#) -1 point 𝑡𝑡 = ! , 𝑦𝑦 = !! , in order to establish the change the (!!.!"#) the application of 600 mg L at 16 d GA (PG = 92.3%), 92.5701 followed 94.0994= 96.3%). concavity !"# of the curve in order GA to determine the growth The by 800GA mg L-1 GA-1 to 𝑦𝑦17.7 50 mg L-1 R2=0.99341 R2=0.99809 𝑦𝑦 = = d (PG(!!.!"#) 3 400 mg L , 𝑡𝑡 = 1 − 5.40e(!!.!"#) 1 − 0.535e -1 dynamics !of variation represented by the percentage of treatments of 200 and 400 mg L GA obtained maximum ! (GP) = !" ∗ 100 90.199 92.2718 germination (Hsu, 1984). PG values at 2294.112 dGA of3incubation same GA 100 mg L2-1 R2=0.99949 600 mg L2-1 (PG R2=0.92104 𝑦𝑦 = 𝑦𝑦 = = 94.1%). For the 27.2067 -1 (!!.!"#) GA 0 mg L R =0.993981 − 1.321e GA3 200 mg L-1 R =0.996961 − 0.379e(!!.!"#) 𝑦𝑦 = 𝑦𝑦 = (!!.!"#) (!!.!"#) 1 − 9.361e 1 − 0.419e concentrations, geometric progression of PG or acceler(MGT) = !!!! 𝑛𝑛𝑛𝑛/𝑡𝑡𝑡𝑡 ; 96.2871 2 GA 800 mg L2-1 =0.99413of94.0994 𝑦𝑦 = ated-1Rgrowth this variable was presented during 1st d of 92.5701 ResultsGAand discussion (!!.!"#) 1.56e 50 mg L-1 R =0.99341 1 − GA R2=0.99809 𝑦𝑦 = 𝑦𝑦 = 3 400 mg L (!!.!"#) (!!.!"#) 1 − 5.40e 1 − 0.535e ! (MGR) = !!!! 𝑛𝑛𝑛𝑛 ∗ 𝑡𝑡𝑡𝑡 / incubation. !!! 𝑛𝑛𝑛𝑛 , 90.199 92.2718 -1 The Fig.GA 1 shows application on PG of 100 mg the L-1 effect R2=0.99949 GAA. R2=0.92104 𝑦𝑦 = of GA (!!.!"#) 𝑦𝑦 = 3 600 mg L − 1.321e 1 − 0.379e(!!.!"#) (E) =Tolima − !!!! 𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿2 𝑓𝑓𝑓𝑓, application of phytoregulator (0 mg L-1 GA), squamosa seeds obtained1 from Castilla, and its Without the 70,348 87.6346 96.2871 GA 0 mg Without L-1 R2=0.99413 =0.99272 GAof L-1 from R2=0.9756 theR2germination themgseeds Apulo, was lower than 𝑦𝑦 the = applica𝑦𝑦 = 3 200 variationGAduring 800 mg30 L-1d of𝑦𝑦germination. = ! 1 − 14.05e(!!,!"#) 1 − 2.273e(!!.!"#) (!!.!"#) 1 − 1.56e -1 = , tion of phytoregulator (0 mg L GA) the germination was those values achieved with any dose of the hormone. In !!!! (!!") 78.7976 100.423 GA any 50 mg L-1 of!"# R2=0.97243 GA3 400 mg L-1 R2=0.99292 𝑦𝑦 = hormone; 𝑦𝑦PG = was 9.6% incubation and increased ! lower than the one achieved with dose the (!!.!"#)this case, at 5 d of 1 − 1.412e(!!.!"#) 𝑡𝑡 = , 𝑦𝑦 1=− 7.220e ! ! to a value of 59.3% at 30 d of evaluation. By analyzing the after 5 d of incubation 8.8% PG was obtained. According 103.45 95.138 -1 !"# GA 100 mg L R2=0.98739inflection GA3 600 point, mg L2-1 it𝑦𝑦could R2that =0.98012 𝑦𝑦 = = 70,348 87.6346 -1 2 be observed the to theGA inflection point for 𝑡𝑡R==0.99272 (!!.!"#) (!!.!"#) , during 0 mg L GA3the 200 mgcalculated L-1 R =0.9756 1 − 2.389e 1 − 1.508e 𝑦𝑦 = calculated 𝑦𝑦 = ! (!!,!"#) (!!.!"#) 1 − 14.05e 1 − 2.273e first 8 d of incubation, the value of PG grew in geometric accelerated growth of PG occured until 18.9 d, where it 27.2067 94.112 -1 88.4138 78.7976 100.423 2GA 2 load 0𝑦𝑦mg R2=0.99398 mg L-1 (36.6%), maximum after which R2=0.99696 progression, that high growth 𝑦𝑦to= mgreaches 𝑦𝑦 = 3 200 value GA 50 mg L-1 is, the R-1 =0.97243 GA3 400 L-1R2=0.97761 RGA =0.99292 GA 800 mg L 𝑦𝑦 = PG presented 𝑦𝑦 =half the = L rates 1 − 9.361e(!!.!"#) 1 − 0.419e(!!.!"#) 1 − 7.220e(!!.!"#) 1 − 1.412e(!!.!"#) 1 − 1.202e(!!.!"#) reach half of the maximum value of its load (13.6%). After the rate of PG growth slowed down (Fig. 2).
GA 100 mg L-1
𝑦𝑦 =
103.45 1 − 1.508e(!!.!"#)
120
(𝑡𝑡 =
!"# !
Germination (%)
GA 800 mg L
-1
)
-1
100 mg L 88.4138 (𝑡𝑡 = ) R2GA =0.97761 𝑦𝑦100 = ! 1 − 1.202e(!!.!"#) !"#
80
-1
GA 800 mg L-1
60 40
GA 0 mg L-1
20
GA 0 mg L
-1
GA 0 mg L-1 GA 50 mg L-1 GA 0 mg L-1 -1 L-1-1 GA 0 mg GA 0 mg Lmg GA 50 L -1
GA 100 mg L-1L GAGA 5050 mg L-1mg GA 50 mg L-1
-1 L-1 GAGA 100100 mg Lmg
92.5701 95.138 R2=0.99341 𝑦𝑦 = 1 − 5.40e(!!.!"#) 1 − 2.389e(!!.!"#)
50 mg L GA3 600 𝑦𝑦 =mg L-1 R2GA =0.98739
27.2067 GA2 50 mg L-1 𝑦𝑦 =01 − 9.361e(!!.!"#) R =0.99398
𝑦𝑦 = 𝑦𝑦 =
𝑦𝑦 =
90.199 1 − 1.321e(!!.!"#) 96.2871 1 − 1.56e(!!.!"#)
70,348 1 − 14.05e(!!,!"#) 78.7976
GA𝑦𝑦3=200 L-1 (!!.!"#) 𝑦𝑦 = 1 −mg 7.220e
-1 2 3 400 mg L RGA =0.98012
0 mg L-1 GA3 600 mg L-1
R2=0.99949
50 mg L R2=0.99413
-1
𝑦𝑦 = 𝑦𝑦 =
94.0994 1 − 0.535e(!!.!"#) 92.2718 1 − 0.379e(!!.!"#)
200 mg L-1 R2=0.99272
400 mg L-1 GA3 200 mg L-1 600 mg L-1
94.112 R2=0.97243 GA23 400 mgmg L-1L-1 800 R =0.99696 1 − 0.419e(!!.!"#)
𝑦𝑦 = 𝑦𝑦 =
87.6346 1 − 2.273e(!!.!"#)
R2=0.9756
100.423 1 − 1.412e(!!.!"#)
R2=0.99292
1
95.138 0 27.2067 5 10 2 27.2067 15 20 2 25 103.45 30 35294.112 94.112 -1 2 100 mg L-1 GA𝑦𝑦3R= =0.98739 600 mg L-1 𝑦𝑦R= GA R =0.99398 200 =0.99398 L-1 (!!.!"#) GA L-1(!!.!"#) R23=0.99696 =0.99696 𝑦𝑦 = 0 mg L (!!.!"#) 𝑦𝑦 = GA 𝑦𝑦 =3 200R mg 𝑦𝑦 = GA 1 −mg 1.508e 1 − 2.389e(!!.!"#) (!!.!"#) (!!.!"#) Time (d) 1 − 9.361e 1 − 9.361e 1 − 0.419e 1 − 0.419e 92.5701 94.0994 R2=0.99341 GA3 400 mg L-1 𝑦𝑦 = R2=0.99809 𝑦𝑦 = (!!.!"#) (!!.!"#) 1 −27.2067 5.40e 94.112 1 − 0.535e 94.112 -1 2 -1 2 27.2067 -1 2 R =0.99398 GA 200 mg L R2=0.99696 GA 200 mg L R =0.99696 𝑦𝑦 = R =0.99398 𝑦𝑦 = 3 𝑦𝑦GA = 0 mg L (!!.!"#) 𝑦𝑦 = 3 88.4138 (!!.!"#) (!!.!"#) -1 2 (!!.!"#) 1 −22 9.361e 1 −22 0.419e 27.2067 27.2067 94.112 94.112 1 − 9.361e 1 − -1 0.419e -1-1 2 -1 -1 GA 800 mg L R =0.97761 𝑦𝑦 = 92.5701 92.5701 94.0994 94.0994 2 2 -1 -1 GA 0 mg R =0.99341 =0.99398 GA3R 200 =0.99398 mg LGA(!!.!"#) GA 200 mg L L (!!.!"#) R =0.99809 =0.99696 R22=0.99809 =0.99696 𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦 = =mg = R 3R400 R(!!.!"#) =0.99398 L mg R2=0.99696 1 −mg 1.202e GA mgLL (!!.!"#) GA =0.99341 L GA R 3 200 =50 = R 𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦 = 33 400 (!!.!"#)
11 − − 0.535e 0.419e(!!.!"#) 11 − − 0.535e 0.419e(!!.!"#) − 9.361e 5.40e(!!.!"#) 11 − − 9.361e 5.40e(!!.!"#) 11 − 1 90.199 92.2718 92.5701 -1 2 -1 22 92.5701 -1-1 22 94.0994 2 -194.0994 R =0.99949 GA 600 mg L R =0.92104 GA R =0.99341 GA 400 mg L R =0.99341 GA 400 mg L R =0.99809 𝑦𝑦 = R =0.99341 GA 400 mg L 3 𝑦𝑦 = 𝑦𝑦 = 𝑦𝑦 = 50 mg L (!!.!"#) 3 𝑦𝑦 = 3 3 (!!.!"#) (!!.!"#) (!!.!"#) (!!.!"#) (!!.!"#) 1.321e 0.379e 1− 1 −2 0.535e 92.5701 92.5701 1 − 5.40e 94.0994 94.0994 11−−0.535e -1 2 5.40e 2 -1 GA GA3R400 =0.99341 mg L-1 GA 𝑦𝑦 =50 mg L (!!.!"#)𝑦𝑦 = R =0.99341 𝑦𝑦 =3 400 mg L (!!.!"#) 𝑦𝑦 = R =0.99809 (!!.!"#) (!!.!"#) 1 − 5.40e 1 − 5.40e 1 − 0.535e 1 − 0.535e 90.199 90.199 92.2718 92.2718 -1 2 -1 -1 2 !"# R2=0.99949 GA R2= =0.99949 GA3R600 =0.99949 mg LGA GA L-1 mg L (!!.!"#) 𝑦𝑦 = 100 mg L (!!.!"#) 𝑦𝑦 = (𝑡𝑡 𝑦𝑦 =mg 𝑦𝑦 = R =0.92104 3 600 3 600 ) (!!.!"#) (!!.!"#) 1 − 1.321e 1 − 1.321e 1 − 0.379e 1 − 0.379e !
(!!.!"#) 1 − 1.56e 96.2871
GA 800 mg L-1 GA mg L-1(!!.!"#)𝑦𝑦 = R2=0.99413 R2=0.99413 𝑦𝑦 =80070,348 87.6346 21 − 1.56e(!!.!"#) 2 1 − 1.56e Martínez Miranda Sugar apple (Annona squamosa GA L.) seed germination ofRgibberellins GAM., 0 mg L-1 L., and𝑦𝑦 Magnitskiy: R =0.99272 200 mg L-1 affected =0.9756 = 𝑦𝑦 = by the application 3 (!!,!"#) (!!.!"#) GA 0 mg L-1 GA 50 mg L-1 GA 0 mg L-1
1 − 14.05e
70,348 2 70,348 2 GAR =0.99272 mg L-1 𝑦𝑦 = R =0.99272 3 200 (!!,!"#) 1 − 14.05e(!!,!"#) 1 − 14.05e 78.7976 2 -1
-1 GA 𝑦𝑦 = 0 mg L
R =0.97243 GA3 400 mg L 𝑦𝑦 = (!!.!"#) 70,348 1 − 7.220e 70,348 -1 2 2 =0.99272 GA3R200 mg L-1 𝑦𝑦 = R =0.99272 𝑦𝑦GA = 0 mg L (!!,!"#) (!!,!"#)
1 − 2.273e
87.6346
87.6346
-1 2 GA 𝑦𝑦 =3 200 mg L (!!.!"#) 𝑦𝑦 = R =0.9756 1 − 2.273e 1 −2 2.273e(!!.!"#) 100.423 R =0.99292 𝑦𝑦 = 1 − 87.6346 1.412e-1(!!.!"#) 2 87.6346 GA 𝑦𝑦 = R =0.9756(!!.!"#) 𝑦𝑦 =3 200 mg L(!!.!"#)
R2=0.98012
R2=0.99809 R2=0.99809 R2=0.99809
R2=0.92104 R2=0.92104
96.2871 96.2871 -1 in moist2 peat -1 30 d of incubation Tolima,GA Colombia), at 35ºC temperature and 60% relative air humidity. GA R2=0.99413 800 mg Lfor 𝑦𝑦 = R =0.99413 𝑦𝑦 = 800 mg L (!!.!"#) 96.2871 1 − 1.56e
R2=0.92104
100 mg L-1
90.199 92.2718 96.2871 -1 2 -1 22 90.1992 2 92.2718 =0.99949 R2=0.92104 GA3R600 mg L-1 𝑦𝑦GA =0.99413 𝑦𝑦 = RR=0.99949 𝑦𝑦 = R =0.92104 𝑦𝑦GA = 3 600 mg L(!!.!"#) 𝑦𝑦==100 mg L (!!.!"#) R(!!.!"#) =0.99413 (!!.!"#) (!!.!"#) 1 −2 1.321e 1 −2 0.379e 90.199 90.199 92.2718 92.2718 1 1−−1.321e 1 − 0.379e 1.56e -1 2 -1 -1 GA 100 mg L R =0.99949 GA R 600 =0.99949 mg L GA 600 mg L R =0.92104 R2=0.92104 𝑦𝑦 = 𝑦𝑦 = 𝑦𝑦 =3 𝑦𝑦 = 3 (!!.!"#) 1 − 1.321e(!!.!"#) 1 − 1.321e 1 − 0.379e(!!.!"#) 1 − 0.379e(!!.!"#) 96.2871 -1 -1 2 96.2871 2 GA 800 mg L GA R =0.99413 𝑦𝑦 =800 mg L (!!.!"#)𝑦𝑦 = R =0.99413 1.56e 1 −solutions 1.56e(!!.!"#) FIGURE 1. Effect of imbibition 1in−the water and GA on the accumulated germination of seeds of A. squamosa from Castilla (province -1
-1 LL-1 GA 800 GAGA 800100 mg mg Lmg GA 100 mg L-1
R2=0.99809
of
19 R2=0.9756 R2=0.9756
1
GA 0 mg L-1 -1 GA 0 mg GA 50 mgLL-1 -1
GA 50 mg L GA 50 mgLL-1-1 GA 0 mg
GA 100 mg L-1 GA mgLL-1-1 GA 100 50 mg GA 100 mg L-1 GA 800 mg L-1 -1 GA 100 800 mg mg L L-1 GA GA 800 mg L-1
1 − 9.361e
27.2067 1 − 9.361e
1 − 5.40e
1 − 5.40e
-1 27.2067 GA R2=0.99398-1 𝑦𝑦 = R2=0.99398 𝑦𝑦 =0 mg L (!!.!"#) GA3 200 mg L (!!.!"#)
27.2067
-1 27.2067 GA R2=0.99398-1 𝑦𝑦 = R2=0.99398 𝑦𝑦 =0 mg L (!!.!"#) GA3 200 mg L (!!.!"#) 1 − 9.361e 27.2067 -1 27.2067 1 − 9.361e 2 92.5701 GA 0 mg LL-1 R3 22200 =0.99398 2=0.99398 -1 𝑦𝑦𝑦𝑦== R mg L-1 𝑦𝑦𝑦𝑦==50 GA mg92.5701 =0.99341 (!!.!"#) GAR =0.99341 (!!.!"#) 1R − 9.361e (!!.!"#) GA3 400 mg L 1 − 9.361e(!!.!"#)
100 92.5701 -1 92.5701 GA R2=0.99341-1 𝑦𝑦 = R2=0.99341 𝑦𝑦90 =50 mg L (!!.!"#) (!!.!"#) GA3 400 mg L 92.5701 1 −2 5.40e -1 2 92.5701 1− 5.40e -1 27.2067 GA 50 mg L =0.99341 2 𝑦𝑦 = R R =0.99341 GAR3 200 400 mg L L-1 (!!.!"#) GA mg 𝑦𝑦𝑦𝑦80 == 1 − 5.40e(!!.!"#) 3 1 −=0.99398 5.40e (!!.!"#) 90.199 -1 2 90.199 1 − 9.361e 2 GA =0.99949 𝑦𝑦 = R =0.99949 GAR3 600 mg L-1 𝑦𝑦 =100 mg L (!!.!"#) 1 − 1.321e(!!.!"#) 70 1 − 1.321e
Germination (%)
GA 0 mg L-1
90.199 90.199 -1 92.5701 GA L-1 R2=0.99949 𝑦𝑦 = R22=0.99949 𝑦𝑦𝑦𝑦60 ==100 mg (!!.!"#) GA GA33 2600 400 mg mg L L-1 (!!.!"#) 1 R 90.199 −2=0.99341 1.321e -1(!!.!"#) 90.199 11−−mg 1.321e -1 GA 100 L R =0.99949 5.40e 𝑦𝑦 = R =0.99949 𝑦𝑦 50 = (!!.!"#) GA3 600 mg L (!!.!"#) 1 − 1.321e
-1 96.2871 GA 𝑦𝑦40 =800 mg L
1−
1 − 1.321e 96.2871 𝑦𝑦 = R2=0.99413 1 − 1.56e(!!.!"#)
1.56e(!!.!"#)
R2=0.99413
30 96.2871 96.2871 90.199 GA 800 mg L-1 R2=0.99413-1 𝑦𝑦 = R R22=0.99949 =0.99413 (!!.!"#) GA3 600 mg L 𝑦𝑦𝑦𝑦20 == 1 − 1.56e (!!.!"#) 96.2871 1 − 1.56e -1 (!!.!"#) 96.2871 2 1 − mg 1.321e GA L R2=0.99413 𝑦𝑦 = R =0.99413 𝑦𝑦 =800 10 1 − 1.56e(!!.!"#) 1 − 1.56e(!!.!"#) 0
-1 5 102 70,34815 20 25 -1 GA 0 mg0 L70,348 R2=0.99272 GA 0 mg L-1 96.2871𝑦𝑦 = R =0.99272 (!!,!"#) GA3 200 mg L 1 − 14.05e GA 800 mg L-1 𝑦𝑦 =𝑦𝑦1=− 14.05e(!!,!"#) R2=0.99413 Time (d) (!!.!"#)
GA 0 mg L-1 -1 GA mg GA mg L-1LL-1 GA0 050 mg -1
GA GA 5050 mgmg L L GA 050mg mgLL-1-1 GA -1
-1 GAGA 100100 mgmg L-1 L
1 − 1.56e
70,348
94.112 𝑦𝑦 = R2=0.99696 1 − 0.419e(!!.!"#) 1 − 0.419e(!!.!"#) 94.112 -1 94.112 GA 𝑦𝑦 = R2=0.99696 𝑦𝑦 =3 200 mg L (!!.!"#) (!!.!"#) 94.112 1 − 0.419e -1 94.112 1 − 0.419e 2 94.0994 -1 GA mg L 94.0994 2=0.99696 𝑦𝑦 = = R 𝑦𝑦 = =33 200 GA 400 mg L 𝑦𝑦 R =0.99809 (!!.!"#) 𝑦𝑦 1 − 0.419e (!!.!"#) 1− − 0.535e 0.419e(!!.!"#) 1 − 0.535e(!!.!"#) 1 0 mg L-1 94.0994 -1 94.0994 GA 𝑦𝑦 = R2=0.99809 𝑦𝑦 =3 400 mg L (!!.!"#) (!!.!"#) 94.0994 1 − 0.535e -1 94.0994 1 − 0.535e 94.112 GA L 𝑦𝑦 = R 3 400 mg R22=0.99696 =0.99809 𝑦𝑦 50 mg(!!.!"#) L-1 𝑦𝑦 = = 1 − 0.535e(!!.!"#) 1 − 0.535e (!!.!"#) 92.2718 -1 92.2718 1 − 0.419e GA 𝑦𝑦 = R2=0.92104 𝑦𝑦 =3 600 mg L (!!.!"#) 1 − 0.379e(!!.!"#) 1 − 0.379e -1 -1 94.112 GA 𝑦𝑦 =3 200 mg L
100 mg L
92.2718
92.2718 94.0994 GA L-1 𝑦𝑦 = R22=0.92104 3 600 mg 𝑦𝑦 (!!.!"#) (!!.!"#) 1 R 𝑦𝑦 = = 1 − 0.379e 92.2718 − =0.99809 0.379e 92.2718 200 mg L-1 GA 600 mg L-1(!!.!"#) 1 − 0.535e 𝑦𝑦 = R2=0.92104 𝑦𝑦 =3 (!!.!"#) 1 − 0.379e(!!.!"#) 1 − 0.379e
R2=0.99696 2 R R2=0.99696 =0.99809 R2=0.99809 R2=0.99809 R2=0.92104 R2=0.92104 R2=0.92104
400 mg L-1
𝑦𝑦 =
92.2718 1 − 0.379e(!!.!"#)
600 mg L-1 R2=0.92104 800 mg L-1
87.6346 87.6346 30 200 mg 35 L-1 GA 𝑦𝑦 = R2=0.9756 3 𝑦𝑦 = (!!.!"#) (!!.!"#) 1 − 2.273e
1 − 2.273e
87.6346
-1 -1 70,348 87.6346 GA R2=0.99272-1 GA 𝑦𝑦 = R2=0.99272 𝑦𝑦 = R2=0.9756 3 200 mg L 𝑦𝑦 =0 mg L 𝑦𝑦 = (!!,!"#) GA3 200 mg L (!!.!"#) (!!,!"#) 1 − 14.05e 70,348 87.6346 -1 2 -1(!!.!"#) 1 −22.273e 70,348 87.6346 1 − 14.05e 1 − 2.273e 2 -1 78.7976 100.423 2 -1mg -1 2200 -1 GA 0 mg L R =0.99272 GA 200 L 78.7976 100.423 2 -1 2=0.9756 𝑦𝑦 = 𝑦𝑦 = 3 R =0.99272 GA mg L R 𝑦𝑦 = 𝑦𝑦 = 3 R =0.99272 GA 200 mg L GA mg L =0.97243 (!!,!"#) GAR3 400 (!!.!"#) 3 GA 𝑦𝑦 = 𝑦𝑦 = 3 400 mg L (!!.!"#) R =0.97243 mg L R =0.99292 (!!,!"#) 𝑦𝑦 =50 𝑦𝑦 = 1 − 14.05e 1 − 2.273e (!!.!"#) (!!.!"#) 1 − 14.05e(!!.!"#) 1 − 2.273e(!!.!"#)
1 − 7.220e 1 − 1.412e 1 − 1.412e 78.79762 100.423 -1 2 -1 78.7976 100.423 2 -1 -1 GA =0.97243 GA 400 𝑦𝑦 = R =0.97243 𝑦𝑦 = R2=0.99292 3mg GAR3 400 mg LGA3 400 R =0.97243 L mg L (!!.!"#) 𝑦𝑦 =50 mg L (!!.!"#) 𝑦𝑦 = (!!.!"#) (!!.!"#) 78.7976 100.423 1 −27.220e 1 −21.412e -1 2 -1 78.7976 100.423 1− 7.220e 1 − 1.412e -1 70,348 87.6346 GA 50 mg L R =0.97243 GA 400 mg L 2 -1 2 𝑦𝑦 = R =0.99272 𝑦𝑦 = R =0.9756 3 =0.97243 GA3 200 400 mg mg L L =0.99292 𝑦𝑦 𝑦𝑦 (!!.!"#) GA (!!.!"#) (!!.!"#) 1 R (!!.!"#) 1 R 𝑦𝑦 = = 1 − 7.220e(!!,!"#) 𝑦𝑦 = = 1 − 1.412e(!!.!"#) 3 − 7.220e − 1.412e 103.45 95.138 -1 2 103.45 95.138 1 − 14.05e 1 −-12.273e -1 2 GA =0.98739 GA 600 mg L-1 𝑦𝑦 = R2=0.98739 𝑦𝑦 = R2=0.98012 3mg GAR3 600 mg LGA 𝑦𝑦 =100 mg L (!!.!"#) 𝑦𝑦 = R =0.98739 600 L (!!.!"#) 3 1 − 1.508e 1 − 1.508e 1 − 2.389e(!!.!"#) 1 − 2.389e(!!.!"#) 103.45 103.45 95.138 -1 2 95.138 78.7976 100.423 GA L-1 R2=0.98739 GA L-1 𝑦𝑦 = R22=0.98739 𝑦𝑦 = R 3 600 mg GA 𝑦𝑦 = =100 mg 𝑦𝑦 (!!.!"#) (!!.!"#) =0.97243 GA332600 400 mg mg L L-1 R2=0.98012 =0.99292 R2=0.97761 (!!.!"#) 1 R 𝑦𝑦 𝑦𝑦 = = 1 − 2.389e 103.45 95.138 −21.508e -1 (!!.!"#) -1(!!.!"#) 103.45 95.138 1− −mg 1.508e -1 (!!.!"#) 1 −22.389e GA 100 L R =0.98739 GA 600 mg L 1 7.220e 1 − 1.412e 𝑦𝑦 = R =0.98739 𝑦𝑦 = R =0.98012 3 𝑦𝑦 = 𝑦𝑦 = (!!.!"#) GA3 600 mg L (!!.!"#) 1 − 2.389e(!!.!"#) 88.4138 -1 (!!.!"#) 1 −21.508e 2 88.4138 1 − 1.508e 1 − 2.389e GA R =0.97761 𝑦𝑦 = R =0.97761 𝑦𝑦 =800 mg L (!!.!"#) 1 − 1.202e(!!.!"#) 1 − 1.202e 1 − 7.220e
R2=0.99696
R2=0.9756 R2=0.9756 2 R R2=0.9756 R2=0.9756 =0.99292 R2=0.99292 R2=0.99292 R2=0.99292 R2=0.98012 R2=0.98012
-1 R2=0.98012 mg GA 50mg mg GAGA 800100 L-1LL-1-1 R2=0.98012 GA 100 mg L -1 GA 800 mg L FIGURE 2. Effect of imbibition in the water and GA solutionson the accumulated germination of seeds of A. squamosa from Apulo (province of Cun88.4138 -1 2 88.4138 GA mg =0.97761 𝑦𝑦 = R22in GA 800 mg L-1 =0.97761 𝑦𝑦 =80030 dinamarca, Colombia), during d Lof-1 incubation moist peat at R 35ºC temperature and 60% relative air humidity. 103.45 95.138 -1 -1 (!!.!"#) (!!.!"#) 88.4138 1R −21.202e 2600 mg L 88.4138 1 − 1.202e GA 100 mg L-1 GA =0.98739 GA R2=0.98012 𝑦𝑦 = 𝑦𝑦 = 3 L (!!.!"#) R =0.97761 𝑦𝑦 = R =0.97761 GA 800 mg L 𝑦𝑦 =800 1 −mg 1.508e 1 − 2.389e(!!.!"#) (!!.!"#)
1 − 1.202e(!!.!"#) 1 − 1.202e
-1 The seeds!"# treated with GA !"# at a concentration of 600 mg L (𝑡𝑡 = ) (𝑡𝑡 =highest ) values of!PG during the incubation time. had the ! 88.4138 -1 !"# was obtained GA 800 mg R2=0.97761 𝑦𝑦 =95% !"# L The PG maximum of with the shortest (!!.!"#) (𝑡𝑡 =1!"# ) − 1.202e (𝑡𝑡 = !"#) ! ! incubation (between (𝑡𝑡 = )24 and 28 d) compared to the (𝑡𝑡 = time ) ! ! other concentrations. The period of accelerated growth ended on 3.5 d of incubation and at 5 d of germination !"# yielded (𝑡𝑡 =a 56.8% ) PG. The curve reflects that the seed treat! ment with 800 mg L-1 GA presented a dynamics similar to that one found with treatment with 600 mg L-1 GA although the time to reach the maximum value of PG (88.4%) was obtained according to the projection model and parameters, after the last day of the incubation. The period of accelerated growth was 1.22 d and generated a PG of 56.8% during first 5 d of incubation.
There are few studies that describe patterns of germination in seeds of Annonaceae species. Stenzel et al. (2003) found seed germination that the of the cultivars Atemoya Gefner and Anon PR-3, when treated with 50-100 mg L-1 GA, occurred mainly between 14 and 28 d. Seed germination of cultivar PR-1 of Atemoya was presented mainly between 21 and 42 d when 50 mg L-1 GA was applied. Toll-Jubes et al. (1975) found a higher percentage of germination between 7 and 38 d in cherimoya (A. cherimola) seeds scarified and imbibed in a GA solution and water. Pawshe et al. (1997) found a higher percentage of germination performed at 22 and 26 d in seeds of A. squamosa immersed in GA at 50 and 100 mg L-1. 20
In the present study, there were observed differences in the patterns of seed germination of Castilla, Tolima and Apulo, Cundinamarca affected by the application of GA. At all GA concentrations, the seeds from Castilla, Tolima had higher PG values (> 70%) at 5 d of incubation than the seeds from Apulo (PG > 50%), and a shorter time to obtain the maximum germination value (maximum PG “K”) and shorter periods (of PG accelerated growth, indicating that, in seeds from Tolima, stabilization occured in less time.
GA effect on germination variables In seeds from Apulo, only the concentration of 600 mg L-1 GA was effective in promoting a synchronized germination to generate a synchronization index significantly lower 1 1 (0.34) than the control (0.41). In the seeds from Castilla, a 1 index with 1 trend was observed for a decreased synchrony 1 1 Again, it was increasing concentrations of GA. possible to demonstrate differences in the response among the two locations, with the seeds of Tolima more influenced by the application of GA compared to1 the seeds of Cundinamarca (Fig. 3A). The germination percentage (PG) was influenced by the external application of GA as could be seen in Fig. 3B. In both locations, all concentrations significantly increased the final PG (30 d incubation), as compared to the control (0 mg L-1). However, among the tested concentrations (50, 100, 200, 400, 600, and 800 mg L-1), statistically significant Agron. Colomb. 34(1) 2016
differences were not found. In seeds from Apulo, higher PG values were obtained in the treatments with 400 and 600 mg L-1 GA (96.8 and 97.6%, respectively), as compared to the control (59.2%), with an increase of 63 and 64.9% of PG. In the seeds from Castilla, one can see a trend in which the PG increaseed with increasing concentrations of GA. All concentrations contributed to a significant increase of PG (>200%) and, although these differences were minimal, the application of 800 mg L-1 GA resulted in higher values of PG (96%), which represented an increase of 252% over the control (PG = 27.2%). Our results, obtained with Colombian assesions of A. squamosa, are comparable to those found by several authors in other tropical regions, where the PG increased after the application of GA at different concentrations. Pawshe et al. (1997), Stenzel et al. (2003), and Menegazzo et al. (2012) with low concentrations of GA (from 50 to 100 mg L-1) obtained the best PG (around 75%); the latter study reported durations of seed imbibitions in GA solutions from 5 to 24 h as sufficient ones. Sousa et al. (2005) obtained 90% PG after imbibition of A. squamosa seeds for 12 hat 400 mg L-1 GA, indicating that doses of 50 to 750 mg L-1 GA also produced positive results. Ferreira et al. (1998, 2002) reported that the application of 200 and 250 mg L-1 GA significantly promoted germination (up to 77%) of A. squamosa seeds in germination chamber at alternating temperatures of 20 to 30ºC. Likewise, Lima-Brito et al. (2006) found that the use of GA between 250 and 1000 mg L-1 increased the PG and IVG of the seeds. In other Annonaceae species, the same positive effects were reported. De Smet et al. (1999) reported, in cherimoya seeds treated with 500; 1,000; 5,000, or 10,000 mg L-1 GA, a germination of 58.5, 65.5, 69.5, or 74.5%, respectively. Meanwhile, González-Esquinca et al. (1997), indicated that seeds of A. diversifolia have dormancy that could be overcomed with the use of GA. Gimenez et al. (2014) in Annona emarginata obtained 91% germination with the use of 250 mg L-1 GA3. Ferreira et al. (2002) showed, in cultivars Gefner and Thompson of Atemoya, significant differences in germination between the concentrations 500, 750, and 1,000 mg L-1 GA (for cultivar Thompson) and 1,000 mg L-1 GA (for cultivar Gefner) compared with the control. At the same time, Stenzel et al. (2003) reported no differences between the control and GA concentrations (50 and 100 mg L-1) used for three cultivars of Atemoya (Gefner, PR-1, and PR-3). Shorter germination times were recorded for treatments with GA for seeds from both locations, where a trend of
a decreasing MGT with increasing concentrations of GA could be observed (Fig. 3C). In seeds from Cundinamarca, no statistical differences were found between the GA treatments during the time required for maximum germination (MGT), but the treatment with 600 mg L-1 GA gave the best values for MGT that decreased from 17.68 d (control data at 0 mg L-1) down to 8.75 d. In Castilla, Cundinamarca, the different GA concentrations were not statistically different in the time required for maximum germination (MGT); however, concentrations of 200, 400, 600, and 800 mgL-1 GA led to lower values of MGT of 5.52, 5.55, 5.38, and 5.82 d, respectively, compared to the control with MGT of 10.88 d. Compared to the control (0 mg L-1 GA), the treatments of seeds of A.squamosa with GA at all concentrations were effective in promoting a greater MGR (Fig. 3D). It could be seen from the resultsfor the two locaions that the seeds tended to increase for the MGR with increasing concentrations from 0 to 600 mg L-1 GA. The concentration of 600 mg L-1 GA produced the highest MGR values for both seeds from Castilla, Tolima and Apulo, Cundinamarca (0.18 and 0.12 germinated seeds/d, respectively), compared with the values of the respective controls (Castilla = 0.09 and Apulo = 0.06 germinated seeds/d). However, the seeds from Castilla had significantly higher values of MGR relative to the control than the seeds from Apulo at each tested GA concentration, indicating a greater influence of the GA on the MGR of the seeds from Castilla, Tolima. Increases in the speed of germination of the seeds of A.squamosa were also found with the application of 50 mg L-1 (Toll-Jubes et al., 1975), 100 mg L-1 (Stenzel et al., 2003) and 250 mg L-1 GA (Ferreira et al., 1999). Our results are also consistent with those of Sousa et al. (2008), who found that the highest rates of germination were obtained with GA treatments. Stenzel et al. (2003) in atemoya seeds indicated that GA increased the germination rate, where IVGs of 0.48 were obtained for cultivar Gefner and of 0.46 for cultivar PR-3. The results showed a significant effect of the exogenous application of GA on seed germination, this being very effective treatment for breaking dormancy in seeds of A. squamosa. It is possible to observe a great sensitivity of the seeds to application of this phytoregulator since with any tested dose of GA, the responses were improved, indicating that the phenomenon of dormancy in these seeds might depend on a balance between hormonal promoters and inhibitors of growth (Weaver, 1987) and its breakage could be affected by the change in hormonal balance, in which GA acts to promote germination (Kigel and Galili, 1995).
Martínez M., Miranda L., and Magnitskiy: Sugar apple (Annona squamosa L.) seed germination affected by the application of gibberellins
21
120
0.40
80 60
a
A
a
A
a
A
A a
a
a
MGR (germinated seeds/d)
Germination (%)
100
A
A
B
40 20
b
50
100
200
400
600
0.15 0.10
b
ab A
ab
ab
A
A
800
AB
A
0
50
100
200
400
600
a
AB
AB
AB
AB
B
ab
b
c
A
a
B
0.90 0.80 B
0.70 B
8
b
b
6
B b
0.60
B B b
b
B
E
a
10
0.50 0.40
b
0.30
4
0.20
2
0.10
0
ab
1.00
A
14 MGT (d)
0.20
800
16 12
0.25
0 0
18
0.30
0.05
0
20
0.35
0
50
100
200
400
600
0
800
A
0
GA (mg L-1)
ab
50
100
200
b
400
b
600
AB
b
800
GA (mg L-1)
Tolima
Cundinamarca
FIGURE 3. Effect of different concentrations of GA on germination percentage (PG), mean germination time (MGT), mean germination rate (MGR)
and synchronization (E) in seeds of A. squamosa during incubation for 30 d in moist peat. Means with different letters on each location indicate significant differences according to Tukey test (P≤0.05).
With respect to the patterns of germination, GA treatments of seeds increased PG at each time point of incubation as the effect of large increases ininitial germination rates and shorter times to reach maximum PG, which was more pronounced in seeds from Tolima. Although all of the GA concentrations, applied by soaking, enhanced the potential for seed germination, compared to the non-application of GA, it is possible to highlight the performance of the seeds treated with 600 mg L-1 GA. With this concentration, it took less time for the seeds to reach the maximum PG, also it generated a shorter time of accelerated growth and, therefore, the seeds had the highest PG in the first 5 d of incubation. As mentioned, one of the characteristics of Annonaceae seeds is the presence of an inmature, slow growing embryo that is not yet developed when the fruit is riped. In this state, the embryo remains even after the seeds are removed from the fruits (Sanewski, 1991; De Smet et al., 22
1999). The positive response of the GA application on the seed germination was due to its effect on the embryo growth (Bewley, 1997). Additionally, the GA is required for the activation of embryonic growth and weakening of tissues (endosperm, perisperm, seed coats) surrounding the embryo and restricting its growth (Bewley, 1997; Bradford et al., 2000; Hegashi et al., 2002). During the germination, the embryo synthesizes and releases GA that promotes the production of various hydrolytic enzymes, including the hemicellulases, involved in the reserve solubilization of seeds. In seeds of Annonaceae, hemicellulases digest the reserves of galactomannans held in the endosperm (Baskin and Baskin, 2014), forming sugars that are further transported to embryo growth, stimulating cell elongation and promoting the rupture of seed coats by the radicle, thus, improving greater uniformity of germination (Hopkins and Hüner, 2009). Likewise, many of the enzymes involved in the process of germination, such as lipases, proteases, phosphatases, and other hydrolases, are controlled or activated by plant regulators, such as GA (Arteca, 1995). Agron. Colomb. 34(1) 2016
The difference between the seeds of two locations to treatment responses may be because plant responses to phytoregulators depend on many factors; among them are genetic and environmental ones that influence the level of endogenous hormones and substances antagonistic to germination (Agustí and Almela, 1991). Additionally, the depth of primary dormancy is highly related to the nutritional status of the mother plant (Geneve, 2003; El-Keblawy and Al-Rawai, 2006) and the environmental conditions during seed development (Finch-Savage and Leubner-Metzger, 2006); these conditions strongly influence the ABA/GA ratio in seeds at the final phases of seed maturation (Gutierrez et al., 2007) and this induced seed dormancy. The seeds from Apulo, Cundinamarca were collected at an altitude of 635 m a.s.l., an average temperature of 24.7ºC, a monthly average sunshine of 118.8 h and an annual rainfall of 1,146 mm, while seeds from Tolima were collected in a lower region, with an altitude of 447 m a.s.l., annual average temperature of 28.2ºC, average monthly sunshine of 183.23 h, and average annual rainfall of 1,732 mm. The habitat differences of the plant material could influence the seed responses of the same species to treatments (Nikolaeva, 2004).
Conclusions The exogenous application of GA increased the uniformity of the germination and germination potential of the seeds of A. squamosa and generated large increases in the initial germination rates and germination rates during the incubation time.
Pre-treatment of seeds of Annona squamosa (sugar apple) a non timber forest product. Res. Plant Sci. 2, 50-52. Agustí F., M. and V. Almela O. 1991. Aplicación de fitorreguladores en citricultura. Aedos Editorial, Barcelona, Spain. Arteca, R.N. 1995. Plant growth substances: principles and applications. Chapman & Hall, New York, NY. Baskin, J.M. and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14, 1-16. Doi: 10.1079/SSR2003150 Baskin, C.C. and J.M. Baskin. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Academic Press, San Diego, CA. Bewley, J.D. 1997. Seed germination and dormancy. Plant Cell 9, 1055-1066. Doi: 10.1105/tpc.9.7.1055 Bradford, K.J., F. Chen, M.B. Cooley, P. Dahal, B. Downie, K.K. Fukunaga, O.H. Gee, S. Gurusinghe, R.A. Mella, H. Nonogaki, C.T. Wu, H. Yang, and K.O. Yim. 2000. Gene expression prior to radicule emergence in imbibed tomato seeds. pp. 231-251. In: Black, M., K.J. Bradford, and J. Vazquez-Ramos. Seed biology: advances and applications. Proc. 6th Int. Workshop on Seeds, Merida, Mexico, 1999. CAB International, Wallingford, UK. Buriticá C., P. and J.R. Cartagena V. 2015. Neotropical and introduced fruits with special tastes and consistencies that are consumed in Colombia. Rev. Fac. Nal. Agr. 68, 7589-7618. Doi: 10.15446/rfnam.v68n2.50948 Cruz P., E. 2002. Cultivo de anona. Boletín Técnico No. 7. Centro Nacional de Tecnología Agropecuaria y Forestal (Centa), San Salvador, El Salvador. De Smet, S., P. Van Damme, X. Scheldeman, and J. Romero. 1999. Seed structure and germination of cherimoya (Annona cherimola Mill.). Acta Hortic. 497, 269-288. Doi: 10.17660/ ActaHortic.1999.497.14 El-Keblawy, A. and A. Al-Rawai. 2006. Effects of seed maturation time and dry storage on light and temperature requirements during germination in invasive Prosopis juliflora. Flora 201, 135-143. Doi: 10.1016/j.flora.2005.04.009
There was agreat sensitivity of seeds to exogenously applied GA, indicating that the embryo may present low growth potential, which could explain the poor development and rudimentary characteristic.
Ferreira, G., C.P. Silva, E. Cereda, and J.F. Pedras. 1998. Efeito do ácido giberélico (GA3) na germinação de sementes de frutado-conde (Annona squamosa L.). pp. 186-187. In: Proc. 49 Cong. Nac. Bot. Sociedade de Botânica do Brasil, Salvador de Bahía, Brazil.
Positive responses to the application of GA are valuable evidence that allows demonstrating a physiological component of dormancy in the seeds of A. squamosa.
Ferreira, G.Z., L.A. Fogaça, and M.M. Malavasi. 1999. Germinación de semillas de Annona squamosa L., sometidas a diferentes tiempos y concentraciones de ácido giberélico. pp. 79. In: Mem. 2nd Cong. Int. Anonáceas. Universidad de Ciencias y Artes del Estado de Chiapas, Tuxtla Gutierrez, Mexico.
Acknowledgements The authors express their gratitude to the Graduate School of the Faculty of Agricultural Sciences of the Universidad Nacional de Colombia, Bogota, for help in developing this study.
Ferreira, G., P.R. Erig, and E. Moro. 2002. Uso de ácido giberélico em sementes de fruta-do-conde (Annona squamosa L.) visando à produção de mudas em diferentes embalagens. Rev. Bras. Frutic. 24, 178-182. Doi: 10.1590/S0100-29452002000100039 Finch-Savage, W.E. and G. Leubner-Metzger. 2006. Seed dormancy and the control of germination. New Phytol. 171, 501-523. Doi: 10.1111/j.1469-8137.2006.01787.x
Literature cited
Geneve, R.L. 2003. Impact of temperature on seed dormancy. HortScience 38, 336-341.
Adeniji, I.T., A.F. Adio, O.A. Iroko, A.A. Kareem, O.C. Jegede, F. Kazeem-Ibrahim, T.O. Adewole, and A.O. Adeosun. 2014.
Gimenez, J.I., G. Ferreira, and J.M. Corsato. 2014. Soluble sugars and germination of Annona emarginata (Schltdl.) H.
Martínez M., Miranda L., and Magnitskiy: Sugar apple (Annona squamosa L.) seed germination affected by the application of gibberellins
23
Rainer seeds submitted to immersion in GA3 up to different water contents. Rev. Bras. Frutic. 36, 281-287. Doi: 10.1590/ S0100-29452014000500033 González-Esquinca, A.R., J.G. Álvarez M., and G.M. Porras P. 1997. Duración de la latencia e importancia de la cubierta dura y la inmadurez anatómica en la inbibición de la germinación de papausa blanca (Annona diversifolia Saff., Magnolidae, Annonaceae). Investigación, Ciencias y Artes en Chiapas (Unicach) 1, 37-46. Gutierrez, L., O. Van Wuytswinkel, M. Castelain, and C. Bellini. 2007. Combined networks regulating seed maturation. Trends Plant Sci. 7, 294-300. Doi: 10.1016/j.tplants.2007.06.003
de plântulas de Annona crassiflora Mart., Annona squamosa L. e Annona muricata L. Magistra 18, 27-33. Martínez, F. 2012. Caracterización morfoanatomica de semillas de anón (Annona squamosa L.) y evaluación de algunos parámetros fisiologicos del proceso de germinación y latencia. MSc thesis. Faculty of Agronomy, Universidad Nacional de Colombia, Bogota. Menegazzo, M.L., A.C. Oliveira, S.M. Kulczynski, and E.A. Silva. 2012. Efeitos de métodos de superação de dormência em sementes de pinha (Annona squamosa L.). Agrarian 5, 29-35. Morton, J. 1987. Sugar apple (Annona squamosa). pp. 69-72. In: Morton, J. (ed.). Fruits of warm climates. Julia F. Morton Miami, FL.
Hayat, M.A. 1963. Morphology of seed germination and seedling in Annona squamosa. Bot. Gaz. 124, 360-362. Doi: 10.1086/336219
Nikolaeva, M.G. 2004. On criteria to use in studies of seed evolution. Seed Sci. Res. 14, 315-320. Doi: 10.1079/SSR2004185
Hegashi, E., R. Silveira, C. Golveia, and L. Basso. 2002. Ação fisiológica de hormônios vegetaisnas condições hídricas, metabolismo e nutrição mineral. pp. 139-158. In: Castro, P.R.C., J.O.A. Sena, and R.A. Kruge (eds.). Introdução à fisiología do desenvolvimiento vegetal. Editora da Universidade Estadual de Maringá (Eduem), Maringa, Brazil.
Pawshe, Y.H., B.N. Patil, and L.P. Patil. 1997. Effect of pre-germination seed treatment on the germination and vigour of seedlings in custard apple (Annona squamosa L.). Ann. Plant Physiol. 2, 150-154.
Hernández, L.V. 1993. La reproducción sexual y reproducción vegetativa de las Anonaceas. Universidad Veracruzana, Xalapa, Mexico Hopkins, W.G. and N.P.A. Hüner. 2009. Development: an overview. pp. 275-288. In: Hopkins, W.G. and N.P.A. Hüner (eds.). Introduction to plant physiology. 4th ed. John Wiley & Sons, Hoboken, NJ. Hsu, F.H., C.J. Nelson, and W.S. Chow. 1984. A mathematical-model to utilize the logistic function in germination and seedling growth. J. Exp. Bot. 35, 1629-1640. Doi: 10.1093/jxb/35.11.1629 Júnior Wagner, A., R.S. Alexandre, J.R.S. Negreiros, L.D. Pimentel, J.O.C. Silva, and C.H. Bruckner. 2006. Influência do substrato na germinação e desenvolvimento inicial de plantas de maracujazeiro amarelo (Passiflora edulis Sims f. flavicarpa Deg). Ciênc. Agrotec. 30, 643-647. Doi: 10.1590/ S1413-70542006000400008
Pinto, A.C.Q. 2005. Origin and distribution. pp. 17-20. In: Williams, J.T., R.W. Smith, A. Hughes, N. Haq, and C.R. Clements. (eds.). Annona species. International Centre for Underutilised Crops, University of Southampton, Southampton, UK. Ranal, M.A. and D.G. Santana. 2006. How and why to measure the germination process? Rev. Bras. Bot. 29, 1-11. Sanewski, E.T. 1991. Classification and cultivars. pp. 2-11. In: Sanewski, G. (ed.). Custard apples: cultivation and crop protection. 2nd ed. Queensland Department of Primary Industries, Brisbane, Australia. Sousa, S.A. 2005. Cultura da Pinheira: caracterização de frutos, germinação e atributos de qualidade requeridos pelo sistema de comercialização. MSc thesis. Ciências Agrárias. Universidade Federal da Bahia, Salvador, Brazil. Sousa, S.A., A.C.V.L. Dantas, C.R. Pelacani, E.L. Vieira, and C.A.S. Ledo. 2008. Superação da dormência em sementes de pinha. Rev. Caatinga 21, 118-121.
Kigel, J. and G. Galili. 1995. Seed development and germination. Marcel Dekker, New York, NY.
Stenzel, N.M.C., I.M. Murata, and C.S.V.J. Neves. 2003. Superação da dormência em sementes de atemóia e fruta-do-conde. Rev. Bras. Frutic. 25, 305-308. Doi: 10.1590/S0100-29452003000200031
Lemos, E.E.P., R.L.R.R. Cavalcanti, A.A. Carrazoni, and T.M. Lobato. 1988. Germinação de sementes de pinha submetidas a tratamentos para quebra de dormência. pp. 675-678. In: Anais 9 Cong. Bras. Frutic. Campinas, Brazil.
Toll-Jubes, J., H. Martinez, E. Padilla, and C.A. Oeste. 1975. Effects of mechanical scarification, substrate, seed position and gibberellic acid on germination of cherimoya. Rev. Agron. N.O. Argent. 12, 161-172.
Lima-Brito, A., V.C.A. Campos, J.R.F. Santana, and A.L.C. Dornelles. 2006. Efeito do ácido giberélico (GA3) na emergência
Weaver, R.J. 1987. Reguladores del crecimiento de las plantas en la agricultura. 5th ed. Editorial Trillas, México D.F.
24
Agron. Colomb. 34(1) 2016